f247dc2523
for the ixl 1.3.0 and ixlv 1.2.0 revisions. MFC after: 1 week
678 lines
22 KiB
C
Executable File
678 lines
22 KiB
C
Executable File
/******************************************************************************
|
|
|
|
Copyright (c) 2013-2014, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
#include "i40e_prototype.h"
|
|
|
|
enum i40e_status_code i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
|
|
u16 *data);
|
|
enum i40e_status_code i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
|
|
u16 *data);
|
|
enum i40e_status_code i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
|
|
u16 *words, u16 *data);
|
|
enum i40e_status_code i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
|
|
u16 *words, u16 *data);
|
|
enum i40e_status_code i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
|
|
u32 offset, u16 words, void *data,
|
|
bool last_command);
|
|
|
|
/**
|
|
* i40e_init_nvm_ops - Initialize NVM function pointers
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Setup the function pointers and the NVM info structure. Should be called
|
|
* once per NVM initialization, e.g. inside the i40e_init_shared_code().
|
|
* Please notice that the NVM term is used here (& in all methods covered
|
|
* in this file) as an equivalent of the FLASH part mapped into the SR.
|
|
* We are accessing FLASH always thru the Shadow RAM.
|
|
**/
|
|
enum i40e_status_code i40e_init_nvm(struct i40e_hw *hw)
|
|
{
|
|
struct i40e_nvm_info *nvm = &hw->nvm;
|
|
enum i40e_status_code ret_code = I40E_SUCCESS;
|
|
u32 fla, gens;
|
|
u8 sr_size;
|
|
|
|
DEBUGFUNC("i40e_init_nvm");
|
|
|
|
/* The SR size is stored regardless of the nvm programming mode
|
|
* as the blank mode may be used in the factory line.
|
|
*/
|
|
gens = rd32(hw, I40E_GLNVM_GENS);
|
|
sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
|
|
I40E_GLNVM_GENS_SR_SIZE_SHIFT);
|
|
/* Switching to words (sr_size contains power of 2KB) */
|
|
nvm->sr_size = (1 << sr_size) * I40E_SR_WORDS_IN_1KB;
|
|
|
|
/* Check if we are in the normal or blank NVM programming mode */
|
|
fla = rd32(hw, I40E_GLNVM_FLA);
|
|
if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
|
|
/* Max NVM timeout */
|
|
nvm->timeout = I40E_MAX_NVM_TIMEOUT;
|
|
nvm->blank_nvm_mode = FALSE;
|
|
} else { /* Blank programming mode */
|
|
nvm->blank_nvm_mode = TRUE;
|
|
ret_code = I40E_ERR_NVM_BLANK_MODE;
|
|
i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
|
|
}
|
|
|
|
return ret_code;
|
|
}
|
|
|
|
/**
|
|
* i40e_acquire_nvm - Generic request for acquiring the NVM ownership
|
|
* @hw: pointer to the HW structure
|
|
* @access: NVM access type (read or write)
|
|
*
|
|
* This function will request NVM ownership for reading
|
|
* via the proper Admin Command.
