freebsd-skq/sys/net80211/ieee80211_output.c
Adrian Chadd 2172664c4b [net80211] Use the unicast key when transmitting DWDS AP multicast frames.
I'm still not sure whether this is the full solution, but here goes.

I have a two node DWDS setup - a main AP with the ethernet bridge uplink
and a satellite AP in the back of the house. They're both AR9344+AR9580
dual band 11n APs.

The problem was that multicast frames was not going from the DWDS AP to
the DWDS STA. Unicast frames are fine, and multicast frames from the
DWDS STA to AP are fine.

Now, multicast and unicast frames from the STA -> AP are just transmitted
using the unicast key.  That's fine.  However, the AP -> STA multicast
frames by default are transmitted using the current default / multicast
key, the shared one between all STAs in a BSS.  Now, the DWDS implementation
ignores non WDS frames - it only allows about 4 address frames outside
of management / EAPOL frames! - so the STA side ignores the normal multicast
frames.

Instead, the AP side uses ieee80211_dwds_mcast() to send multicast frames
to each WDS VAP that was created as part of the "dynamic" part of DWDS.
This should be queuing them individually to each node instead of using
the normal multicast send path; and this is how they should get turned into
4-addr WDS frames.

HOWEVER, ieee80211_encap() was trying to use the default TX key to queue
them rather than the unicast key that's already setup.  Since this synthetic
node doesn't have the default TX key setup, transmission fails.  Things
would be fine in WEP and in open mode because in both cases you would
have static keys (or no keys) setup.  It just fails in WPA mode.

This resolves the issue.  AP DWDS multicast is now sent using the unicast
key just like in STA mode and I'm pretty sure the STA mode side will stil
work fine (as it's a STA VAP with a DWDS flag..)

Tested:

* TL-WDR3600/4300 APs
2020-05-08 17:01:33 +00:00

4032 lines
117 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/endian.h>
#include <sys/socket.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#ifdef IEEE80211_SUPPORT_TDMA
#include <net80211/ieee80211_tdma.h>
#endif
#include <net80211/ieee80211_wds.h>
#include <net80211/ieee80211_mesh.h>
#include <net80211/ieee80211_vht.h>
#if defined(INET) || defined(INET6)
#include <netinet/in.h>
#endif
#ifdef INET
#include <netinet/if_ether.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#endif
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <security/mac/mac_framework.h>
#define ETHER_HEADER_COPY(dst, src) \
memcpy(dst, src, sizeof(struct ether_header))
static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
u_int hdrsize, u_int ciphdrsize, u_int mtu);
static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
#ifdef IEEE80211_DEBUG
/*
* Decide if an outbound management frame should be
* printed when debugging is enabled. This filters some
* of the less interesting frames that come frequently
* (e.g. beacons).
*/
static __inline int
doprint(struct ieee80211vap *vap, int subtype)
{
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
return (vap->iv_opmode == IEEE80211_M_IBSS);
}
return 1;
}
#endif
/*
* Transmit a frame to the given destination on the given VAP.
*
* It's up to the caller to figure out the details of who this
* is going to and resolving the node.
*
* This routine takes care of queuing it for power save,
* A-MPDU state stuff, fast-frames state stuff, encapsulation
* if required, then passing it up to the driver layer.
*
* This routine (for now) consumes the mbuf and frees the node
* reference; it ideally will return a TX status which reflects
* whether the mbuf was consumed or not, so the caller can
* free the mbuf (if appropriate) and the node reference (again,
* if appropriate.)
*/
int
ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
struct ieee80211_node *ni)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = vap->iv_ifp;
int mcast;
if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
(m->m_flags & M_PWR_SAV) == 0) {
/*
* Station in power save mode; pass the frame
* to the 802.11 layer and continue. We'll get
* the frame back when the time is right.
* XXX lose WDS vap linkage?
*/
if (ieee80211_pwrsave(ni, m) != 0)
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
/*
* We queued it fine, so tell the upper layer
* that we consumed it.
*/
return (0);
}
/* calculate priority so drivers can find the tx queue */
if (ieee80211_classify(ni, m)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
ni->ni_macaddr, NULL,
"%s", "classification failure");
vap->iv_stats.is_tx_classify++;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
ieee80211_free_node(ni);
/* XXX better status? */
return (0);
}
/*
* Stash the node pointer. Note that we do this after
* any call to ieee80211_dwds_mcast because that code
* uses any existing value for rcvif to identify the
* interface it (might have been) received on.
*/
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
m->m_pkthdr.rcvif = (void *)ni;
mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
BPF_MTAP(ifp, m); /* 802.3 tx */
/*
* Check if A-MPDU tx aggregation is setup or if we
* should try to enable it. The sta must be associated
* with HT and A-MPDU enabled for use. When the policy
* routine decides we should enable A-MPDU we issue an
* ADDBA request and wait for a reply. The frame being
* encapsulated will go out w/o using A-MPDU, or possibly
* it might be collected by the driver and held/retransmit.
* The default ic_ampdu_enable routine handles staggering
* ADDBA requests in case the receiver NAK's us or we are
* otherwise unable to establish a BA stream.
*
* Don't treat group-addressed frames as candidates for aggregation;
* net80211 doesn't support 802.11aa-2012 and so group addressed
* frames will always have sequence numbers allocated from the NON_QOS
* TID.
*/
if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
(vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
int tid = WME_AC_TO_TID(M_WME_GETAC(m));
struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
ieee80211_txampdu_count_packet(tap);
if (IEEE80211_AMPDU_RUNNING(tap)) {
/*
* Operational, mark frame for aggregation.
*
* XXX do tx aggregation here
*/
m->m_flags |= M_AMPDU_MPDU;
} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
ic->ic_ampdu_enable(ni, tap)) {
/*
* Not negotiated yet, request service.
*/
ieee80211_ampdu_request(ni, tap);
/* XXX hold frame for reply? */
}
}
}
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* Check for AMSDU/FF; queue for aggregation
*
* Note: we don't bother trying to do fast frames or
* A-MSDU encapsulation for 802.3 drivers. Now, we
* likely could do it for FF (because it's a magic
* atheros tunnel LLC type) but I don't think we're going
* to really need to. For A-MSDU we'd have to set the
* A-MSDU QoS bit in the wifi header, so we just plain
* can't do it.
*
* Strictly speaking, we could actually /do/ A-MSDU / FF
* with A-MPDU together which for certain circumstances
* is beneficial (eg A-MSDU of TCK ACKs.) However,
* I'll ignore that for now so existing behaviour is maintained.
* Later on it would be good to make "amsdu + ampdu" configurable.
*/
else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
m = ieee80211_amsdu_check(ni, m);
if (m == NULL) {
/* NB: any ni ref held on stageq */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: amsdu_check queued frame\n",
__func__);
return (0);
}
} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
IEEE80211_NODE_FF)) {
m = ieee80211_ff_check(ni, m);
if (m == NULL) {
/* NB: any ni ref held on stageq */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: ff_check queued frame\n",
__func__);
return (0);
}
}
}
#endif /* IEEE80211_SUPPORT_SUPERG */
/*
* Grab the TX lock - serialise the TX process from this
* point (where TX state is being checked/modified)
* through to driver queue.
*/
IEEE80211_TX_LOCK(ic);
/*
* XXX make the encap and transmit code a separate function
* so things like the FF (and later A-MSDU) path can just call
* it for flushed frames.
*/
if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
/*
* Encapsulate the packet in prep for transmission.
*/
m = ieee80211_encap(vap, ni, m);
if (m == NULL) {
/* NB: stat+msg handled in ieee80211_encap */
IEEE80211_TX_UNLOCK(ic);
ieee80211_free_node(ni);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return (ENOBUFS);
}
}
(void) ieee80211_parent_xmitpkt(ic, m);
/*
* Unlock at this point - no need to hold it across
* ieee80211_free_node() (ie, the comlock)
*/
IEEE80211_TX_UNLOCK(ic);
ic->ic_lastdata = ticks;
return (0);
}
/*
* Send the given mbuf through the given vap.
*
* This consumes the mbuf regardless of whether the transmit
* was successful or not.
*
* This does none of the initial checks that ieee80211_start()
* does (eg CAC timeout, interface wakeup) - the caller must
* do this first.
*/
static int
ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
{
#define IS_DWDS(vap) \
(vap->iv_opmode == IEEE80211_M_WDS && \
(vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211_node *ni;
struct ether_header *eh;
/*
* Cancel any background scan.
*/
if (ic->ic_flags & IEEE80211_F_SCAN)
ieee80211_cancel_anyscan(vap);
/*
* Find the node for the destination so we can do
* things like power save and fast frames aggregation.
*
* NB: past this point various code assumes the first
* mbuf has the 802.3 header present (and contiguous).
*/
ni = NULL;
if (m->m_len < sizeof(struct ether_header) &&
(m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
"discard frame, %s\n", "m_pullup failed");
vap->iv_stats.is_tx_nobuf++; /* XXX */
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
if (IS_DWDS(vap)) {
/*
* Only unicast frames from the above go out
* DWDS vaps; multicast frames are handled by
* dispatching the frame as it comes through
* the AP vap (see below).
*/
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
eh->ether_dhost, "mcast", "%s", "on DWDS");
vap->iv_stats.is_dwds_mcast++;
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
/* XXX better status? */
return (ENOBUFS);
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
/*
* Spam DWDS vap's w/ multicast traffic.
*/
/* XXX only if dwds in use? */
ieee80211_dwds_mcast(vap, m);
}
}
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode != IEEE80211_M_MBSS) {
#endif
ni = ieee80211_find_txnode(vap, eh->ether_dhost);
if (ni == NULL) {
/* NB: ieee80211_find_txnode does stat+msg */
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
/* XXX better status? */
return (ENOBUFS);
}
if (ni->ni_associd == 0 &&
(ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
eh->ether_dhost, NULL,
"sta not associated (type 0x%04x)",
htons(eh->ether_type));
vap->iv_stats.is_tx_notassoc++;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
ieee80211_free_node(ni);
/* XXX better status? */
return (ENOBUFS);
}
#ifdef IEEE80211_SUPPORT_MESH
} else {
if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
/*
* Proxy station only if configured.
*/
if (!ieee80211_mesh_isproxyena(vap)) {
IEEE80211_DISCARD_MAC(vap,
IEEE80211_MSG_OUTPUT |
IEEE80211_MSG_MESH,
eh->ether_dhost, NULL,
"%s", "proxy not enabled");
vap->iv_stats.is_mesh_notproxy++;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
/* XXX better status? */
return (ENOBUFS);
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
"forward frame from DS SA(%6D), DA(%6D)\n",
eh->ether_shost, ":",
eh->ether_dhost, ":");
ieee80211_mesh_proxy_check(vap, eh->ether_shost);
}
ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
if (ni == NULL) {
/*
* NB: ieee80211_mesh_discover holds/disposes
* frame (e.g. queueing on path discovery).
*/
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
/* XXX better status? */
return (ENOBUFS);
}
}
#endif
/*
* We've resolved the sender, so attempt to transmit it.
*/
if (vap->iv_state == IEEE80211_S_SLEEP) {
/*
* In power save; queue frame and then wakeup device
* for transmit.
*/
ic->ic_lastdata = ticks;
if (ieee80211_pwrsave(ni, m) != 0)
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
return (0);
}
if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
return (ENOBUFS);
return (0);
#undef IS_DWDS
}
/*
* Start method for vap's. All packets from the stack come
* through here. We handle common processing of the packets
* before dispatching them to the underlying device.
*
* if_transmit() requires that the mbuf be consumed by this call
* regardless of the return condition.
*/
int
ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct ieee80211vap *vap = ifp->if_softc;
struct ieee80211com *ic = vap->iv_ic;
/*
* No data frames go out unless we're running.
* Note in particular this covers CAC and CSA
* states (though maybe we should check muting
* for CSA).
*/
if (vap->iv_state != IEEE80211_S_RUN &&
vap->iv_state != IEEE80211_S_SLEEP) {
IEEE80211_LOCK(ic);
/* re-check under the com lock to avoid races */
if (vap->iv_state != IEEE80211_S_RUN &&
vap->iv_state != IEEE80211_S_SLEEP) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
"%s: ignore queue, in %s state\n",
__func__, ieee80211_state_name[vap->iv_state]);
vap->iv_stats.is_tx_badstate++;
IEEE80211_UNLOCK(ic);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return (ENETDOWN);
}
IEEE80211_UNLOCK(ic);
}
/*
* Sanitize mbuf flags for net80211 use. We cannot
* clear M_PWR_SAV or M_MORE_DATA because these may
* be set for frames that are re-submitted from the
* power save queue.
*
* NB: This must be done before ieee80211_classify as
* it marks EAPOL in frames with M_EAPOL.
*/
m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
/*
* Bump to the packet transmission path.
* The mbuf will be consumed here.
*/
return (ieee80211_start_pkt(vap, m));
}
void
ieee80211_vap_qflush(struct ifnet *ifp)
{
/* Empty for now */
}
/*
* 802.11 raw output routine.
*
* XXX TODO: this (and other send routines) should correctly
* XXX keep the pwr mgmt bit set if it decides to call into the
* XXX driver to send a frame whilst the state is SLEEP.
