freebsd-skq/lib/libelf/libelf_convert.m4
kaiw 1b382f295a Avoid switching between "unsigned char" and "char" in the C code
generated from "libelf_convert.m4".

Obtained from:	elftoolchain
MFC after:		1 month
2010-07-21 11:26:18 +00:00

906 lines
22 KiB
Plaintext

/*-
* Copyright (c) 2006-2008 Joseph Koshy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/elf32.h>
#include <sys/elf64.h>
#include <assert.h>
#include <libelf.h>
#include <osreldate.h>
#include <string.h>
#include "_libelf.h"
/* WARNING: GENERATED FROM __file__. */
/*
* Macros to swap various integral quantities.
*/
#define SWAP_HALF(X) do { \
uint16_t _x = (uint16_t) (X); \
uint16_t _t = _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
(X) = _t; \
} while (0)
#define SWAP_WORD(X) do { \
uint32_t _x = (uint32_t) (X); \
uint32_t _t = _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
(X) = _t; \
} while (0)
#define SWAP_ADDR32(X) SWAP_WORD(X)
#define SWAP_OFF32(X) SWAP_WORD(X)
#define SWAP_SWORD(X) SWAP_WORD(X)
#define SWAP_WORD64(X) do { \
uint64_t _x = (uint64_t) (X); \
uint64_t _t = _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
(X) = _t; \
} while (0)
#define SWAP_ADDR64(X) SWAP_WORD64(X)
#define SWAP_LWORD(X) SWAP_WORD64(X)
#define SWAP_OFF64(X) SWAP_WORD64(X)
#define SWAP_SXWORD(X) SWAP_WORD64(X)
#define SWAP_XWORD(X) SWAP_WORD64(X)
/*
* Write out various integral values. The destination pointer could
* be unaligned. Values are written out in native byte order. The
* destination pointer is incremented after the write.
*/
#define WRITE_BYTE(P,X) do { \
char *const _p = (char *) (P); \
_p[0] = (char) (X); \
(P) = _p + 1; \
} while (0)
#define WRITE_HALF(P,X) do { \
uint16_t _t = (X); \
char *const _p = (char *) (P); \
const char *const _q = (char *) &_t; \
_p[0] = _q[0]; \
_p[1] = _q[1]; \
(P) = _p + 2; \
} while (0)
#define WRITE_WORD(P,X) do { \
uint32_t _t = (X); \
char *const _p = (char *) (P); \
const char *const _q = (char *) &_t; \
_p[0] = _q[0]; \
_p[1] = _q[1]; \
_p[2] = _q[2]; \
_p[3] = _q[3]; \
(P) = _p + 4; \
} while (0)
#define WRITE_ADDR32(P,X) WRITE_WORD(P,X)
#define WRITE_OFF32(P,X) WRITE_WORD(P,X)
#define WRITE_SWORD(P,X) WRITE_WORD(P,X)
#define WRITE_WORD64(P,X) do { \
uint64_t _t = (X); \
char *const _p = (char *) (P); \
const char *const _q = (char *) &_t; \
_p[0] = _q[0]; \
_p[1] = _q[1]; \
_p[2] = _q[2]; \
_p[3] = _q[3]; \
_p[4] = _q[4]; \
_p[5] = _q[5]; \
_p[6] = _q[6]; \
_p[7] = _q[7]; \
(P) = _p + 8; \
} while (0)
#define WRITE_ADDR64(P,X) WRITE_WORD64(P,X)
#define WRITE_LWORD(P,X) WRITE_WORD64(P,X)
#define WRITE_OFF64(P,X) WRITE_WORD64(P,X)
#define WRITE_SXWORD(P,X) WRITE_WORD64(P,X)
#define WRITE_XWORD(P,X) WRITE_WORD64(P,X)
#define WRITE_IDENT(P,X) do { \
(void) memcpy((P), (X), sizeof((X))); \
(P) = (P) + EI_NIDENT; \
} while (0)
/*
* Read in various integral values. The source pointer could be
* unaligned. Values are read in native byte order. The source
* pointer is incremented appropriately.