|
|
**/
|
|
enum i40e_status_code i40e_acquire_nvm(struct i40e_hw *hw,
|
|
enum i40e_aq_resource_access_type access)
|
|
{
|
|
enum i40e_status_code ret_code = I40E_SUCCESS;
|
|
u64 gtime, timeout;
|
|
u64 time_left = 0;
|
|
|
|
DEBUGFUNC("i40e_acquire_nvm");
|
|
|
|
if (hw->nvm.blank_nvm_mode)
|
|
goto i40e_i40e_acquire_nvm_exit;
|
|
|
|
ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
|
|
0, &time_left, NULL);
|
|
/* Reading the Global Device Timer */
|
|
gtime = rd32(hw, I40E_GLVFGEN_TIMER);
|
|
|
|
/* Store the timeout */
|
|
hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
|
|
|
|
if (ret_code)
|
|
i40e_debug(hw, I40E_DEBUG_NVM,
|
|
"NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
|
|
access, time_left, ret_code, hw->aq.asq_last_status);
|
|
|
|
if (ret_code && time_left) {
|
|
/* Poll until the current NVM owner timeouts */
|
|
timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
|
|
while ((gtime < timeout) && time_left) {
|
|
i40e_msec_delay(10);
|
|
gtime = rd32(hw, I40E_GLVFGEN_TIMER);
|
|
ret_code = i40e_aq_request_resource(hw,
|
|
I40E_NVM_RESOURCE_ID,
|
|
access, 0, &time_left,
|
|
NULL);
|
|
if (ret_code == I40E_SUCCESS) {
|
|
hw->nvm.hw_semaphore_timeout =
|
|
I40E_MS_TO_GTIME(time_left) + gtime;
|
|
break;
|
|
}
|
|
}
|
|
if (ret_code != I40E_SUCCESS) {
|
|
hw->nvm.hw_semaphore_timeout = 0;
|
|
i40e_debug(hw, I40E_DEBUG_NVM,
|
|
"NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
|
|
time_left, ret_code, hw->aq.asq_last_status);
|
|
}
|
|
}
|
|
|
|
i40e_i40e_acquire_nvm_exit:
|
|
return ret_code;
|
|
}
|
|
|
|
/**
|
|
* i40e_release_nvm - Generic request for releasing the NVM ownership
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This function will release NVM resource via the proper Admin Command.
|
|
**/
|
|
void i40e_release_nvm(struct i40e_hw *hw)
|
|
{
|
|
DEBUGFUNC("i40e_release_nvm");
|
|
|
|
if (!hw->nvm.blank_nvm_mode)
|
|
i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Polls the SRCTL Shadow RAM register done bit.
|
|
**/
|
|
static enum i40e_status_code i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
|
|
{
|
|
enum i40e_status_code ret_code = I40E_ERR_TIMEOUT;
|
|
u32 srctl, wait_cnt;
|
|
|
|
DEBUGFUNC("i40e_poll_sr_srctl_done_bit");
|
|
|
|
/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
|
|
for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
|
|
srctl = rd32(hw, I40E_GLNVM_SRCTL);
|
|
if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
|
|
ret_code = I40E_SUCCESS;
|
|
break;
|
|
}
|
|
i40e_usec_delay(5);
|
|
}
|
|
if (ret_code == I40E_ERR_TIMEOUT)
|
|
i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
|
|
return ret_code;
|
|
}
|
|
|
|
/**
|
|
* i40e_read_nvm_word - Reads Shadow RAM
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
|
|
* @data: word read from the Shadow RAM
|
|
*
|
|
* Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
|
|
**/
|
|
enum i40e_status_code i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
|
|
u16 *data)
|
|
{
|
|
return i40e_read_nvm_word_srctl(hw, offset, data);
|
|
}
|
|
|
|
/**
|
|
* i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
|
|
* @data: word read from the Shadow RAM
|
|
*
|
|
* Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
|
|
**/
|
|
enum i40e_status_code i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
|
|
u16 *data)
|
|
{
|
|
enum i40e_status_code ret_code = I40E_ERR_TIMEOUT;
|
|
u32 sr_reg;
|
|
|
|
DEBUGFUNC("i40e_read_nvm_word_srctl");
|
|
|
|
if (offset >= hw->nvm.sr_size) {
|
|
i40e_debug(hw, I40E_DEBUG_NVM,
|
|
"NVM read error: Offset %d beyond Shadow RAM limit %d\n",
|
|
offset, hw->nvm.sr_size);
|
|
ret_code = I40E_ERR_PARAM;
|
|
goto read_nvm_exit;
|
|
}
|
|
|
|
/* Poll the done bit first */
|
|