*
* Otherwise the peer may decide that we're awake and flood us
* with traffic we are still too asleep to receive!
*/
int
ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
struct mbuf *m, const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = vap->iv_ic;
int error;
/*
* Set node - the caller has taken a reference, so ensure
* that the mbuf has the same node value that
* it would if it were going via the normal path.
*/
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
m->m_pkthdr.rcvif = (void *)ni;
/*
* Attempt to add bpf transmit parameters.
*
* For now it's ok to fail; the raw_xmit api still takes
* them as an option.
*
* Later on when ic_raw_xmit() has params removed,
* they'll have to be added - so fail the transmit if
* they can't be.
*/
if (params)
(void) ieee80211_add_xmit_params(m, params);
error = ic->ic_raw_xmit(ni, m, params);
if (error) {
if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
}
return (error);
}
static int
ieee80211_validate_frame(struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211_frame *wh;
int type;
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
return (EINVAL);
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
IEEE80211_FC0_VERSION_0)
return (EINVAL);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
if (type != IEEE80211_FC0_TYPE_DATA) {
if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
IEEE80211_FC1_DIR_NODS)
return (EINVAL);
if (type != IEEE80211_FC0_TYPE_MGT &&
(wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
return (EINVAL);
/* XXX skip other field checks? */
}
if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
(wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) {
int subtype;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
/*
* See IEEE Std 802.11-2012,
* 8.2.4.1.9 'Protected Frame field'
*/
/* XXX no support for robust management frames yet. */
if (!(type == IEEE80211_FC0_TYPE_DATA ||
(type == IEEE80211_FC0_TYPE_MGT &&
subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
return (EINVAL);
wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
}
if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
return (EINVAL);
return (0);
}
static int
ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
{
struct ieee80211com *ic = ni->ni_ic;
if (IEEE80211_IS_HT_RATE(rate)) {
if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
return (EINVAL);
rate = IEEE80211_RV(rate);
if (rate <= 31) {
if (rate > ic->ic_txstream * 8 - 1)
return (EINVAL);
return (0);
}
if (rate == 32) {
if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
return (EINVAL);
return (0);
}
if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
return (EINVAL);
switch (ic->ic_txstream) {
case 0:
case 1:
return (EINVAL);
case 2:
if (rate > 38)
return (EINVAL);
return (0);
case 3:
if (rate > 52)
return (EINVAL);
return (0);
case 4:
default:
if (rate > 76)
return (EINVAL);
return (0);
}
}
if (!ieee80211_isratevalid(ic->ic_rt, rate))
return (EINVAL);
return (0);
}
static int
ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
int error;
if (!params)
return (0); /* nothing to do */
/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
if (params->ibp_rate0 != 0) {
error = ieee80211_validate_rate(ni, params->ibp_rate0);
if (error != 0)
return (error);
} else {
/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
/* XXX __DECONST? */
(void) m;
}
if (params->ibp_rate1 != 0 &&
(error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
return (error);
if (params->ibp_rate2 != 0 &&
(error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
return (error);
if (params->ibp_rate3 != 0 &&
(error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
return (error);
return (0);
}
/*
* 802.11 output routine. This is (currently) used only to
* connect bpf write calls to the 802.11 layer for injecting
* raw 802.11 frames.
*/
int
ieee80211_output(struct ifnet *ifp, struct mbuf *m,
const struct sockaddr *dst, struct route *ro)
{
#define senderr(e) do { error = (e); goto bad;} while (0)
const struct ieee80211_bpf_params *params = NULL;
struct ieee80211_node *ni = NULL;
struct ieee80211vap *vap;
struct ieee80211_frame *wh;
struct ieee80211com *ic = NULL;
int error;
int ret;
if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
/*
* Short-circuit requests if the vap is marked OACTIVE
* as this can happen because a packet came down through
* ieee80211_start before the vap entered RUN state in
* which case it's ok to just drop the frame. This
* should not be necessary but callers of if_output don't
* check OACTIVE.
*/
senderr(ENETDOWN);
}
vap = ifp->if_softc;
ic = vap->iv_ic;
/*
* Hand to the 802.3 code if not tagged as
* a raw 802.11 frame.
*/
if (dst->sa_family != AF_IEEE80211)
return vap->iv_output(ifp, m, dst, ro);
#ifdef MAC
error = mac_ifnet_check_transmit(ifp, m);
if (error)
senderr(error);
#endif
if (ifp->if_flags & IFF_MONITOR)
senderr(ENETDOWN);
if (!IFNET_IS_UP_RUNNING(ifp))
senderr(ENETDOWN);
if (vap->iv_state == IEEE80211_S_CAC) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
"block %s frame in CAC state\n", "raw data");
vap->iv_stats.is_tx_badstate++;
senderr(EIO); /* XXX */
} else if (vap->iv_state == IEEE80211_S_SCAN)
senderr(EIO);
/* XXX bypass bridge, pfil, carp, etc. */
/*
* NB: DLT_IEEE802_11_RADIO identifies the parameters are
* present by setting the sa_len field of the sockaddr (yes,
* this is a hack).
* NB: we assume sa_data is suitably aligned to cast.
*/
if (dst->sa_len != 0)
params = (const struct ieee80211_bpf_params *)dst->sa_data;
error = ieee80211_validate_frame(m, params);
if (error != 0)
senderr(error);
wh = mtod(m, struct ieee80211_frame *);
/* locate destination node */
switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
case IEEE80211_FC1_DIR_FROMDS:
ni = ieee80211_find_txnode(vap, wh->i_addr1);
break;
case IEEE80211_FC1_DIR_TODS:
case IEEE80211_FC1_DIR_DSTODS:
ni = ieee80211_find_txnode(vap, wh->i_addr3);
break;
default:
senderr(EDOOFUS);
}
if (ni == NULL) {
/*
* Permit packets w/ bpf params through regardless
* (see below about sa_len).
*/
if (dst->sa_len == 0)
senderr(EHOSTUNREACH);
ni = ieee80211_ref_node(vap->iv_bss);
}
/*
* Sanitize mbuf for net80211 flags leaked from above.
*
* NB: This must be done before ieee80211_classify as
* it marks EAPOL in frames with M_EAPOL.
*/
m->m_flags &= ~M_80211_TX;
m->m_flags |= M_ENCAP; /* mark encapsulated */
if (IEEE80211_IS_DATA(wh)) {
/* calculate priority so drivers can find the tx queue */
if (ieee80211_classify(ni, m))
senderr(EIO); /* XXX */
/* NB: ieee80211_encap does not include 802.11 header */
IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
m->m_pkthdr.len - ieee80211_hdrsize(wh));
} else
M_WME_SETAC(m, WME_AC_BE);
error = ieee80211_sanitize_rates(ni, m, params);
if (error != 0)
senderr(error);
IEEE80211_NODE_STAT(ni, tx_data);
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
IEEE80211_NODE_STAT(ni, tx_mcast);
m->m_flags |= M_MCAST;
} else
IEEE80211_NODE_STAT(ni, tx_ucast);
IEEE80211_TX_LOCK(ic);
ret = ieee80211_raw_output(vap, ni, m, params);
IEEE80211_TX_UNLOCK(ic);
return (ret);
bad:
if (m != NULL)
m_freem(m);
if (ni != NULL)
ieee80211_free_node(ni);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return error;
#undef senderr
}
/*
* Set the direction field and address fields of an outgoing
* frame. Note this should be called early on in constructing
* a frame as it sets i_fc[1]; other bits can then be or'd in.
*/
void
ieee80211_send_setup(
struct ieee80211_node *ni,
struct mbuf *m,
int type, int tid,
const uint8_t sa[IEEE80211_ADDR_LEN],
const uint8_t da[IEEE80211_ADDR_LEN],
const uint8_t bssid[IEEE80211_ADDR_LEN])
{
#define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_tx_ampdu *tap;
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
ieee80211_seq seqno;
IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
IEEE80211_ADDR_COPY(wh->i_addr3, da);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
break;
case IEEE80211_M_HOSTAP:
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
IEEE80211_ADDR_COPY(wh->i_addr3, sa);
break;
case IEEE80211_M_WDS:
wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, da);
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
break;
case IEEE80211_M_MBSS:
#ifdef IEEE80211_SUPPORT_MESH
if (IEEE80211_IS_MULTICAST(da)) {
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
/* XXX next hop */
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2,
vap->iv_myaddr);
} else {
wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2,
vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, da);
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
}
#endif
break;
case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
break;
}
} else {
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS)
IEEE80211_ADDR_COPY(wh->i_addr3, sa);
else
#endif
IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
}
*(uint16_t *)&wh->i_dur[0] = 0;
/*
* XXX TODO: this is what the TX lock is for.
* Here we're incrementing sequence numbers, and they
* need to be in lock-step with what the driver is doing
* both in TX ordering and crypto encap (IV increment.)
*
* If the driver does seqno itself, then we can skip
* assigning sequence numbers here, and we can avoid
* requiring the TX lock.
*/
tap = &ni->ni_tx_ampdu[tid];
if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
m->m_flags |= M_AMPDU_MPDU;
/* NB: zero out i_seq field (for s/w encryption etc) */
*(uint16_t *)&wh->i_seq[0] = 0;
} else {
if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
type & IEEE80211_FC0_SUBTYPE_MASK))
/*
* 802.11-2012 9.3.2.10 - QoS multicast frames
* come out of a different seqno space.
*/
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
} else {
seqno = ni->ni_txseqs[tid]++;
}
else
seqno = 0;
*(uint16_t *)&wh->i_seq[0] =
htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
M_SEQNO_SET(m, seqno);
}
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
m->m_flags |= M_MCAST;
#undef WH4
}
/*
* Send a management frame to the specified node. The node pointer
* must have a reference as the pointer will be passed to the driver
* and potentially held for a long time. If the frame is successfully
* dispatched to the driver, then it is responsible for freeing the
* reference (and potentially free'ing up any associated storage);
* otherwise deal with reclaiming any reference (on error).
*/
int
ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
struct ieee80211_bpf_params *params)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_frame *wh;
int ret;
KASSERT(ni != NULL, ("null node"));
if (vap->iv_state == IEEE80211_S_CAC) {
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
ni, "block %s frame in CAC state",
ieee80211_mgt_subtype_name(type));
vap->iv_stats.is_tx_badstate++;
ieee80211_free_node(ni);
m_freem(m);
return EIO; /* XXX */
}
M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
if (m == NULL) {
ieee80211_free_node(ni);
return ENOMEM;
}
IEEE80211_TX_LOCK(ic);
wh = mtod(m, struct ieee80211_frame *);
ieee80211_send_setup(ni, m,
IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
"encrypting frame (%s)", __func__);
wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
}
m->m_flags |= M_ENCAP; /* mark encapsulated */
KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
M_WME_SETAC(m, params->ibp_pri);
#ifdef IEEE80211_DEBUG
/* avoid printing too many frames */
if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
ieee80211_msg_dumppkts(vap)) {
printf("[%s] send %s on channel %u\n",
ether_sprintf(wh->i_addr1),
ieee80211_mgt_subtype_name(type),
ieee80211_chan2ieee(ic, ic->ic_curchan));
}
#endif
IEEE80211_NODE_STAT(ni, tx_mgmt);
ret = ieee80211_raw_output(vap, ni, m, params);
IEEE80211_TX_UNLOCK(ic);
return (ret);
}
static void
ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
int status)
{
struct ieee80211vap *vap = ni->ni_vap;
wakeup(vap);
}
/*
* Send a null data frame to the specified node. If the station
* is setup for QoS then a QoS Null Data frame is constructed.
* If this is a WDS station then a 4-address frame is constructed.
*
* NB: the caller is assumed to have setup a node reference
* for use; this is necessary to deal with a race condition
* when probing for inactive stations. Like ieee80211_mgmt_output
* we must cleanup any node reference on error; however we
* can safely just unref it as we know it will never be the
* last reference to the node.