*/
#define READ_BYTE(P,X) do { \
const char *const _p = \
(const char *) (P); \
(X) = _p[0]; \
(P) = (P) + 1; \
} while (0)
#define READ_HALF(P,X) do { \
uint16_t _t; \
char *const _q = (char *) &_t; \
const char *const _p = \
(const char *) (P); \
_q[0] = _p[0]; \
_q[1] = _p[1]; \
(P) = (P) + 2; \
(X) = _t; \
} while (0)
#define READ_WORD(P,X) do { \
uint32_t _t; \
char *const _q = (char *) &_t; \
const char *const _p = \
(const char *) (P); \
_q[0] = _p[0]; \
_q[1] = _p[1]; \
_q[2] = _p[2]; \
_q[3] = _p[3]; \
(P) = (P) + 4; \
(X) = _t; \
} while (0)
#define READ_ADDR32(P,X) READ_WORD(P,X)
#define READ_OFF32(P,X) READ_WORD(P,X)
#define READ_SWORD(P,X) READ_WORD(P,X)
#define READ_WORD64(P,X) do { \
uint64_t _t; \
char *const _q = (char *) &_t; \
const char *const _p = \
(const char *) (P); \
_q[0] = _p[0]; \
_q[1] = _p[1]; \
_q[2] = _p[2]; \
_q[3] = _p[3]; \
_q[4] = _p[4]; \
_q[5] = _p[5]; \
_q[6] = _p[6]; \
_q[7] = _p[7]; \
(P) = (P) + 8; \
(X) = _t; \
} while (0)
#define READ_ADDR64(P,X) READ_WORD64(P,X)
#define READ_LWORD(P,X) READ_WORD64(P,X)
#define READ_OFF64(P,X) READ_WORD64(P,X)
#define READ_SXWORD(P,X) READ_WORD64(P,X)
#define READ_XWORD(P,X) READ_WORD64(P,X)
#define READ_IDENT(P,X) do { \
(void) memcpy((X), (P), sizeof((X))); \
(P) = (P) + EI_NIDENT; \
} while (0)
#define ROUNDUP2(V,N) (V) = ((((V) + (N) - 1)) & ~((N) - 1))
divert(-1)
/*
* Generate conversion routines for converting between in-memory and
* file representations of Elf data structures.
*
* `In-memory' representations of an Elf data structure use natural
* alignments and native byte ordering. This allows arithmetic and
* casting to work as expected. On the other hand the `file'
* representation of an ELF data structure could be packed tighter
* than its `in-memory' representation, and could be of a differing
* byte order. An additional complication is that `ar' only pads data
* to even addresses and so ELF archive member data being read from
* inside an `ar' archive could end up at misaligned memory addresses.
*
* Consequently, casting the `char *' pointers that point to memory
* representations (i.e., source pointers for the *_tof() functions
* and the destination pointers for the *_tom() functions), is safe,
* as these pointers should be correctly aligned for the memory type
* already. However, pointers to file representations have to be
* treated as being potentially unaligned and no casting can be done.
*/
include(SRCDIR`/elf_types.m4')
/*
* `IGNORE'_* flags turn off generation of template code.
*/
define(`IGNORE',
`define(IGNORE_$1`'32, 1)
define(IGNORE_$1`'64, 1)')
IGNORE(MOVEP)
IGNORE(NOTE)
IGNORE(GNUHASH)
define(IGNORE_BYTE, 1) /* 'lator, leave 'em bytes alone */
define(IGNORE_GNUHASH, 1)
define(IGNORE_NOTE, 1)
define(IGNORE_SXWORD32, 1)
define(IGNORE_XWORD32, 1)
/*
* `BASE'_XXX flags cause class agnostic template functions
* to be generated.
*/
define(`BASE_BYTE', 1)
define(`BASE_HALF', 1)
define(`BASE_NOTE', 1)
define(`BASE_WORD', 1)
define(`BASE_LWORD', 1)
define(`BASE_SWORD', 1)
define(`BASE_XWORD', 1)
define(`BASE_SXWORD', 1)
/*
* `SIZEDEP'_XXX flags cause 32/64 bit variants to be generated
* for each primitive type.
*/
define(`SIZEDEP_ADDR', 1)
define(`SIZEDEP_OFF', 1)
/*
* `Primitive' ELF types are those that are an alias for an integral
* type. They have no internal structure. These can be copied using
* a `memcpy()', and byteswapped in straightforward way.
*
* Macro use:
* `$1': Name of the ELF type.