ret_code = i40e_poll_sr_srctl_done_bit(hw);
|
|
if (ret_code == I40E_SUCCESS) {
|
|
/* Write the address and start reading */
|
|
sr_reg = (u32)(offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
|
|
(1 << I40E_GLNVM_SRCTL_START_SHIFT);
|
|
wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
|
|
|
|
/* Poll I40E_GLNVM_SRCTL until the done bit is set */
|
|
ret_code = i40e_poll_sr_srctl_done_bit(hw);
|
|
if (ret_code == I40E_SUCCESS) {
|
|
sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
|
|
*data = (u16)((sr_reg &
|
|
I40E_GLNVM_SRDATA_RDDATA_MASK)
|
|
>> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
|
|
}
|
|
}
|
|
if (ret_code != I40E_SUCCESS)
|
|
i40e_debug(hw, I40E_DEBUG_NVM,
|
|
"NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
|
|
offset);
|
|
|
|
read_nvm_exit:
|
|
return ret_code;
|
|
}
|
|
|
|
/**
|
|
* i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
|
|
* @data: word read from the Shadow RAM
|
|
*
|
|
* Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
|
|
**/
|
|
enum i40e_status_code i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
|
|
u16 *data)
|
|
{
|
|
enum i40e_status_code ret_code = I40E_ERR_TIMEOUT;
|
|
|
|
DEBUGFUNC("i40e_read_nvm_word_aq");
|
|
|
|
ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, TRUE);
|
|
*data = LE16_TO_CPU(*(__le16 *)data);
|
|
|
|
return ret_code;
|
|
}
|
|
|
|
/**
|
|
* i40e_read_nvm_buffer - Reads Shadow RAM buffer
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
|
|
* @words: (in) number of words to read; (out) number of words actually read
|
|
* @data: words read from the Shadow RAM
|
|
*
|
|
* Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
|
|
* method. The buffer read is preceded by the NVM ownership take
|
|
* and followed by the release.
|
|
**/
|
|
enum i40e_status_code i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
|
|
u16 *words, u16 *data)
|
|
{
|
|
return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
|
|
}
|
|
|
|
/**
|
|
* i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
|
|
* @words: (in) number of words to read; (out) number of words actually read
|
|
* @data: words read from the Shadow RAM
|
|
*
|
|
* Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
|
|
* method. The buffer read is preceded by the NVM ownership take
|
|
* and followed by the release.
|
|
**/
|
|
enum i40e_status_code i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
|
|
u16 *words, u16 *data)
|
|
{
|
|
enum i40e_status_code ret_code = I40E_SUCCESS;
|
|
u16 index, word;
|
|
|
|
DEBUGFUNC("i40e_read_nvm_buffer_srctl");
|
|
|
|
/* Loop thru the selected region */
|
|
for (word = 0; word < *words; word++) {
|
|
index = offset + word;
|
|
ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
|
|
if (ret_code != I40E_SUCCESS)
|
|
break;
|
|
}
|
|
|
|
/* Update the number of words read from the Shadow RAM */
|
|
*words = word;
|
|
|
|
return ret_code;
|
|
}
|
|
|
|
/**
|
|
* i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
|
|
* @words: (in) number of words to read; (out) number of words actually read
|
|
* @data: words read from the Shadow RAM
|
|
*
|
|
* Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
|
|
* method. The buffer read is preceded by the NVM ownership take
|
|
* and followed by the release.
|
|
**/
|
|
enum i40e_status_code i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
|
|
u16 *words, u16 *data)
|
|
{
|
|
enum i40e_status_code ret_code;
|
|
u16 read_size = *words;
|
|
bool last_cmd = FALSE;
|
|
u16 words_read = 0;
|
|
u16 i = 0;
|
|
|
|
DEBUGFUNC("i40e_read_nvm_buffer_aq");
|
|
|
|
do {
|
|
/* Calculate number of bytes we should read in this step.
|
|
* FVL AQ do not allow to read more than one page at a time or
|
|
* to cross page boundaries.