*/
int
ieee80211_send_nulldata(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct mbuf *m;
struct ieee80211_frame *wh;
int hdrlen;
uint8_t *frm;
int ret;
if (vap->iv_state == IEEE80211_S_CAC) {
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
ni, "block %s frame in CAC state", "null data");
ieee80211_unref_node(&ni);
vap->iv_stats.is_tx_badstate++;
return EIO; /* XXX */
}
if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
hdrlen = sizeof(struct ieee80211_qosframe);
else
hdrlen = sizeof(struct ieee80211_frame);
/* NB: only WDS vap's get 4-address frames */
if (vap->iv_opmode == IEEE80211_M_WDS)
hdrlen += IEEE80211_ADDR_LEN;
if (ic->ic_flags & IEEE80211_F_DATAPAD)
hdrlen = roundup(hdrlen, sizeof(uint32_t));
m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
if (m == NULL) {
/* XXX debug msg */
ieee80211_unref_node(&ni);
vap->iv_stats.is_tx_nobuf++;
return ENOMEM;
}
KASSERT(M_LEADINGSPACE(m) >= hdrlen,
("leading space %zd", M_LEADINGSPACE(m)));
M_PREPEND(m, hdrlen, M_NOWAIT);
if (m == NULL) {
/* NB: cannot happen */
ieee80211_free_node(ni);
return ENOMEM;
}
IEEE80211_TX_LOCK(ic);
wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */
if (ni->ni_flags & IEEE80211_NODE_QOS) {
const int tid = WME_AC_TO_TID(WME_AC_BE);
uint8_t *qos;
ieee80211_send_setup(ni, m,
IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
if (vap->iv_opmode == IEEE80211_M_WDS)
qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
else
qos = ((struct ieee80211_qosframe *) wh)->i_qos;
qos[0] = tid & IEEE80211_QOS_TID;
if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
qos[1] = 0;
} else {
ieee80211_send_setup(ni, m,
IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
IEEE80211_NONQOS_TID,
vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
}
if (vap->iv_opmode != IEEE80211_M_WDS) {
/* NB: power management bit is never sent by an AP */
if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
vap->iv_opmode != IEEE80211_M_HOSTAP)
wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
}
if ((ic->ic_flags & IEEE80211_F_SCAN) &&
(ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
NULL);
}
m->m_len = m->m_pkthdr.len = hdrlen;
m->m_flags |= M_ENCAP; /* mark encapsulated */
M_WME_SETAC(m, WME_AC_BE);
IEEE80211_NODE_STAT(ni, tx_data);
IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
"send %snull data frame on channel %u, pwr mgt %s",
ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
ieee80211_chan2ieee(ic, ic->ic_curchan),
wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
ret = ieee80211_raw_output(vap, ni, m, NULL);
IEEE80211_TX_UNLOCK(ic);
return (ret);
}
/*
* Assign priority to a frame based on any vlan tag assigned
* to the station and/or any Diffserv setting in an IP header.
* Finally, if an ACM policy is setup (in station mode) it's
* applied.
*/
int
ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
{
const struct ether_header *eh = NULL;
uint16_t ether_type;
int v_wme_ac, d_wme_ac, ac;
if (__predict_false(m->m_flags & M_ENCAP)) {
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
struct llc *llc;
int hdrlen, subtype;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
ac = WME_AC_BE;
goto done;
}
hdrlen = ieee80211_hdrsize(wh);
if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
return 1;
llc = (struct llc *)mtodo(m, hdrlen);
if (llc->llc_dsap != LLC_SNAP_LSAP ||
llc->llc_ssap != LLC_SNAP_LSAP ||
llc->llc_control != LLC_UI ||
llc->llc_snap.org_code[0] != 0 ||
llc->llc_snap.org_code[1] != 0 ||
llc->llc_snap.org_code[2] != 0)
return 1;
ether_type = llc->llc_snap.ether_type;
} else {
eh = mtod(m, struct ether_header *);
ether_type = eh->ether_type;
}
/*
* Always promote PAE/EAPOL frames to high priority.
*/
if (ether_type == htons(ETHERTYPE_PAE)) {
/* NB: mark so others don't need to check header */
m->m_flags |= M_EAPOL;
ac = WME_AC_VO;
goto done;
}
/*
* Non-qos traffic goes to BE.
*/
if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
ac = WME_AC_BE;
goto done;
}
/*
* If node has a vlan tag then all traffic
* to it must have a matching tag.
*/
v_wme_ac = 0;
if (ni->ni_vlan != 0) {
if ((m->m_flags & M_VLANTAG) == 0) {
IEEE80211_NODE_STAT(ni, tx_novlantag);
return 1;
}
if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
EVL_VLANOFTAG(ni->ni_vlan)) {
IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
return 1;
}
/* map vlan priority to AC */
v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
}
/* XXX m_copydata may be too slow for fast path */
#ifdef INET
if (eh && eh->ether_type == htons(ETHERTYPE_IP)) {
uint8_t tos;
/*
* IP frame, map the DSCP bits from the TOS field.
*/
/* NB: ip header may not be in first mbuf */
m_copydata(m, sizeof(struct ether_header) +
offsetof(struct ip, ip_tos), sizeof(tos), &tos);
tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
d_wme_ac = TID_TO_WME_AC(tos);
} else {
#endif /* INET */
#ifdef INET6
if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) {
uint32_t flow;
uint8_t tos;
/*
* IPv6 frame, map the DSCP bits from the traffic class field.
*/
m_copydata(m, sizeof(struct ether_header) +
offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
(caddr_t) &flow);
tos = (uint8_t)(ntohl(flow) >> 20);
tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
d_wme_ac = TID_TO_WME_AC(tos);
} else {
#endif /* INET6 */
d_wme_ac = WME_AC_BE;
#ifdef INET6
}
#endif
#ifdef INET
}
#endif
/*
* Use highest priority AC.
*/
if (v_wme_ac > d_wme_ac)
ac = v_wme_ac;
else
ac = d_wme_ac;
/*
* Apply ACM policy.
*/
if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
static const int acmap[4] = {
WME_AC_BK, /* WME_AC_BE */
WME_AC_BK, /* WME_AC_BK */
WME_AC_BE, /* WME_AC_VI */
WME_AC_VI, /* WME_AC_VO */
};
struct ieee80211com *ic = ni->ni_ic;
while (ac != WME_AC_BK &&
ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
ac = acmap[ac];
}
done:
M_WME_SETAC(m, ac);
return 0;
}
/*
* Insure there is sufficient contiguous space to encapsulate the
* 802.11 data frame. If room isn't already there, arrange for it.
* Drivers and cipher modules assume we have done the necessary work
* and fail rudely if they don't find the space they need.
*/
struct mbuf *
ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
struct ieee80211_key *key, struct mbuf *m)
{
#define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
int needed_space = vap->iv_ic->ic_headroom + hdrsize;
if (key != NULL) {
/* XXX belongs in crypto code? */
needed_space += key->wk_cipher->ic_header;
/* XXX frags */
/*
* When crypto is being done in the host we must insure
* the data are writable for the cipher routines; clone
* a writable mbuf chain.
* XXX handle SWMIC specially
*/
if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
m = m_unshare(m, M_NOWAIT);
if (m == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
"%s: cannot get writable mbuf\n", __func__);
vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
return NULL;
}
}
}
/*
* We know we are called just before stripping an Ethernet
* header and prepending an LLC header. This means we know
* there will be
* sizeof(struct ether_header) - sizeof(struct llc)
* bytes recovered to which we need additional space for the
* 802.11 header and any crypto header.
*/
/* XXX check trailing space and copy instead? */
if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
if (n == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
"%s: cannot expand storage\n", __func__);
vap->iv_stats.is_tx_nobuf++;
m_freem(m);
return NULL;
}
KASSERT(needed_space <= MHLEN,
("not enough room, need %u got %d\n", needed_space, MHLEN));
/*
* Setup new mbuf to have leading space to prepend the
* 802.11 header and any crypto header bits that are
* required (the latter are added when the driver calls
* back to ieee80211_crypto_encap to do crypto encapsulation).
*/
/* NB: must be first 'cuz it clobbers m_data */
m_move_pkthdr(n, m);
n->m_len = 0; /* NB: m_gethdr does not set */
n->m_data += needed_space;
/*
* Pull up Ethernet header to create the expected layout.
* We could use m_pullup but that's overkill (i.e. we don't
* need the actual data) and it cannot fail so do it inline
* for speed.
*/
/* NB: struct ether_header is known to be contiguous */
n->m_len += sizeof(struct ether_header);
m->m_len -= sizeof(struct ether_header);
m->m_data += sizeof(struct ether_header);
/*
* Replace the head of the chain.
*/
n->m_next = m;
m = n;
}
return m;
#undef TO_BE_RECLAIMED
}
/*
* Return the transmit key to use in sending a unicast frame.
* If a unicast key is set we use that. When no unicast key is set
* we fall back to the default transmit key.
*/
static __inline struct ieee80211_key *
ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
struct ieee80211_node *ni)
{
if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
return NULL;
return &vap->iv_nw_keys[vap->iv_def_txkey];
} else {
return &ni->ni_ucastkey;
}
}
/*
* Return the transmit key to use in sending a multicast frame.
* Multicast traffic always uses the group key which is installed as
* the default tx key.
*/
static __inline struct ieee80211_key *
ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
struct ieee80211_node *ni)
{
if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
return NULL;
return &vap->iv_nw_keys[vap->iv_def_txkey];
}
/*
* Encapsulate an outbound data frame. The mbuf chain is updated.
* If an error is encountered NULL is returned. The caller is required
* to provide a node reference and pullup the ethernet header in the
* first mbuf.
*
* NB: Packet is assumed to be processed by ieee80211_classify which
* marked EAPOL frames w/ M_EAPOL.
*/
struct mbuf *
ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
struct mbuf *m)
{
#define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
#define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc)
struct ieee80211com *ic = ni->ni_ic;
#ifdef IEEE80211_SUPPORT_MESH
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_meshcntl_ae10 *mc;
struct ieee80211_mesh_route *rt = NULL;
int dir = -1;
#endif
struct ether_header eh;
struct ieee80211_frame *wh;
struct ieee80211_key *key;
struct llc *llc;
int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
ieee80211_seq seqno;
int meshhdrsize, meshae;
uint8_t *qos;
int is_amsdu = 0;
IEEE80211_TX_LOCK_ASSERT(ic);
is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
/*
* Copy existing Ethernet header to a safe place. The
* rest of the code assumes it's ok to strip it when
* reorganizing state for the final encapsulation.
*/
KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
/*
* Insure space for additional headers. First identify
* transmit key to use in calculating any buffer adjustments
* required. This is also used below to do privacy
* encapsulation work. Then calculate the 802.11 header
* size and any padding required by the driver.
*
* Note key may be NULL if we fall back to the default
* transmit key and that is not set. In that case the
* buffer may not be expanded as needed by the cipher
* routines, but they will/should discard it.
*/
if (vap->iv_flags & IEEE80211_F_PRIVACY) {
if (vap->iv_opmode == IEEE80211_M_STA ||
!IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
(vap->iv_opmode == IEEE80211_M_WDS &&
(vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
key = ieee80211_crypto_getucastkey(vap, ni);
} else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
(! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
/*
* Use ucastkey for DWDS transmit nodes, multicast
* or otherwise.
*
* This is required to ensure that multicast frames
* from a DWDS AP to a DWDS STA is encrypted with
* a key that can actually work.
*
* There's no default key for multicast traffic
* on a DWDS WDS VAP node (note NOT the DWDS enabled
* AP VAP, the dynamically created per-STA WDS node)
* so encap fails and transmit fails.
*/
key = ieee80211_crypto_getucastkey(vap, ni);
} else {
key = ieee80211_crypto_getmcastkey(vap, ni);
}
if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
eh.ether_dhost,
"no default transmit key (%s) deftxkey %u",
__func__, vap->iv_def_txkey);
vap->iv_stats.is_tx_nodefkey++;
goto bad;
}
} else
key = NULL;
/*
* XXX Some ap's don't handle QoS-encapsulated EAPOL
* frames so suppress use. This may be an issue if other
* ap's require all data frames to be QoS-encapsulated
* once negotiated in which case we'll need to make this
* configurable.
*
* Don't send multicast QoS frames.
* Technically multicast frames can be QoS if all stations in the
* BSS are also QoS.
*
* NB: mesh data frames are QoS, including multicast frames.
*/
addqos =
(((is_mcast == 0) && (ni->ni_flags &
(IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
(vap->iv_opmode == IEEE80211_M_MBSS)) &&
(m->m_flags & M_EAPOL) == 0;
if (addqos)
hdrsize = sizeof(struct ieee80211_qosframe);
else
hdrsize = sizeof(struct ieee80211_frame);
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS) {
/*
* Mesh data frames are encapsulated according to the
* rules of Section 11B.8.5 (p.139 of D3.0 spec).
* o Group Addressed data (aka multicast) originating
* at the local sta are sent w/ 3-address format and
* address extension mode 00
* o Individually Addressed data (aka unicast) originating
* at the local sta are sent w/ 4-address format and
* address extension mode 00
* o Group Addressed data forwarded from a non-mesh sta are
* sent w/ 3-address format and address extension mode 01
* o Individually Address data from another sta are sent
* w/ 4-address format and address extension mode 10
*/
is4addr = 0; /* NB: don't use, disable */
if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
KASSERT(rt != NULL, ("route is NULL"));
dir = IEEE80211_FC1_DIR_DSTODS;
hdrsize += IEEE80211_ADDR_LEN;
if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
vap->iv_myaddr)) {
IEEE80211_NOTE_MAC(vap,
IEEE80211_MSG_MESH,
eh.ether_dhost,
"%s", "trying to send to ourself");
goto bad;
}
meshae = IEEE80211_MESH_AE_10;
meshhdrsize =
sizeof(struct ieee80211_meshcntl_ae10);
} else {
meshae = IEEE80211_MESH_AE_00;
meshhdrsize =
sizeof(struct ieee80211_meshcntl);
}
} else {
dir = IEEE80211_FC1_DIR_FROMDS;
if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
/* proxy group */
meshae = IEEE80211_MESH_AE_01;
meshhdrsize =
sizeof(struct ieee80211_meshcntl_ae01);
} else {
/* group */
meshae = IEEE80211_MESH_AE_00;
meshhdrsize = sizeof(struct ieee80211_meshcntl);
}
}
} else {
#endif
/*
* 4-address frames need to be generated for:
* o packets sent through a WDS vap (IEEE80211_M_WDS)
* o packets sent through a vap marked for relaying
* (e.g. a station operating with dynamic WDS)
*/
is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
if (is4addr)
hdrsize += IEEE80211_ADDR_LEN;
meshhdrsize = meshae = 0;
#ifdef IEEE80211_SUPPORT_MESH
}
#endif
/*
* Honor driver DATAPAD requirement.