* `$2': C structure name suffix
* `$3': ELF class specifier for symbols, one of [`', `32', `64']
* `$4': ELF class specifier for types, one of [`32', `64']
*/
define(`MAKEPRIM_TO_F',`
static int
libelf_cvt_$1$3_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf$4_$2 t, *s = (Elf$4_$2 *) (uintptr_t) src;
size_t c;
(void) dsz;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return (1);
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_$1$3(t);
WRITE_$1$3(dst,t);
}
return (1);
}
')
define(`MAKEPRIM_TO_M',`
static int
libelf_cvt_$1$3_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf$4_$2 t, *d = (Elf$4_$2 *) (uintptr_t) dst;
size_t c;
if (dsz < count * sizeof(Elf$4_$2))
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return (1);
}
for (c = 0; c < count; c++) {
READ_$1$3(src,t);
SWAP_$1$3(t);
*d++ = t;
}
return (1);
}
')
define(`SWAP_FIELD',
`ifdef(`IGNORE_'$2,`',
`ifelse(BASE_$2,1,
`SWAP_$2(t.$1);
',
`ifelse($2,BYTE,`',
`ifelse($2,IDENT,`',
`SWAP_$2'SZ()`(t.$1);
')')')')')
define(`SWAP_MEMBERS',
`ifelse($#,1,`/**/',
`SWAP_FIELD($1)SWAP_MEMBERS(shift($@))')')
define(`SWAP_STRUCT',
`pushdef(`SZ',$2)/* Swap an Elf$2_$1 */
SWAP_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
define(`WRITE_FIELD',
`ifelse(BASE_$2,1,
`WRITE_$2(dst,t.$1);
',
`ifelse($2,IDENT,
`WRITE_$2(dst,t.$1);
',
`WRITE_$2'SZ()`(dst,t.$1);
')')')
define(`WRITE_MEMBERS',
`ifelse($#,1,`/**/',
`WRITE_FIELD($1)WRITE_MEMBERS(shift($@))')')
define(`WRITE_STRUCT',
`pushdef(`SZ',$2)/* Write an Elf$2_$1 */
WRITE_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
define(`READ_FIELD',
`ifelse(BASE_$2,1,
`READ_$2(s,t.$1);
',
`ifelse($2,IDENT,
`READ_$2(s,t.$1);
',
`READ_$2'SZ()`(s,t.$1);
')')')
define(`READ_MEMBERS',
`ifelse($#,1,`/**/',
`READ_FIELD($1)READ_MEMBERS(shift($@))')')
define(`READ_STRUCT',
`pushdef(`SZ',$2)/* Read an Elf$2_$1 */
READ_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
/*
* Converters for non-integral ELF data structures.
*
* When converting data to file representation, the source pointer
* will be naturally aligned for a data structure's in-memory
* representation. When converting data to memory, the destination
* pointer will be similarly aligned.
*
* For in-place conversions, when converting to file representations,
* the source buffer is large enough to hold `file' data. When
* converting from file to memory, we need to be careful to work
* `backwards', to avoid overwriting unconverted data.
*
* Macro use:
* `$1': Name of the ELF type.
* `$2': C structure name suffix.
* `$3': ELF class specifier, one of [`', `32', `64']
*/
define(`MAKE_TO_F',
`ifdef(`IGNORE_'$1$3,`',`
static int
libelf_cvt$3_$1_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf$3_$2 t, *s;
size_t c;
(void) dsz;
s = (Elf$3_$2 *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
SWAP_STRUCT($2,$3)
}
WRITE_STRUCT($2,$3)
}
return (1);
}
')')
define(`MAKE_TO_M',
`ifdef(`IGNORE_'$1$3,`',`
static int
libelf_cvt$3_$1_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf$3_$2 t, *d;
char *s,*s0;
size_t fsz;
fsz = elf$3_fsize(ELF_T_$1, (size_t) 1, EV_CURRENT);
d = ((Elf$3_$2 *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf$3_$2))
return (0);
while (count--) {
s = s0;
READ_STRUCT($2,$3)
if (byteswap) {
SWAP_STRUCT($2,$3)
}
*d-- = t; s0 -= fsz;
}
return (1);
}
')')
/*
* Make type convertor functions from the type definition
* of the ELF type:
* - if the type is a base (i.e., `primitive') type:
* - if it is marked as to be ignored (i.e., `IGNORE_'TYPE)
* is defined, we skip the code generation step.
* - if the type is declared as `SIZEDEP', then 32 and 64 bit
* variants of the conversion functions are generated.
* - otherwise a 32 bit variant is generated.
* - if the type is a structure type, we generate 32 and 64 bit
* variants of the conversion functions.