*/
if (ic->ic_flags & IEEE80211_F_DATAPAD)
hdrspace = roundup(hdrsize, sizeof(uint32_t));
else
hdrspace = hdrsize;
if (__predict_true((m->m_flags & M_FF) == 0)) {
/*
* Normal frame.
*/
m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
if (m == NULL) {
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
goto bad;
}
/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
llc = mtod(m, struct llc *);
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
llc->llc_control = LLC_UI;
llc->llc_snap.org_code[0] = 0;
llc->llc_snap.org_code[1] = 0;
llc->llc_snap.org_code[2] = 0;
llc->llc_snap.ether_type = eh.ether_type;
} else {
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* Aggregated frame. Check if it's for AMSDU or FF.
*
* XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
* anywhere for some reason. But, since 11n requires
* AMSDU RX, we can just assume "11n" == "AMSDU".
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
if (ieee80211_amsdu_tx_ok(ni)) {
m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
is_amsdu = 1;
} else {
m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
}
if (m == NULL)
#endif
goto bad;
}
datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
if (m == NULL) {
vap->iv_stats.is_tx_nobuf++;
goto bad;
}
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
*(uint16_t *)wh->i_dur = 0;
qos = NULL; /* NB: quiet compiler */
if (is4addr) {
wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
} else switch (vap->iv_opmode) {
case IEEE80211_M_STA:
wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
/*
* NB: always use the bssid from iv_bss as the
* neighbor's may be stale after an ibss merge
*/
IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
break;
case IEEE80211_M_HOSTAP:
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
break;
#ifdef IEEE80211_SUPPORT_MESH
case IEEE80211_M_MBSS:
/* NB: offset by hdrspace to deal with DATAPAD */
mc = (struct ieee80211_meshcntl_ae10 *)
(mtod(m, uint8_t *) + hdrspace);
wh->i_fc[1] = dir;
switch (meshae) {
case IEEE80211_MESH_AE_00: /* no proxy */
mc->mc_flags = 0;
if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
IEEE80211_ADDR_COPY(wh->i_addr1,
ni->ni_macaddr);
IEEE80211_ADDR_COPY(wh->i_addr2,
vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3,
eh.ether_dhost);
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
eh.ether_shost);
qos =((struct ieee80211_qosframe_addr4 *)
wh)->i_qos;
} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
/* mcast */
IEEE80211_ADDR_COPY(wh->i_addr1,
eh.ether_dhost);
IEEE80211_ADDR_COPY(wh->i_addr2,
vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3,
eh.ether_shost);
qos = ((struct ieee80211_qosframe *)
wh)->i_qos;
}
break;
case IEEE80211_MESH_AE_01: /* mcast, proxy */
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
mc->mc_flags = 1;
IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
eh.ether_shost);
qos = ((struct ieee80211_qosframe *) wh)->i_qos;
break;
case IEEE80211_MESH_AE_10: /* ucast, proxy */
KASSERT(rt != NULL, ("route is NULL"));
IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
mc->mc_flags = IEEE80211_MESH_AE_10;
IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
break;
default:
KASSERT(0, ("meshae %d", meshae));
break;
}
mc->mc_ttl = ms->ms_ttl;
ms->ms_seq++;
le32enc(mc->mc_seq, ms->ms_seq);
break;
#endif
case IEEE80211_M_WDS: /* NB: is4addr should always be true */
default:
goto bad;
}
if (m->m_flags & M_MORE_DATA)
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
if (addqos) {
int ac, tid;
if (is4addr) {
qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
/* NB: mesh case handled earlier */
} else if (vap->iv_opmode != IEEE80211_M_MBSS)
qos = ((struct ieee80211_qosframe *) wh)->i_qos;
ac = M_WME_GETAC(m);
/* map from access class/queue to 11e header priorty value */
tid = WME_AC_TO_TID(ac);
qos[0] = tid & IEEE80211_QOS_TID;
if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS)
qos[1] = IEEE80211_QOS_MC;
else
#endif
qos[1] = 0;
wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
/*
* If this is an A-MSDU then ensure we set the
* relevant field.
*/
if (is_amsdu)
qos[0] |= IEEE80211_QOS_AMSDU;
/*
* XXX TODO TX lock is needed for atomic updates of sequence
* numbers. If the driver does it, then don't do it here;
* and we don't need the TX lock held.
*/
if ((m->m_flags & M_AMPDU_MPDU) == 0) {
/*
* 802.11-2012 9.3.2.10 -
*
* If this is a multicast frame then we need
* to ensure that the sequence number comes from
* a separate seqno space and not the TID space.
*
* Otherwise multicast frames may actually cause
* holes in the TX blockack window space and
* upset various things.
*/
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
else
seqno = ni->ni_txseqs[tid]++;
/*
* NB: don't assign a sequence # to potential
* aggregates; we expect this happens at the
* point the frame comes off any aggregation q
* as otherwise we may introduce holes in the
* BA sequence space and/or make window accouting
* more difficult.
*
* XXX may want to control this with a driver
* capability; this may also change when we pull
* aggregation up into net80211
*/
*(uint16_t *)wh->i_seq =
htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
M_SEQNO_SET(m, seqno);
} else {
/* NB: zero out i_seq field (for s/w encryption etc) */
*(uint16_t *)wh->i_seq = 0;
}
} else {
/*
* XXX TODO TX lock is needed for atomic updates of sequence
* numbers. If the driver does it, then don't do it here;
* and we don't need the TX lock held.
*/
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
*(uint16_t *)wh->i_seq =
htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
M_SEQNO_SET(m, seqno);
/*
* XXX TODO: we shouldn't allow EAPOL, etc that would
* be forced to be non-QoS traffic to be A-MSDU encapsulated.
*/
if (is_amsdu)
printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
__func__);
}
/*
* Check if xmit fragmentation is required.
*
* If the hardware does fragmentation offload, then don't bother
* doing it here.
*/
if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
txfrag = 0;
else
txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(vap->iv_caps & IEEE80211_C_TXFRAG) &&
(m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
if (key != NULL) {
/*
* IEEE 802.1X: send EAPOL frames always in the clear.
* WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
*/
if ((m->m_flags & M_EAPOL) == 0 ||
((vap->iv_flags & IEEE80211_F_WPA) &&
(vap->iv_opmode == IEEE80211_M_STA ?
!IEEE80211_KEY_UNDEFINED(key) :
!IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
eh.ether_dhost,
"%s", "enmic failed, discard frame");
vap->iv_stats.is_crypto_enmicfail++;
goto bad;
}
}
}
if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
goto bad;
m->m_flags |= M_ENCAP; /* mark encapsulated */
IEEE80211_NODE_STAT(ni, tx_data);
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
IEEE80211_NODE_STAT(ni, tx_mcast);
m->m_flags |= M_MCAST;
} else
IEEE80211_NODE_STAT(ni, tx_ucast);
IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
return m;
bad:
if (m != NULL)
m_freem(m);
return NULL;
#undef WH4
#undef MC01
}
void
ieee80211_free_mbuf(struct mbuf *m)
{
struct mbuf *next;
if (m == NULL)
return;
do {
next = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
} while ((m = next) != NULL);
}
/*
* Fragment the frame according to the specified mtu.
* The size of the 802.11 header (w/o padding) is provided
* so we don't need to recalculate it. We create a new
* mbuf for each fragment and chain it through m_nextpkt;
* we might be able to optimize this by reusing the original
* packet's mbufs but that is significantly more complicated.
*/
static int
ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
u_int hdrsize, u_int ciphdrsize, u_int mtu)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_frame *wh, *whf;
struct mbuf *m, *prev;
u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
u_int hdrspace;
KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
KASSERT(m0->m_pkthdr.len > mtu,
("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
/*
* Honor driver DATAPAD requirement.
*/
if (ic->ic_flags & IEEE80211_F_DATAPAD)
hdrspace = roundup(hdrsize, sizeof(uint32_t));
else
hdrspace = hdrsize;
wh = mtod(m0, struct ieee80211_frame *);
/* NB: mark the first frag; it will be propagated below */
wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
totalhdrsize = hdrspace + ciphdrsize;
fragno = 1;
off = mtu - ciphdrsize;
remainder = m0->m_pkthdr.len - off;
prev = m0;
do {
fragsize = MIN(totalhdrsize + remainder, mtu);
m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
goto bad;
/* leave room to prepend any cipher header */
m_align(m, fragsize - ciphdrsize);
/*
* Form the header in the fragment. Note that since
* we mark the first fragment with the MORE_FRAG bit
* it automatically is propagated to each fragment; we
* need only clear it on the last fragment (done below).
* NB: frag 1+ dont have Mesh Control field present.
*/
whf = mtod(m, struct ieee80211_frame *);
memcpy(whf, wh, hdrsize);
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS)
ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
#endif
*(uint16_t *)&whf->i_seq[0] |= htole16(
(fragno & IEEE80211_SEQ_FRAG_MASK) <<
IEEE80211_SEQ_FRAG_SHIFT);
fragno++;
payload = fragsize - totalhdrsize;
/* NB: destination is known to be contiguous */
m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
m->m_len = hdrspace + payload;
m->m_pkthdr.len = hdrspace + payload;
m->m_flags |= M_FRAG;
/* chain up the fragment */
prev->m_nextpkt = m;
prev = m;
/* deduct fragment just formed */
remainder -= payload;
off += payload;
} while (remainder != 0);
/* set the last fragment */
m->m_flags |= M_LASTFRAG;
whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
/* strip first mbuf now that everything has been copied */
m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
m0->m_flags |= M_FIRSTFRAG | M_FRAG;
vap->iv_stats.is_tx_fragframes++;
vap->iv_stats.is_tx_frags += fragno-1;
return 1;
bad:
/* reclaim fragments but leave original frame for caller to free */
ieee80211_free_mbuf(m0->m_nextpkt);
m0->m_nextpkt = NULL;
return 0;
}
/*
* Add a supported rates element id to a frame.
*/
uint8_t *
ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
{
int nrates;
*frm++ = IEEE80211_ELEMID_RATES;
nrates = rs->rs_nrates;
if (nrates > IEEE80211_RATE_SIZE)
nrates = IEEE80211_RATE_SIZE;
*frm++ = nrates;
memcpy(frm, rs->rs_rates, nrates);
return frm + nrates;
}
/*
* Add an extended supported rates element id to a frame.
*/
uint8_t *
ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
{
/*
* Add an extended supported rates element if operating in 11g mode.
*/
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
*frm++ = IEEE80211_ELEMID_XRATES;
*frm++ = nrates;
memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
frm += nrates;
}
return frm;
}
/*
* Add an ssid element to a frame.
*/
uint8_t *
ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
{
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = len;
memcpy(frm, ssid, len);
return frm + len;
}
/*
* Add an erp element to a frame.
*/
static uint8_t *
ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
{
uint8_t erp;
*frm++ = IEEE80211_ELEMID_ERP;
*frm++ = 1;
erp = 0;
if (ic->ic_nonerpsta != 0)
erp |= IEEE80211_ERP_NON_ERP_PRESENT;
if (ic->ic_flags & IEEE80211_F_USEPROT)
erp |= IEEE80211_ERP_USE_PROTECTION;
if (ic->ic_flags & IEEE80211_F_USEBARKER)
erp |= IEEE80211_ERP_LONG_PREAMBLE;
*frm++ = erp;
return frm;
}
/*
* Add a CFParams element to a frame.
*/
static uint8_t *
ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
{
#define ADDSHORT(frm, v) do { \
le16enc(frm, v); \
frm += 2; \
} while (0)
*frm++ = IEEE80211_ELEMID_CFPARMS;
*frm++ = 6;
*frm++ = 0; /* CFP count */
*frm++ = 2; /* CFP period */
ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
return frm;
#undef ADDSHORT
}
static __inline uint8_t *
add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
{
memcpy(frm, ie->ie_data, ie->ie_len);
return frm + ie->ie_len;
}
static __inline uint8_t *
add_ie(uint8_t *frm, const uint8_t *ie)
{
memcpy(frm, ie, 2 + ie[1]);
return frm + 2 + ie[1];
}
#define WME_OUI_BYTES 0x00, 0x50, 0xf2
/*
* Add a WME information element to a frame.
*/
uint8_t *
ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
{
static const struct ieee80211_wme_info info = {
.wme_id = IEEE80211_ELEMID_VENDOR,
.wme_len = sizeof(struct ieee80211_wme_info) - 2,
.wme_oui = { WME_OUI_BYTES },
.wme_type = WME_OUI_TYPE,
.wme_subtype = WME_INFO_OUI_SUBTYPE,
.wme_version = WME_VERSION,
.wme_info = 0,
};
memcpy(frm, &info, sizeof(info));
return frm + sizeof(info);
}
/*
* Add a WME parameters element to a frame.