*/
define(`MAKE_TYPE_CONVERTER',
`#if __FreeBSD_version >= $3 /* $1 */
ifdef(`BASE'_$1,
`ifdef(`IGNORE_'$1,`',
`MAKEPRIM_TO_F($1,$2,`',64)
MAKEPRIM_TO_M($1,$2,`',64)')',
`ifdef(`SIZEDEP_'$1,
`MAKEPRIM_TO_F($1,$2,32,32)dnl
MAKEPRIM_TO_M($1,$2,32,32)dnl
MAKEPRIM_TO_F($1,$2,64,64)dnl
MAKEPRIM_TO_M($1,$2,64,64)',
`MAKE_TO_F($1,$2,32)dnl
MAKE_TO_F($1,$2,64)dnl
MAKE_TO_M($1,$2,32)dnl
MAKE_TO_M($1,$2,64)')')
#endif /* $1 */
')
define(`MAKE_TYPE_CONVERTERS',
`ifelse($#,1,`',
`MAKE_TYPE_CONVERTER($1)MAKE_TYPE_CONVERTERS(shift($@))')')
divert(0)
/*
* Sections of type ELF_T_BYTE are never byteswapped, consequently a
* simple memcpy suffices for both directions of conversion.
*/
static int
libelf_cvt_BYTE_tox(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
(void) byteswap;
if (dsz < count)
return (0);
if (dst != src)
(void) memcpy(dst, src, count);
return (1);
}
MAKE_TYPE_CONVERTERS(ELF_TYPE_LIST)
/*
* Sections of type ELF_T_GNUHASH start with a header containing 4 32-bit
* words. Bloom filter data comes next, followed by hash buckets and the
* hash chain.
*
* Bloom filter words are 64 bit wide on ELFCLASS64 objects and are 32 bit
* wide on ELFCLASS32 objects. The other objects in this section are 32
* bits wide.
*
* Argument `srcsz' denotes the number of bytes to be converted. In the
* 32-bit case we need to translate `srcsz' to a count of 32-bit words.
*/
static int
libelf_cvt32_GNUHASH_tom(char *dst, size_t dsz, char *src, size_t srcsz,
int byteswap)
{
return (libelf_cvt_WORD_tom(dst, dsz, src, srcsz / sizeof(uint32_t),
byteswap));
}
static int
libelf_cvt32_GNUHASH_tof(char *dst, size_t dsz, char *src, size_t srcsz,
int byteswap)
{
return (libelf_cvt_WORD_tof(dst, dsz, src, srcsz / sizeof(uint32_t),
byteswap));
}
static int
libelf_cvt64_GNUHASH_tom(char *dst, size_t dsz, char *src, size_t srcsz,
int byteswap)
{
size_t sz;
uint64_t t64, *bloom64;
Elf_GNU_Hash_Header *gh;
uint32_t n, nbuckets, nchains, maskwords, shift2, symndx, t32;
uint32_t *buckets, *chains;
sz = 4 * sizeof(uint32_t); /* File header is 4 words long. */
if (dsz < sizeof(Elf_GNU_Hash_Header) || srcsz < sz)
return (0);
/* Read in the section header and byteswap if needed. */
READ_WORD(src, nbuckets);
READ_WORD(src, symndx);
READ_WORD(src, maskwords);
READ_WORD(src, shift2);
srcsz -= sz;
if (byteswap) {
SWAP_WORD(nbuckets);
SWAP_WORD(symndx);
SWAP_WORD(maskwords);
SWAP_WORD(shift2);
}
/* Check source buffer and destination buffer sizes. */
sz = nbuckets * sizeof(uint32_t) + maskwords * sizeof(uint64_t);
if (srcsz < sz || dsz < sz + sizeof(Elf_GNU_Hash_Header))
return (0);
gh = (Elf_GNU_Hash_Header *) (uintptr_t) dst;
gh->gh_nbuckets = nbuckets;
gh->gh_symndx = symndx;
gh->gh_maskwords = maskwords;
gh->gh_shift2 = shift2;
dsz -= sizeof(Elf_GNU_Hash_Header);
dst += sizeof(Elf_GNU_Hash_Header);
bloom64 = (uint64_t *) (uintptr_t) dst;
/* Copy bloom filter data. */
for (n = 0; n < maskwords; n++) {
READ_XWORD(src, t64);
if (byteswap)
SWAP_XWORD(t64);
bloom64[n] = t64;
}
/* The hash buckets follows the bloom filter. */
dst += maskwords * sizeof(uint64_t);
buckets = (uint32_t *) (uintptr_t) dst;
for (n = 0; n < nbuckets; n++) {
READ_WORD(src, t32);
if (byteswap)
SWAP_WORD(t32);
buckets[n] = t32;
}
dst += nbuckets * sizeof(uint32_t);
/* The hash chain follows the hash buckets. */
dsz -= sz;
srcsz -= sz;
if (dsz < srcsz) /* Destination lacks space. */
return (0);
nchains = srcsz / sizeof(uint32_t);
chains = (uint32_t *) (uintptr_t) dst;
for (n = 0; n < nchains; n++) {
READ_WORD(src, t32);
if (byteswap)
SWAP_WORD(t32);
*chains++ = t32;
}
return (1);
}
static int
libelf_cvt64_GNUHASH_tof(char *dst, size_t dsz, char *src, size_t srcsz,
int byteswap)
{
uint32_t *s32;
size_t sz, hdrsz;
uint64_t *s64, t64;
Elf_GNU_Hash_Header *gh;
uint32_t maskwords, n, nbuckets, nchains, t0, t1, t2, t3, t32;
hdrsz = 4 * sizeof(uint32_t); /* Header is 4x32 bits. */
if (dsz < hdrsz || srcsz < sizeof(Elf_GNU_Hash_Header))
return (0);
gh = (Elf_GNU_Hash_Header *) (uintptr_t) src;
t0 = nbuckets = gh->gh_nbuckets;
t1 = gh->gh_symndx;
t2 = maskwords = gh->gh_maskwords;
t3 = gh->gh_shift2;
src += sizeof(Elf_GNU_Hash_Header);
srcsz -= sizeof(Elf_GNU_Hash_Header);
dsz -= hdrsz;
sz = gh->gh_nbuckets * sizeof(uint32_t) + gh->gh_maskwords *
sizeof(uint64_t);
if (srcsz < sz || dsz < sz)
return (0);
/* Write out the header. */
if (byteswap) {
SWAP_WORD(t0);
SWAP_WORD(t1);
SWAP_WORD(t2);
SWAP_WORD(t3);
}
WRITE_WORD(dst, t0);
WRITE_WORD(dst, t1);
WRITE_WORD(dst, t2);
WRITE_WORD(dst, t3);
/* Copy the bloom filter and the hash table. */
s64 = (uint64_t *) (uintptr_t) src;
for (n = 0; n < maskwords; n++) {
t64 = *s64++;
if (byteswap)
SWAP_XWORD(t64);
WRITE_WORD64(dst, t64);
}
s32 = (uint32_t *) s64;
for (n = 0; n < nbuckets; n++) {
t32 = *s32++;
if (byteswap)
SWAP_WORD(t32);
WRITE_WORD(dst, t32);
}
srcsz -= sz;
dsz -= sz;
/* Copy out the hash chains. */
if (dsz < srcsz)
return (0);
nchains = srcsz / sizeof(uint32_t);
for (n = 0; n < nchains; n++) {
t32 = *s32++;
if (byteswap)
SWAP_WORD(t32);
WRITE_WORD(dst, t32);
}
return (1);
}
/*
* Elf_Note structures comprise a fixed size header followed by variable
* length strings. The fixed size header needs to be byte swapped, but
* not the strings.
*
* Argument `count' denotes the total number of bytes to be converted.
* The destination buffer needs to be at least `count' bytes in size.