*/
static uint8_t *
ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
{
#define SM(_v, _f) (((_v) << _f##_S) & _f)
#define ADDSHORT(frm, v) do { \
le16enc(frm, v); \
frm += 2; \
} while (0)
/* NB: this works 'cuz a param has an info at the front */
static const struct ieee80211_wme_info param = {
.wme_id = IEEE80211_ELEMID_VENDOR,
.wme_len = sizeof(struct ieee80211_wme_param) - 2,
.wme_oui = { WME_OUI_BYTES },
.wme_type = WME_OUI_TYPE,
.wme_subtype = WME_PARAM_OUI_SUBTYPE,
.wme_version = WME_VERSION,
};
int i;
memcpy(frm, &param, sizeof(param));
frm += __offsetof(struct ieee80211_wme_info, wme_info);
*frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
*frm++ = 0; /* reserved field */
for (i = 0; i < WME_NUM_AC; i++) {
const struct wmeParams *ac =
&wme->wme_bssChanParams.cap_wmeParams[i];
*frm++ = SM(i, WME_PARAM_ACI)
| SM(ac->wmep_acm, WME_PARAM_ACM)
| SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
;
*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
| SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
;
ADDSHORT(frm, ac->wmep_txopLimit);
}
return frm;
#undef SM
#undef ADDSHORT
}
#undef WME_OUI_BYTES
/*
* Add an 11h Power Constraint element to a frame.
*/
static uint8_t *
ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
{
const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
/* XXX per-vap tx power limit? */
int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
frm[0] = IEEE80211_ELEMID_PWRCNSTR;
frm[1] = 1;
frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
return frm + 3;
}
/*
* Add an 11h Power Capability element to a frame.
*/
static uint8_t *
ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
{
frm[0] = IEEE80211_ELEMID_PWRCAP;
frm[1] = 2;
frm[2] = c->ic_minpower;
frm[3] = c->ic_maxpower;
return frm + 4;
}
/*
* Add an 11h Supported Channels element to a frame.
*/
static uint8_t *
ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
{
static const int ielen = 26;
frm[0] = IEEE80211_ELEMID_SUPPCHAN;
frm[1] = ielen;
/* XXX not correct */
memcpy(frm+2, ic->ic_chan_avail, ielen);
return frm + 2 + ielen;
}
/*
* Add an 11h Quiet time element to a frame.
*/
static uint8_t *
ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
{
struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
quiet->len = 6;
/*
* Only update every beacon interval - otherwise probe responses
* would update the quiet count value.
*/
if (update) {
if (vap->iv_quiet_count_value == 1)
vap->iv_quiet_count_value = vap->iv_quiet_count;
else if (vap->iv_quiet_count_value > 1)
vap->iv_quiet_count_value--;
}
if (vap->iv_quiet_count_value == 0) {
/* value 0 is reserved as per 802.11h standerd */
vap->iv_quiet_count_value = 1;
}
quiet->tbttcount = vap->iv_quiet_count_value;
quiet->period = vap->iv_quiet_period;
quiet->duration = htole16(vap->iv_quiet_duration);
quiet->offset = htole16(vap->iv_quiet_offset);
return frm + sizeof(*quiet);
}
/*
* Add an 11h Channel Switch Announcement element to a frame.
* Note that we use the per-vap CSA count to adjust the global
* counter so we can use this routine to form probe response
* frames and get the current count.
*/
static uint8_t *
ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
csa->csa_ie = IEEE80211_ELEMID_CSA;
csa->csa_len = 3;
csa->csa_mode = 1; /* XXX force quiet on channel */
csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
return frm + sizeof(*csa);
}
/*
* Add an 11h country information element to a frame.
*/
static uint8_t *
ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
{
if (ic->ic_countryie == NULL ||
ic->ic_countryie_chan != ic->ic_bsschan) {
/*
* Handle lazy construction of ie. This is done on
* first use and after a channel change that requires
* re-calculation.
*/
if (ic->ic_countryie != NULL)
IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
ic->ic_countryie = ieee80211_alloc_countryie(ic);
if (ic->ic_countryie == NULL)
return frm;
ic->ic_countryie_chan = ic->ic_bsschan;
}
return add_appie(frm, ic->ic_countryie);
}
uint8_t *
ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
{
if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
return (add_ie(frm, vap->iv_wpa_ie));
else {
/* XXX else complain? */
return (frm);
}
}
uint8_t *
ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
{
if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
return (add_ie(frm, vap->iv_rsn_ie));
else {
/* XXX else complain? */
return (frm);
}
}
uint8_t *
ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
{
if (ni->ni_flags & IEEE80211_NODE_QOS) {
*frm++ = IEEE80211_ELEMID_QOS;
*frm++ = 1;
*frm++ = 0;
}
return (frm);
}
/*
* Send a probe request frame with the specified ssid
* and any optional information element data.
*/
int
ieee80211_send_probereq(struct ieee80211_node *ni,
const uint8_t sa[IEEE80211_ADDR_LEN],
const uint8_t da[IEEE80211_ADDR_LEN],
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t *ssid, size_t ssidlen)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_node *bss;
const struct ieee80211_txparam *tp;
struct ieee80211_bpf_params params;
const struct ieee80211_rateset *rs;
struct mbuf *m;
uint8_t *frm;
int ret;
bss = ieee80211_ref_node(vap->iv_bss);
if (vap->iv_state == IEEE80211_S_CAC) {
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
"block %s frame in CAC state", "probe request");
vap->iv_stats.is_tx_badstate++;
ieee80211_free_node(bss);
return EIO; /* XXX */
}
/*
* Hold a reference on the node so it doesn't go away until after
* the xmit is complete all the way in the driver. On error we
* will remove our reference.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
__func__, __LINE__,
ni, ether_sprintf(ni->ni_macaddr),
ieee80211_node_refcnt(ni)+1);
ieee80211_ref_node(ni);
/*
* prreq frame format
* [tlv] ssid
* [tlv] supported rates
* [tlv] RSN (optional)
* [tlv] extended supported rates
* [tlv] HT cap (optional)
* [tlv] VHT cap (optional)
* [tlv] WPA (optional)
* [tlv] user-specified ie's
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
2 + IEEE80211_NWID_LEN
+ 2 + IEEE80211_RATE_SIZE
+ sizeof(struct ieee80211_ie_htcap)
+ sizeof(struct ieee80211_ie_vhtcap)
+ sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */
+ sizeof(struct ieee80211_ie_wpa)
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ sizeof(struct ieee80211_ie_wpa)
+ (vap->iv_appie_probereq != NULL ?
vap->iv_appie_probereq->ie_len : 0)
);
if (m == NULL) {
vap->iv_stats.is_tx_nobuf++;
ieee80211_free_node(ni);
ieee80211_free_node(bss);
return ENOMEM;
}
frm = ieee80211_add_ssid(frm, ssid, ssidlen);
rs = ieee80211_get_suprates(ic, ic->ic_curchan);
frm = ieee80211_add_rates(frm, rs);
frm = ieee80211_add_rsn(frm, vap);
frm = ieee80211_add_xrates(frm, rs);
/*
* Note: we can't use bss; we don't have one yet.
*
* So, we should announce our capabilities
* in this channel mode (2g/5g), not the
* channel details itself.
*/
if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
(vap->iv_flags_ht & IEEE80211_FHT_HT)) {
struct ieee80211_channel *c;
/*
* Get the HT channel that we should try upgrading to.
* If we can do 40MHz then this'll upgrade it appropriately.
*/
c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
vap->iv_flags_ht);
frm = ieee80211_add_htcap_ch(frm, vap, c);
}
/*
* XXX TODO: need to figure out what/how to update the
* VHT channel.
*/
#if 0
(vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
struct ieee80211_channel *c;
c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
vap->iv_flags_ht);
c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
frm = ieee80211_add_vhtcap_ch(frm, vap, c);
}
#endif
frm = ieee80211_add_wpa(frm, vap);
if (vap->iv_appie_probereq != NULL)
frm = add_appie(frm, vap->iv_appie_probereq);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
("leading space %zd", M_LEADINGSPACE(m)));
M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
if (m == NULL) {
/* NB: cannot happen */
ieee80211_free_node(ni);
ieee80211_free_node(bss);
return ENOMEM;
}
IEEE80211_TX_LOCK(ic);
ieee80211_send_setup(ni, m,
IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
IEEE80211_NONQOS_TID, sa, da, bssid);
/* XXX power management? */
m->m_flags |= M_ENCAP; /* mark encapsulated */
M_WME_SETAC(m, WME_AC_BE);
IEEE80211_NODE_STAT(ni, tx_probereq);
IEEE80211_NODE_STAT(ni, tx_mgmt);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
"send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
ieee80211_chan2ieee(ic, ic->ic_curchan),
ether_sprintf(bssid),
sa, ":",
da, ":",
ssidlen, ssid);
memset(&params, 0, sizeof(params));
params.ibp_pri = M_WME_GETAC(m);
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
params.ibp_rate0 = tp->mgmtrate;
if (IEEE80211_IS_MULTICAST(da)) {
params.ibp_flags |= IEEE80211_BPF_NOACK;
params.ibp_try0 = 1;
} else
params.ibp_try0 = tp->maxretry;
params.ibp_power = ni->ni_txpower;
ret = ieee80211_raw_output(vap, ni, m, &params);
IEEE80211_TX_UNLOCK(ic);
ieee80211_free_node(bss);
return (ret);
}
/*
* Calculate capability information for mgt frames.
*/
uint16_t
ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
{
struct ieee80211com *ic = vap->iv_ic;
uint16_t capinfo;
KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
if (vap->iv_opmode == IEEE80211_M_HOSTAP)
capinfo = IEEE80211_CAPINFO_ESS;
else if (vap->iv_opmode == IEEE80211_M_IBSS)
capinfo = IEEE80211_CAPINFO_IBSS;
else
capinfo = 0;
if (vap->iv_flags & IEEE80211_F_PRIVACY)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(chan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (ic->ic_flags & IEEE80211_F_SHSLOT)
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
return capinfo;
}
/*
* Send a management frame. The node is for the destination (or ic_bss
* when in station mode). Nodes other than ic_bss have their reference
* count bumped to reflect our use for an indeterminant time.
*/
int
ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
{
#define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
#define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_node *bss = vap->iv_bss;
struct ieee80211_bpf_params params;
struct mbuf *m;
uint8_t *frm;
uint16_t capinfo;
int has_challenge, is_shared_key, ret, status;
KASSERT(ni != NULL, ("null node"));
/*
* Hold a reference on the node so it doesn't go away until after
* the xmit is complete all the way in the driver. On error we
* will remove our reference.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
__func__, __LINE__,
ni, ether_sprintf(ni->ni_macaddr),
ieee80211_node_refcnt(ni)+1);
ieee80211_ref_node(ni);
memset(&params, 0, sizeof(params));
switch (type) {
case IEEE80211_FC0_SUBTYPE_AUTH:
status = arg >> 16;
arg &= 0xffff;
has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
ni->ni_challenge != NULL);
/*
* Deduce whether we're doing open authentication or
* shared key authentication. We do the latter if
* we're in the middle of a shared key authentication
* handshake or if we're initiating an authentication
* request and configured to use shared key.
*/
is_shared_key = has_challenge ||
arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
(arg == IEEE80211_AUTH_SHARED_REQUEST &&
bss->ni_authmode == IEEE80211_AUTH_SHARED);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
3 * sizeof(uint16_t)
+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
);
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
((uint16_t *)frm)[0] =
(is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
: htole16(IEEE80211_AUTH_ALG_OPEN);
((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
((uint16_t *)frm)[2] = htole16(status);/* status */
if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
((uint16_t *)frm)[3] =
htole16((IEEE80211_CHALLENGE_LEN << 8) |
IEEE80211_ELEMID_CHALLENGE);
memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
IEEE80211_CHALLENGE_LEN);
m->m_pkthdr.len = m->m_len =
4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
"request encrypt frame (%s)", __func__);
/* mark frame for encryption */
params.ibp_flags |= IEEE80211_BPF_CRYPTO;
}
} else
m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
/* XXX not right for shared key */
if (status == IEEE80211_STATUS_SUCCESS)
IEEE80211_NODE_STAT(ni, tx_auth);
else
IEEE80211_NODE_STAT(ni, tx_auth_fail);
if (vap->iv_opmode == IEEE80211_M_STA)
ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
(void *) vap->iv_state);
break;
case IEEE80211_FC0_SUBTYPE_DEAUTH:
IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
"send station deauthenticate (reason: %d (%s))", arg,
ieee80211_reason_to_string(arg));
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t));
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
*(uint16_t *)frm = htole16(arg); /* reason */
m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
IEEE80211_NODE_STAT(ni, tx_deauth);
IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
ieee80211_node_unauthorize(ni); /* port closed */
break;
case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
/*
* asreq frame format
* [2] capability information
* [2] listen interval
* [6*] current AP address (reassoc only)
* [tlv] ssid
* [tlv] supported rates
* [tlv] extended supported rates
* [4] power capability (optional)
* [28] supported channels (optional)
* [tlv] HT capabilities
* [tlv] VHT capabilities
* [tlv] WME (optional)
* [tlv] Vendor OUI HT capabilities (optional)
* [tlv] Atheros capabilities (if negotiated)
* [tlv] AppIE's (optional)
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t)
+ sizeof(uint16_t)
+ IEEE80211_ADDR_LEN
+ 2 + IEEE80211_NWID_LEN
+ 2 + IEEE80211_RATE_SIZE
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ 4
+ 2 + 26
+ sizeof(struct ieee80211_wme_info)
+ sizeof(struct ieee80211_ie_htcap)
+ sizeof(struct ieee80211_ie_vhtcap)
+ 4 + sizeof(struct ieee80211_ie_htcap)
#ifdef IEEE80211_SUPPORT_SUPERG
+ sizeof(struct ieee80211_ath_ie)
#endif
+ (vap->iv_appie_wpa != NULL ?
vap->iv_appie_wpa->ie_len : 0)
+ (vap->iv_appie_assocreq != NULL ?
vap->iv_appie_assocreq->ie_len : 0)
);
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
KASSERT(vap->iv_opmode == IEEE80211_M_STA,
("wrong mode %u", vap->iv_opmode));
capinfo = IEEE80211_CAPINFO_ESS;
if (vap->iv_flags & IEEE80211_F_PRIVACY)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
/*
* NB: Some 11a AP's reject the request when
* short preamble is set.
*/
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
(ic->ic_caps & IEEE80211_C_SHSLOT))
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
(vap->iv_flags & IEEE80211_F_DOTH))
capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
bss->ni_intval));
frm += 2;
if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
frm += IEEE80211_ADDR_LEN;
}
frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
frm = ieee80211_add_rates(frm, &ni->ni_rates);
frm = ieee80211_add_rsn(frm, vap);
frm = ieee80211_add_xrates(frm, &ni->ni_rates);
if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
frm = ieee80211_add_powercapability(frm,
ic->ic_curchan);
frm = ieee80211_add_supportedchannels(frm, ic);
}
/*
* Check the channel - we may be using an 11n NIC with an
* 11n capable station, but we're configured to be an 11b
* channel.
*/
if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
ni->ni_ies.htcap_ie != NULL &&
ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
frm = ieee80211_add_htcap(frm, ni);
}
if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
ni->ni_ies.vhtcap_ie != NULL &&
ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
frm = ieee80211_add_vhtcap(frm, ni);
}
frm = ieee80211_add_wpa(frm, vap);
if ((ic->ic_flags & IEEE80211_F_WME) &&
ni->ni_ies.wme_ie != NULL)
frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
/*
* Same deal - only send HT info if we're on an 11n
* capable channel.
*/
if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
ni->ni_ies.htcap_ie != NULL &&
ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
frm = ieee80211_add_htcap_vendor(frm, ni);
}
#ifdef IEEE80211_SUPPORT_SUPERG
if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
frm = ieee80211_add_ath(frm,
IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
ni->ni_authmode != IEEE80211_AUTH_8021X) ?
vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
}
#endif /* IEEE80211_SUPPORT_SUPERG */
if (vap->iv_appie_assocreq != NULL)
frm = add_appie(frm, vap->iv_appie_assocreq);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
(void *) vap->iv_state);
break;
case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
/*
* asresp frame format
* [2] capability information
* [2] status
* [2] association ID
* [tlv] supported rates
* [tlv] extended supported rates
* [tlv] HT capabilities (standard, if STA enabled)
* [tlv] HT information (standard, if STA enabled)
* [tlv] VHT capabilities (standard, if STA enabled)
* [tlv] VHT information (standard, if STA enabled)
* [tlv] WME (if configured and STA enabled)
* [tlv] HT capabilities (vendor OUI, if STA enabled)
* [tlv] HT information (vendor OUI, if STA enabled)
* [tlv] Atheros capabilities (if STA enabled)
* [tlv] AppIE's (optional)
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t)
+ sizeof(uint16_t)
+ sizeof(uint16_t)
+ 2 + IEEE80211_RATE_SIZE
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ sizeof(struct ieee80211_ie_htcap) + 4
+ sizeof(struct ieee80211_ie_htinfo) + 4
+ sizeof(struct ieee80211_ie_vhtcap)
+ sizeof(struct ieee80211_ie_vht_operation)
+ sizeof(struct ieee80211_wme_param)
#ifdef IEEE80211_SUPPORT_SUPERG
+ sizeof(struct ieee80211_ath_ie)
#endif
+ (vap->iv_appie_assocresp != NULL ?
vap->iv_appie_assocresp->ie_len : 0)
);
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
*(uint16_t *)frm = htole16(arg); /* status */
frm += 2;
if (arg == IEEE80211_STATUS_SUCCESS) {
*(uint16_t *)frm = htole16(ni->ni_associd);
IEEE80211_NODE_STAT(ni, tx_assoc);
} else
IEEE80211_NODE_STAT(ni, tx_assoc_fail);
frm += 2;
frm = ieee80211_add_rates(frm, &ni->ni_rates);
frm = ieee80211_add_xrates(frm, &ni->ni_rates);
/* NB: respond according to what we received */
if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
frm = ieee80211_add_htcap(frm, ni);
frm = ieee80211_add_htinfo(frm, ni);
}
if ((vap->iv_flags & IEEE80211_F_WME) &&
ni->ni_ies.wme_ie != NULL)
frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
frm = ieee80211_add_htcap_vendor(frm, ni);
frm = ieee80211_add_htinfo_vendor(frm, ni);
}
if (ni->ni_flags & IEEE80211_NODE_VHT) {
frm = ieee80211_add_vhtcap(frm, ni);
frm = ieee80211_add_vhtinfo(frm, ni);
}
#ifdef IEEE80211_SUPPORT_SUPERG
if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
frm = ieee80211_add_ath(frm,
IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
ni->ni_authmode != IEEE80211_AUTH_8021X) ?
vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
#endif /* IEEE80211_SUPPORT_SUPERG */
if (vap->iv_appie_assocresp != NULL)
frm = add_appie(frm, vap->iv_appie_assocresp);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
break;
case IEEE80211_FC0_SUBTYPE_DISASSOC:
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
"send station disassociate (reason: %d (%s))", arg,
ieee80211_reason_to_string(arg));
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t));
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
*(uint16_t *)frm = htole16(arg); /* reason */
m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
IEEE80211_NODE_STAT(ni, tx_disassoc);
IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
break;
default:
IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
"invalid mgmt frame type %u", type);
senderr(EINVAL, is_tx_unknownmgt);
/* NOTREACHED */
}
/* NB: force non-ProbeResp frames to the highest queue */
params.ibp_pri = WME_AC_VO;
params.ibp_rate0 = bss->ni_txparms->mgmtrate;
/* NB: we know all frames are unicast */
params.ibp_try0 = bss->ni_txparms->maxretry;
params.ibp_power = bss->ni_txpower;
return ieee80211_mgmt_output(ni, m, type, &params);
bad:
ieee80211_free_node(ni);
return ret;
#undef senderr
#undef HTFLAGS
}
/*
* Return an mbuf with a probe response frame in it.
* Space is left to prepend and 802.11 header at the
* front but it's left to the caller to fill in.
*/
struct mbuf *
ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
{
struct ieee80211vap *vap = bss->ni_vap;
struct ieee80211com *ic = bss->ni_ic;
const struct ieee80211_rateset *rs;
struct mbuf *m;
uint16_t capinfo;
uint8_t *frm;
/*
* probe response frame format
* [8] time stamp
* [2] beacon interval
* [2] cabability information
* [tlv] ssid
* [tlv] supported rates
* [tlv] parameter set (FH/DS)
* [tlv] parameter set (IBSS)
* [tlv] country (optional)
* [3] power control (optional)
* [5] channel switch announcement (CSA) (optional)
* [tlv] extended rate phy (ERP)
* [tlv] extended supported rates
* [tlv] RSN (optional)
* [tlv] HT capabilities
* [tlv] HT information
* [tlv] VHT capabilities
* [tlv] VHT information
* [tlv] WPA (optional)
* [tlv] WME (optional)
* [tlv] Vendor OUI HT capabilities (optional)
* [tlv] Vendor OUI HT information (optional)
* [tlv] Atheros capabilities
* [tlv] AppIE's (optional)
* [tlv] Mesh ID (MBSS)
* [tlv] Mesh Conf (MBSS)
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
8
+ sizeof(uint16_t)
+ sizeof(uint16_t)
+ 2 + IEEE80211_NWID_LEN
+ 2 + IEEE80211_RATE_SIZE
+ 7 /* max(7,3) */
+ IEEE80211_COUNTRY_MAX_SIZE
+ 3
+ sizeof(struct ieee80211_csa_ie)
+ sizeof(struct ieee80211_quiet_ie)
+ 3
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ sizeof(struct ieee80211_ie_wpa)
+ sizeof(struct ieee80211_ie_htcap)
+ sizeof(struct ieee80211_ie_htinfo)
+ sizeof(struct ieee80211_ie_wpa)
+ sizeof(struct ieee80211_wme_param)
+ 4 + sizeof(struct ieee80211_ie_htcap)
+ 4 + sizeof(struct ieee80211_ie_htinfo)
+ sizeof(struct ieee80211_ie_vhtcap)
+ sizeof(struct ieee80211_ie_vht_operation)
#ifdef IEEE80211_SUPPORT_SUPERG
+ sizeof(struct ieee80211_ath_ie)
#endif
#ifdef IEEE80211_SUPPORT_MESH
+ 2 + IEEE80211_MESHID_LEN
+ sizeof(struct ieee80211_meshconf_ie)
#endif
+ (vap->iv_appie_proberesp != NULL ?
vap->iv_appie_proberesp->ie_len : 0)
);
if (m == NULL) {
vap->iv_stats.is_tx_nobuf++;
return NULL;
}
memset(frm, 0, 8); /* timestamp should be filled later */
frm += 8;
*(uint16_t *)frm = htole16(bss->ni_intval);
frm += 2;
capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
rs = ieee80211_get_suprates(ic, bss->ni_chan);
frm = ieee80211_add_rates(frm, rs);
if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
*frm++ = IEEE80211_ELEMID_FHPARMS;
*frm++ = 5;
*frm++ = bss->ni_fhdwell & 0x00ff;
*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
*frm++ = IEEE80211_FH_CHANSET(
ieee80211_chan2ieee(ic, bss->ni_chan));
*frm++ = IEEE80211_FH_CHANPAT(
ieee80211_chan2ieee(ic, bss->ni_chan));
*frm++ = bss->ni_fhindex;
} else {
*frm++ = IEEE80211_ELEMID_DSPARMS;
*frm++ = 1;
*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
}
if (vap->iv_opmode == IEEE80211_M_IBSS) {
*frm++ = IEEE80211_ELEMID_IBSSPARMS;
*frm++ = 2;
*frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
}
if ((vap->iv_flags & IEEE80211_F_DOTH) ||
(vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
frm = ieee80211_add_countryie(frm, ic);
if (vap->iv_flags & IEEE80211_F_DOTH) {
if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
frm = ieee80211_add_powerconstraint(frm, vap);
if (ic->ic_flags & IEEE80211_F_CSAPENDING)
frm = ieee80211_add_csa(frm, vap);
}
if (vap->iv_flags & IEEE80211_F_DOTH) {
if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
(vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
if (vap->iv_quiet)
frm = ieee80211_add_quiet(frm, vap, 0);
}
}
if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
frm = ieee80211_add_erp(frm, ic);
frm = ieee80211_add_xrates(frm, rs);
frm = ieee80211_add_rsn(frm, vap);
/*
* NB: legacy 11b clients do not get certain ie's.
* The caller identifies such clients by passing
* a token in legacy to us. Could expand this to be
* any legacy client for stuff like HT ie's.
*/
if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
legacy != IEEE80211_SEND_LEGACY_11B) {
frm = ieee80211_add_htcap(frm, bss);
frm = ieee80211_add_htinfo(frm, bss);
}
if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
legacy != IEEE80211_SEND_LEGACY_11B) {
frm = ieee80211_add_vhtcap(frm, bss);
frm = ieee80211_add_vhtinfo(frm, bss);
}
frm = ieee80211_add_wpa(frm, vap);
if (vap->iv_flags & IEEE80211_F_WME)
frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
(vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
legacy != IEEE80211_SEND_LEGACY_11B) {
frm = ieee80211_add_htcap_vendor(frm, bss);
frm = ieee80211_add_htinfo_vendor(frm, bss);
}
#ifdef IEEE80211_SUPPORT_SUPERG
if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
legacy != IEEE80211_SEND_LEGACY_11B)
frm = ieee80211_add_athcaps(frm, bss);
#endif
if (vap->iv_appie_proberesp != NULL)
frm = add_appie(frm, vap->iv_appie_proberesp);
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS) {
frm = ieee80211_add_meshid(frm, vap);
frm = ieee80211_add_meshconf(frm, vap);
}
#endif
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
return m;
}
/*
* Send a probe response frame to the specified mac address.
* This does not go through the normal mgt frame api so we
* can specify the destination address and re-use the bss node
* for the sta reference.