*/
static int
libelf_cvt_NOTE_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
uint32_t namesz, descsz, type;
Elf_Note *en;
size_t sz, hdrsz;
if (dsz < count) /* Destination buffer is too small. */
return (0);
hdrsz = 3 * sizeof(uint32_t);
if (count < hdrsz) /* Source too small. */
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count);
return (1);
}
/* Process all notes in the section. */
while (count > hdrsz) {
/* Read the note header. */
READ_WORD(src, namesz);
READ_WORD(src, descsz);
READ_WORD(src, type);
/* Translate. */
SWAP_WORD(namesz);
SWAP_WORD(descsz);
SWAP_WORD(type);
/* Copy out the translated note header. */
en = (Elf_Note *) (uintptr_t) dst;
en->n_namesz = namesz;
en->n_descsz = descsz;
en->n_type = type;
dsz -= sizeof(Elf_Note);
dst += sizeof(Elf_Note);
count -= hdrsz;
ROUNDUP2(namesz, 4);
ROUNDUP2(descsz, 4);
sz = namesz + descsz;
if (count < sz || dsz < sz) /* Buffers are too small. */
return (0);
(void) memcpy(dst, src, sz);
src += sz;
dst += sz;
count -= sz;
dsz -= sz;
}
return (1);
}
static int
libelf_cvt_NOTE_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
uint32_t namesz, descsz, type;
Elf_Note *en;
size_t sz;
if (dsz < count)
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count);
return (1);
}
while (count > sizeof(Elf_Note)) {
en = (Elf_Note *) (uintptr_t) src;
namesz = en->n_namesz;
descsz = en->n_descsz;
type = en->n_type;
SWAP_WORD(namesz);
SWAP_WORD(descsz);
SWAP_WORD(type);
WRITE_WORD(dst, namesz);
WRITE_WORD(dst, descsz);
WRITE_WORD(dst, type);
src += sizeof(Elf_Note);
ROUNDUP2(namesz, 4);
ROUNDUP2(descsz, 4);
sz = namesz + descsz;
if (count < sz)
sz = count;
(void) memcpy(dst, src, sz);
src += sz;
dst += sz;
count -= sz;
}
return (1);
}
struct converters {
int (*tof32)(char *dst, size_t dsz, char *src, size_t cnt,
int byteswap);
int (*tom32)(char *dst, size_t dsz, char *src, size_t cnt,
int byteswap);
int (*tof64)(char *dst, size_t dsz, char *src, size_t cnt,
int byteswap);
int (*tom64)(char *dst, size_t dsz, char *src, size_t cnt,
int byteswap);
};
divert(-1)
define(`CONV',
`ifdef(`IGNORE_'$1$2,
`.$3$2 = NULL',
`ifdef(`BASE_'$1,
`.$3$2 = libelf_cvt_$1_$3',
`ifdef(`SIZEDEP_'$1,
`.$3$2 = libelf_cvt_$1$2_$3',
`.$3$2 = libelf_cvt$2_$1_$3')')')')
define(`CONVERTER_NAME',
`ifdef(`IGNORE_'$1,`',
`#if __FreeBSD_version >= $3
[ELF_T_$1] = {
CONV($1,32,tof), CONV($1,32,tom),
CONV($1,64,tof), CONV($1,64,tom) },
#endif
')')
define(`CONVERTER_NAMES',
`ifelse($#,1,`',
`CONVERTER_NAME($1)CONVERTER_NAMES(shift($@))')')
undefine(`IGNORE_BYTE32', `IGNORE_BYTE64')
divert(0)
static struct converters cvt[ELF_T_NUM] = {
CONVERTER_NAMES(ELF_TYPE_LIST)
/*
* Types that needs hand-coded converters follow.
*/
[ELF_T_BYTE] = {
.tof32 = libelf_cvt_BYTE_tox,
.tom32 = libelf_cvt_BYTE_tox,
.tof64 = libelf_cvt_BYTE_tox,
.tom64 = libelf_cvt_BYTE_tox
},
[ELF_T_GNUHASH] = {
.tof32 = libelf_cvt32_GNUHASH_tof,
.tom32 = libelf_cvt32_GNUHASH_tom,
.tof64 = libelf_cvt64_GNUHASH_tof,
.tom64 = libelf_cvt64_GNUHASH_tom
},
[ELF_T_NOTE] = {
.tof32 = libelf_cvt_NOTE_tof,
.tom32 = libelf_cvt_NOTE_tom,
.tof64 = libelf_cvt_NOTE_tof,
.tom64 = libelf_cvt_NOTE_tom
}
};
int (*_libelf_get_translator(Elf_Type t, int direction, int elfclass))
(char *_dst, size_t dsz, char *_src, size_t _cnt, int _byteswap)
{
assert(elfclass == ELFCLASS32 || elfclass == ELFCLASS64);
assert(direction == ELF_TOFILE || direction == ELF_TOMEMORY);
if (t >= ELF_T_NUM ||
(elfclass != ELFCLASS32 && elfclass != ELFCLASS64) ||
(direction != ELF_TOFILE && direction != ELF_TOMEMORY))
return (NULL);
return ((elfclass == ELFCLASS32) ?
(direction == ELF_TOFILE ? cvt[t].tof32 : cvt[t].tom32) :
(direction == ELF_TOFILE ? cvt[t].tof64 : cvt[t].tom64));
}