*/
int
ieee80211_send_proberesp(struct ieee80211vap *vap,
const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
{
struct ieee80211_node *bss = vap->iv_bss;
struct ieee80211com *ic = vap->iv_ic;
struct mbuf *m;
int ret;
if (vap->iv_state == IEEE80211_S_CAC) {
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
"block %s frame in CAC state", "probe response");
vap->iv_stats.is_tx_badstate++;
return EIO; /* XXX */
}
/*
* Hold a reference on the node so it doesn't go away until after
* the xmit is complete all the way in the driver. On error we
* will remove our reference.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
__func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
ieee80211_node_refcnt(bss)+1);
ieee80211_ref_node(bss);
m = ieee80211_alloc_proberesp(bss, legacy);
if (m == NULL) {
ieee80211_free_node(bss);
return ENOMEM;
}
M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
KASSERT(m != NULL, ("no room for header"));
IEEE80211_TX_LOCK(ic);
ieee80211_send_setup(bss, m,
IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
/* XXX power management? */
m->m_flags |= M_ENCAP; /* mark encapsulated */
M_WME_SETAC(m, WME_AC_BE);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
"send probe resp on channel %u to %s%s\n",
ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
legacy ? " <legacy>" : "");
IEEE80211_NODE_STAT(bss, tx_mgmt);
ret = ieee80211_raw_output(vap, bss, m, NULL);
IEEE80211_TX_UNLOCK(ic);
return (ret);
}
/*
* Allocate and build a RTS (Request To Send) control frame.
*/
struct mbuf *
ieee80211_alloc_rts(struct ieee80211com *ic,
const uint8_t ra[IEEE80211_ADDR_LEN],
const uint8_t ta[IEEE80211_ADDR_LEN],
uint16_t dur)
{
struct ieee80211_frame_rts *rts;
struct mbuf *m;
/* XXX honor ic_headroom */
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m != NULL) {
rts = mtod(m, struct ieee80211_frame_rts *);
rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(u_int16_t *)rts->i_dur = htole16(dur);
IEEE80211_ADDR_COPY(rts->i_ra, ra);
IEEE80211_ADDR_COPY(rts->i_ta, ta);
m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
}
return m;
}
/*
* Allocate and build a CTS (Clear To Send) control frame.
*/
struct mbuf *
ieee80211_alloc_cts(struct ieee80211com *ic,
const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
{
struct ieee80211_frame_cts *cts;
struct mbuf *m;
/* XXX honor ic_headroom */
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m != NULL) {
cts = mtod(m, struct ieee80211_frame_cts *);
cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(u_int16_t *)cts->i_dur = htole16(dur);
IEEE80211_ADDR_COPY(cts->i_ra, ra);
m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
}
return m;
}
/*
* Wrapper for CTS/RTS frame allocation.
*/
struct mbuf *
ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
uint8_t rate, int prot)
{
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_frame *wh;
struct mbuf *mprot;
uint16_t dur;
int pktlen, isshort;
KASSERT(prot == IEEE80211_PROT_RTSCTS ||
prot == IEEE80211_PROT_CTSONLY,
("wrong protection type %d", prot));
wh = mtod(m, const struct ieee80211_frame *);
pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
+ ieee80211_ack_duration(ic->ic_rt, rate, isshort);
if (prot == IEEE80211_PROT_RTSCTS) {
/* NB: CTS is the same size as an ACK */
dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
} else
mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
return (mprot);
}
static void
ieee80211_tx_mgt_timeout(void *arg)
{
struct ieee80211vap *vap = arg;
IEEE80211_LOCK(vap->iv_ic);
if (vap->iv_state != IEEE80211_S_INIT &&
(vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
/*
* NB: it's safe to specify a timeout as the reason here;
* it'll only be used in the right state.
*/
ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
IEEE80211_SCAN_FAIL_TIMEOUT);
}
IEEE80211_UNLOCK(vap->iv_ic);
}
/*
* This is the callback set on net80211-sourced transmitted
* authentication request frames.
*
* This does a couple of things:
*
* + If the frame transmitted was a success, it schedules a future
* event which will transition the interface to scan.
* If a state transition _then_ occurs before that event occurs,
* said state transition will cancel this callout.
*
* + If the frame transmit was a failure, it immediately schedules
* the transition back to scan.
*/
static void
ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
{
struct ieee80211vap *vap = ni->ni_vap;
enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
/*
* Frame transmit completed; arrange timer callback. If
* transmit was successfully we wait for response. Otherwise
* we arrange an immediate callback instead of doing the
* callback directly since we don't know what state the driver
* is in (e.g. what locks it is holding). This work should
* not be too time-critical and not happen too often so the
* added overhead is acceptable.
*
* XXX what happens if !acked but response shows up before callback?
*/
if (vap->iv_state == ostate) {
callout_reset(&vap->iv_mgtsend,
status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
ieee80211_tx_mgt_timeout, vap);
}
}
static void
ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_rateset *rs = &ni->ni_rates;
uint16_t capinfo;
/*
* beacon frame format
*
* TODO: update to 802.11-2012; a lot of stuff has changed;
* vendor extensions should be at the end, etc.
*
* [8] time stamp
* [2] beacon interval
* [2] cabability information
* [tlv] ssid
* [tlv] supported rates
* [3] parameter set (DS)
* [8] CF parameter set (optional)
* [tlv] parameter set (IBSS/TIM)
* [tlv] country (optional)
* [3] power control (optional)
* [5] channel switch announcement (CSA) (optional)
* XXX TODO: Quiet
* XXX TODO: IBSS DFS
* XXX TODO: TPC report
* [tlv] extended rate phy (ERP)
* [tlv] extended supported rates
* [tlv] RSN parameters
* XXX TODO: BSSLOAD
* (XXX EDCA parameter set, QoS capability?)
* XXX TODO: AP channel report
*
* [tlv] HT capabilities
* [tlv] HT information
* XXX TODO: 20/40 BSS coexistence
* Mesh:
* XXX TODO: Meshid
* XXX TODO: mesh config
* XXX TODO: mesh awake window
* XXX TODO: beacon timing (mesh, etc)
* XXX TODO: MCCAOP Advertisement Overview
* XXX TODO: MCCAOP Advertisement
* XXX TODO: Mesh channel switch parameters
* VHT:
* XXX TODO: VHT capabilities
* XXX TODO: VHT operation
* XXX TODO: VHT transmit power envelope
* XXX TODO: channel switch wrapper element
* XXX TODO: extended BSS load element
*
* XXX Vendor-specific OIDs (e.g. Atheros)
* [tlv] WPA parameters
* [tlv] WME parameters
* [tlv] Vendor OUI HT capabilities (optional)
* [tlv] Vendor OUI HT information (optional)
* [tlv] Atheros capabilities (optional)
* [tlv] TDMA parameters (optional)
* [tlv] Mesh ID (MBSS)
* [tlv] Mesh Conf (MBSS)
* [tlv] application data (optional)
*/
memset(bo, 0, sizeof(*bo));
memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
frm += 8;
*(uint16_t *)frm = htole16(ni->ni_intval);
frm += 2;
capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
bo->bo_caps = (uint16_t *)frm;
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
*frm++ = IEEE80211_ELEMID_SSID;
if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
*frm++ = ni->ni_esslen;
memcpy(frm, ni->ni_essid, ni->ni_esslen);
frm += ni->ni_esslen;
} else
*frm++ = 0;
frm = ieee80211_add_rates(frm, rs);
if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
*frm++ = IEEE80211_ELEMID_DSPARMS;
*frm++ = 1;
*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
}
if (ic->ic_flags & IEEE80211_F_PCF) {
bo->bo_cfp = frm;
frm = ieee80211_add_cfparms(frm, ic);
}
bo->bo_tim = frm;
if (vap->iv_opmode == IEEE80211_M_IBSS) {
*frm++ = IEEE80211_ELEMID_IBSSPARMS;
*frm++ = 2;
*frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
bo->bo_tim_len = 0;
} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_MBSS) {
/* TIM IE is the same for Mesh and Hostap */
struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
tie->tim_ie = IEEE80211_ELEMID_TIM;
tie->tim_len = 4; /* length */
tie->tim_count = 0; /* DTIM count */
tie->tim_period = vap->iv_dtim_period; /* DTIM period */
tie->tim_bitctl = 0; /* bitmap control */
tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
frm += sizeof(struct ieee80211_tim_ie);
bo->bo_tim_len = 1;
}
bo->bo_tim_trailer = frm;
if ((vap->iv_flags & IEEE80211_F_DOTH) ||
(vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
frm = ieee80211_add_countryie(frm, ic);
if (vap->iv_flags & IEEE80211_F_DOTH) {
if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
frm = ieee80211_add_powerconstraint(frm, vap);
bo->bo_csa = frm;
if (ic->ic_flags & IEEE80211_F_CSAPENDING)
frm = ieee80211_add_csa(frm, vap);
} else
bo->bo_csa = frm;
bo->bo_quiet = NULL;
if (vap->iv_flags & IEEE80211_F_DOTH) {
if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
(vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
(vap->iv_quiet == 1)) {
/*
* We only insert the quiet IE offset if
* the quiet IE is enabled. Otherwise don't
* put it here or we'll just overwrite
* some other beacon contents.
*/
if (vap->iv_quiet) {
bo->bo_quiet = frm;
frm = ieee80211_add_quiet(frm,vap, 0);
}
}
}
if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
bo->bo_erp = frm;
frm = ieee80211_add_erp(frm, ic);
}
frm = ieee80211_add_xrates(frm, rs);
frm = ieee80211_add_rsn(frm, vap);
if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
frm = ieee80211_add_htcap(frm, ni);
bo->bo_htinfo = frm;
frm = ieee80211_add_htinfo(frm, ni);
}
if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
frm = ieee80211_add_vhtcap(frm, ni);
bo->bo_vhtinfo = frm;
frm = ieee80211_add_vhtinfo(frm, ni);
/* Transmit power envelope */
/* Channel switch wrapper element */
/* Extended bss load element */
}
frm = ieee80211_add_wpa(frm, vap);
if (vap->iv_flags & IEEE80211_F_WME) {
bo->bo_wme = frm;
frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
}
if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
(vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
frm = ieee80211_add_htcap_vendor(frm, ni);
frm = ieee80211_add_htinfo_vendor(frm, ni);
}
#ifdef IEEE80211_SUPPORT_SUPERG
if (vap->iv_flags & IEEE80211_F_ATHEROS) {
bo->bo_ath = frm;
frm = ieee80211_add_athcaps(frm, ni);
}
#endif
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA) {
bo->bo_tdma = frm;
frm = ieee80211_add_tdma(frm, vap);
}
#endif
if (vap->iv_appie_beacon != NULL) {
bo->bo_appie = frm;
bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
frm = add_appie(frm, vap->iv_appie_beacon);
}
/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS) {
frm = ieee80211_add_meshid(frm, vap);
bo->bo_meshconf = frm;
frm = ieee80211_add_meshconf(frm, vap);
}
#endif
bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
bo->bo_csa_trailer_len = frm - bo->bo_csa;
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
}
/*
* Allocate a beacon frame and fillin the appropriate bits.
*/
struct mbuf *
ieee80211_beacon_alloc(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211_frame *wh;
struct mbuf *m;
int pktlen;
uint8_t *frm;
/*
* Update the "We're putting the quiet IE in the beacon" state.
*/
if (vap->iv_quiet == 1)
vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
else if (vap->iv_quiet == 0)
vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
/*
* beacon frame format
*
* Note: This needs updating for 802.11-2012.
*
* [8] time stamp
* [2] beacon interval
* [2] cabability information
* [tlv] ssid
* [tlv] supported rates
* [3] parameter set (DS)
* [8] CF parameter set (optional)
* [tlv] parameter set (IBSS/TIM)
* [tlv] country (optional)
* [3] power control (optional)
* [5] channel switch announcement (CSA) (optional)
* [tlv] extended rate phy (ERP)
* [tlv] extended supported rates
* [tlv] RSN parameters
* [tlv] HT capabilities
* [tlv] HT information
* [tlv] VHT capabilities
* [tlv] VHT operation
* [tlv] Vendor OUI HT capabilities (optional)
* [tlv] Vendor OUI HT information (optional)
* XXX Vendor-specific OIDs (e.g. Atheros)
* [tlv] WPA parameters
* [tlv] WME parameters
* [tlv] TDMA parameters (optional)
* [tlv] Mesh ID (MBSS)
* [tlv] Mesh Conf (MBSS)
* [tlv] application data (optional)
* NB: we allocate the max space required for the TIM bitmap.
* XXX how big is this?
*/
pktlen = 8 /* time stamp */
+ sizeof(uint16_t) /* beacon interval */
+ sizeof(uint16_t) /* capabilities */
+ 2 + ni->ni_esslen /* ssid */
+ 2 + IEEE80211_RATE_SIZE /* supported rates */
+ 2 + 1 /* DS parameters */
+ 2 + 6 /* CF parameters */
+ 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
+ IEEE80211_COUNTRY_MAX_SIZE /* country */
+ 2 + 1 /* power control */
+ sizeof(struct ieee80211_csa_ie) /* CSA */
+ sizeof(struct ieee80211_quiet_ie) /* Quiet */
+ 2 + 1 /* ERP */
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
2*sizeof(struct ieee80211_ie_wpa) : 0)
/* XXX conditional? */
+ 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
+ 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
+ sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
+ sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
+ (vap->iv_caps & IEEE80211_C_WME ? /* WME */
sizeof(struct ieee80211_wme_param) : 0)
#ifdef IEEE80211_SUPPORT_SUPERG
+ sizeof(struct ieee80211_ath_ie) /* ATH */
#endif
#ifdef IEEE80211_SUPPORT_TDMA
+ (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */
sizeof(struct ieee80211_tdma_param) : 0)
#endif
#ifdef IEEE80211_SUPPORT_MESH
+ 2 + ni->ni_meshidlen
+ sizeof(struct ieee80211_meshconf_ie)
#endif
+ IEEE80211_MAX_APPIE
;
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
if (m == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
"%s: cannot get buf; size %u\n", __func__, pktlen);
vap->iv_stats.is_tx_nobuf++;
return NULL;
}
ieee80211_beacon_construct(m, frm, ni);
M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
KASSERT(m != NULL, ("no space for 802.11 header?"));
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_BEACON;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(uint16_t *)wh->i_dur = 0;
IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
*(uint16_t *)wh->i_seq = 0;
return m;
}
/*
* Update the dynamic parts of a beacon frame based on the current state.
*/
int
ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
struct ieee80211com *ic = ni->ni_ic;
int len_changed = 0;
uint16_t capinfo;
struct ieee80211_frame *wh;
ieee80211_seq seqno;
IEEE80211_LOCK(ic);
/*
* Handle 11h channel change when we've reached the count.
* We must recalculate the beacon frame contents to account
* for the new channel. Note we do this only for the first
* vap that reaches this point; subsequent vaps just update
* their beacon state to reflect the recalculated channel.
*/
if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
vap->iv_csa_count == ic->ic_csa_count) {
vap->iv_csa_count = 0;
/*
* Effect channel change before reconstructing the beacon
* frame contents as many places reference ni_chan.
*/
if (ic->ic_csa_newchan != NULL)
ieee80211_csa_completeswitch(ic);
/*
* NB: ieee80211_beacon_construct clears all pending
* updates in bo_flags so we don't need to explicitly
* clear IEEE80211_BEACON_CSA.
*/
ieee80211_beacon_construct(m,
mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
/* XXX do WME aggressive mode processing? */
IEEE80211_UNLOCK(ic);
return 1; /* just assume length changed */
}
/*
* Handle the quiet time element being added and removed.
* Again, for now we just cheat and reconstruct the whole
* beacon - that way the gap is provided as appropriate.
*
* So, track whether we have already added the IE versus
* whether we want to be adding the IE.
*/
if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
(vap->iv_quiet == 0)) {
/*
* Quiet time beacon IE enabled, but it's disabled;
* recalc
*/
vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
ieee80211_beacon_construct(m,
mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
/* XXX do WME aggressive mode processing? */
IEEE80211_UNLOCK(ic);
return 1; /* just assume length changed */
}
if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
(vap->iv_quiet == 1)) {
/*
* Quiet time beacon IE disabled, but it's now enabled;
* recalc
*/
vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
ieee80211_beacon_construct(m,
mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
/* XXX do WME aggressive mode processing? */
IEEE80211_UNLOCK(ic);
return 1; /* just assume length changed */
}
wh = mtod(m, struct ieee80211_frame *);
/*
* XXX TODO Strictly speaking this should be incremented with the TX
* lock held so as to serialise access to the non-qos TID sequence
* number space.
*
* If the driver identifies it does its own TX seqno management then
* we can skip this (and still not do the TX seqno.)
*/
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
*(uint16_t *)&wh->i_seq[0] =
htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
M_SEQNO_SET(m, seqno);
/* XXX faster to recalculate entirely or just changes? */
capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
*bo->bo_caps = htole16(capinfo);
if (vap->iv_flags & IEEE80211_F_WME) {
struct ieee80211_wme_state *wme = &ic->ic_wme;
/*
* Check for aggressive mode change. When there is
* significant high priority traffic in the BSS
* throttle back BE traffic by using conservative
* parameters. Otherwise BE uses aggressive params
* to optimize performance of legacy/non-QoS traffic.
*/
if (wme->wme_flags & WME_F_AGGRMODE) {
if (wme->wme_hipri_traffic >
wme->wme_hipri_switch_thresh) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
"%s: traffic %u, disable aggressive mode\n",
__func__, wme->wme_hipri_traffic);
wme->wme_flags &= ~WME_F_AGGRMODE;
ieee80211_wme_updateparams_locked(vap);
wme->wme_hipri_traffic =
wme->wme_hipri_switch_hysteresis;
} else
wme->wme_hipri_traffic = 0;
} else {
if (wme->wme_hipri_traffic <=
wme->wme_hipri_switch_thresh) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
"%s: traffic %u, enable aggressive mode\n",
__func__, wme->wme_hipri_traffic);
wme->wme_flags |= WME_F_AGGRMODE;
ieee80211_wme_updateparams_locked(vap);
wme->wme_hipri_traffic = 0;
} else
wme->wme_hipri_traffic =
wme->wme_hipri_switch_hysteresis;
}
if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
(void) ieee80211_add_wme_param(bo->bo_wme, wme);
clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
}
}
if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
ieee80211_ht_update_beacon(vap, bo);
clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
}
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA) {
/*
* NB: the beacon is potentially updated every TBTT.
*/
ieee80211_tdma_update_beacon(vap, bo);
}
#endif
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS)
ieee80211_mesh_update_beacon(vap, bo);
#endif
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/
struct ieee80211_tim_ie *tie =
(struct ieee80211_tim_ie *) bo->bo_tim;
if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
u_int timlen, timoff, i;
/*
* ATIM/DTIM needs updating. If it fits in the
* current space allocated then just copy in the
* new bits. Otherwise we need to move any trailing
* data to make room. Note that we know there is
* contiguous space because ieee80211_beacon_allocate
* insures there is space in the mbuf to write a
* maximal-size virtual bitmap (based on iv_max_aid).
*/
/*
* Calculate the bitmap size and offset, copy any
* trailer out of the way, and then copy in the
* new bitmap and update the information element.
* Note that the tim bitmap must contain at least
* one byte and any offset must be even.
*/
if (vap->iv_ps_pending != 0) {
timoff = 128; /* impossibly large */
for (i = 0; i < vap->iv_tim_len; i++)
if (vap->iv_tim_bitmap[i]) {
timoff = i &~ 1;
break;
}
KASSERT(timoff != 128, ("tim bitmap empty!"));
for (i = vap->iv_tim_len-1; i >= timoff; i--)
if (vap->iv_tim_bitmap[i])
break;
timlen = 1 + (i - timoff);
} else {
timoff = 0;
timlen = 1;
}
/*
* TODO: validate this!
*/
if (timlen != bo->bo_tim_len) {
/* copy up/down trailer */
int adjust = tie->tim_bitmap+timlen
- bo->bo_tim_trailer;
ovbcopy(bo->bo_tim_trailer,
bo->bo_tim_trailer+adjust,
bo->bo_tim_trailer_len);
bo->bo_tim_trailer += adjust;
bo->bo_erp += adjust;
bo->bo_htinfo += adjust;
bo->bo_vhtinfo += adjust;
#ifdef IEEE80211_SUPPORT_SUPERG
bo->bo_ath += adjust;
#endif
#ifdef IEEE80211_SUPPORT_TDMA
bo->bo_tdma += adjust;
#endif
#ifdef IEEE80211_SUPPORT_MESH
bo->bo_meshconf += adjust;
#endif
bo->bo_appie += adjust;
bo->bo_wme += adjust;
bo->bo_csa += adjust;
bo->bo_quiet += adjust;
bo->bo_tim_len = timlen;
/* update information element */
tie->tim_len = 3 + timlen;
tie->tim_bitctl = timoff;
len_changed = 1;
}
memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
bo->bo_tim_len);
clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
"%s: TIM updated, pending %u, off %u, len %u\n",
__func__, vap->iv_ps_pending, timoff, timlen);
}
/* count down DTIM period */
if (tie->tim_count == 0)
tie->tim_count = tie->tim_period - 1;
else
tie->tim_count--;
/* update state for buffered multicast frames on DTIM */
if (mcast && tie->tim_count == 0)
tie->tim_bitctl |= 1;
else
tie->tim_bitctl &= ~1;
if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
struct ieee80211_csa_ie *csa =
(struct ieee80211_csa_ie *) bo->bo_csa;
/*
* Insert or update CSA ie. If we're just starting
* to count down to the channel switch then we need
* to insert the CSA ie. Otherwise we just need to
* drop the count. The actual change happens above
* when the vap's count reaches the target count.
*/
if (vap->iv_csa_count == 0) {
memmove(&csa[1], csa, bo->bo_csa_trailer_len);
bo->bo_erp += sizeof(*csa);
bo->bo_htinfo += sizeof(*csa);
bo->bo_vhtinfo += sizeof(*csa);
bo->bo_wme += sizeof(*csa);
#ifdef IEEE80211_SUPPORT_SUPERG
bo->bo_ath += sizeof(*csa);
#endif
#ifdef IEEE80211_SUPPORT_TDMA
bo->bo_tdma += sizeof(*csa);
#endif
#ifdef IEEE80211_SUPPORT_MESH
bo->bo_meshconf += sizeof(*csa);
#endif
bo->bo_appie += sizeof(*csa);
bo->bo_csa_trailer_len += sizeof(*csa);
bo->bo_quiet += sizeof(*csa);
bo->bo_tim_trailer_len += sizeof(*csa);
m->m_len += sizeof(*csa);
m->m_pkthdr.len += sizeof(*csa);
ieee80211_add_csa(bo->bo_csa, vap);
} else
csa->csa_count--;
vap->iv_csa_count++;
/* NB: don't clear IEEE80211_BEACON_CSA */
}
/*
* Only add the quiet time IE if we've enabled it
* as appropriate.
*/
if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
(vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
if (vap->iv_quiet &&
(vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
ieee80211_add_quiet(bo->bo_quiet, vap, 1);
}
}
if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
/*
* ERP element needs updating.
*/
(void) ieee80211_add_erp(bo->bo_erp, ic);
clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
}
#ifdef IEEE80211_SUPPORT_SUPERG
if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) {
ieee80211_add_athcaps(bo->bo_ath, ni);
clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
}
#endif
}
if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
const struct ieee80211_appie *aie = vap->iv_appie_beacon;
int aielen;
uint8_t *frm;
aielen = 0;
if (aie != NULL)
aielen += aie->ie_len;
if (aielen != bo->bo_appie_len) {
/* copy up/down trailer */
int adjust = aielen - bo->bo_appie_len;
ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
bo->bo_tim_trailer_len);
bo->bo_tim_trailer += adjust;
bo->bo_appie += adjust;
bo->bo_appie_len = aielen;
len_changed = 1;
}
frm = bo->bo_appie;
if (aie != NULL)
frm = add_appie(frm, aie);
clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
}
IEEE80211_UNLOCK(ic);
return len_changed;
}
/*
* Do Ethernet-LLC encapsulation for each payload in a fast frame
* tunnel encapsulation. The frame is assumed to have an Ethernet
* header at the front that must be stripped before prepending the
* LLC followed by the Ethernet header passed in (with an Ethernet
* type that specifies the payload size).
*/
struct mbuf *
ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
const struct ether_header *eh)
{
struct llc *llc;
uint16_t payload;
/* XXX optimize by combining m_adj+M_PREPEND */
m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
llc = mtod(m, struct llc *);
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
llc->llc_control = LLC_UI;
llc->llc_snap.org_code[0] = 0;
llc->llc_snap.org_code[1] = 0;
llc->llc_snap.org_code[2] = 0;
llc->llc_snap.ether_type = eh->ether_type;
payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
if (m == NULL) { /* XXX cannot happen */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: no space for ether_header\n", __func__);
vap->iv_stats.is_tx_nobuf++;
return NULL;
}
ETHER_HEADER_COPY(mtod(m, void *), eh);
mtod(m, struct ether_header *)->ether_type = htons(payload);
return m;
}
/*
* Complete an mbuf transmission.
*
* For now, this simply processes a completed frame after the
* driver has completed it's transmission and/or retransmission.
* It assumes the frame is an 802.11 encapsulated frame.
*
* Later on it will grow to become the exit path for a given frame
* from the driver and, depending upon how it's been encapsulated
* and already transmitted, it may end up doing A-MPDU retransmission,
* power save requeuing, etc.
*
* In order for the above to work, the driver entry point to this
* must not hold any driver locks. Thus, the driver needs to delay
* any actual mbuf completion until it can release said locks.
*
* This frees the mbuf and if the mbuf has a node reference,
* the node reference will be freed.
*/
void
ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
{
if (ni != NULL) {
struct ifnet *ifp = ni->ni_vap->iv_ifp;
if (status == 0) {
if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
if (m->m_flags & M_MCAST)
if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
} else
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
if (m->m_flags & M_TXCB)
ieee80211_process_callback(ni, m, status);
ieee80211_free_node(ni);
}
m_freem(m);
}