|
|
*/
|
|
if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
|
|
read_size = min(*words,
|
|
(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
|
|
(offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
|
|
else
|
|
read_size = min((*words - words_read),
|
|
I40E_SR_SECTOR_SIZE_IN_WORDS);
|
|
|
|
/* Check if this is last command, if so set proper flag */
|
|
if ((words_read + read_size) >= *words)
|
|
last_cmd = TRUE;
|
|
|
|
ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
|
|
data + words_read, last_cmd);
|
|
if (ret_code != I40E_SUCCESS)
|
|
goto read_nvm_buffer_aq_exit;
|
|
|
|
/* Increment counter for words already read and move offset to
|
|
* new read location
|
|
*/
|
|
words_read += read_size;
|
|
offset += read_size;
|
|
} while (words_read < *words);
|
|
|
|
for (i = 0; i < *words; i++)
|
|
data[i] = LE16_TO_CPU(((__le16 *)data)[i]);
|
|
|
|
read_nvm_buffer_aq_exit:
|
|
*words = words_read;
|
|
return ret_code;
|
|
}
|
|
|
|
/**
|
|
* i40e_read_nvm_aq - Read Shadow RAM.
|
|
* @hw: pointer to the HW structure.
|
|
* @module_pointer: module pointer location in words from the NVM beginning
|
|
* @offset: offset in words from module start
|
|
* @words: number of words to write
|
|
* @data: buffer with words to write to the Shadow RAM
|
|
* @last_command: tells the AdminQ that this is the last command
|
|
*
|
|
* Writes a 16 bit words buffer to the Shadow RAM using the admin command.
|
|
**/
|
|
enum i40e_status_code i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
|
|
u32 offset, u16 words, void *data,
|
|
bool last_command)
|
|
{
|
|
enum i40e_status_code ret_code = I40E_ERR_NVM;
|
|
|
|
DEBUGFUNC("i40e_read_nvm_aq");
|
|
|
|
/* Here we are checking the SR limit only for the flat memory model.
|
|
* We cannot do it for the module-based model, as we did not acquire
|
|
* the NVM resource yet (we cannot get the module pointer value).
|
|
* Firmware will check the module-based model.
|
|
*/
|
|
if ((offset + words) > hw->nvm.sr_size)
|
|
i40e_debug(hw, I40E_DEBUG_NVM,
|
|
"NVM write error: offset %d beyond Shadow RAM limit %d\n",
|
|
(offset + words), hw->nvm.sr_size);
|
|
else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
|
|
/* We can write only up to 4KB (one sector), in one AQ write */
|
|
i40e_debug(hw, I40E_DEBUG_NVM,
|
|
"NVM write fail error: tried to write %d words, limit is %d.\n",
|
|
words, I40E_SR_SECTOR_SIZE_IN_WORDS);
|
|
else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
|
|
!= (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
|
|
/* A single write cannot spread over two sectors */
|
|
i40e_debug(hw, I40E_DEBUG_NVM,
|
|
"NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
|
|
offset, words);
|
|
else
|
|
ret_code = i40e_aq_read_nvm(hw, module_pointer,
|
|
2 * offset, /*bytes*/
|
|
2 * words, /*bytes*/
|
|
data, last_command, NULL);
|
|
|
|
return ret_code;
|
|
}
|
|
|
|
/**
|
|
* i40e_write_nvm_aq - Writes Shadow RAM.
|
|
* @hw: pointer to the HW structure.
|
|
* @module_pointer: module pointer location in words from the NVM beginning
|
|
* @offset: offset in words from module start
|
|
* @words: number of words to write
|
|
* @data: buffer with words to write to the Shadow RAM
|
|
* @last_command: tells the AdminQ that this is the last command
|
|
*
|
|
* Writes a 16 bit words buffer to the Shadow RAM using the admin command.
|
|
**/
|
|
enum i40e_status_code i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
|
|
u32 offset, u16 words, void *data,
|
|
bool last_command)
|
|
{
|
|
enum i40e_status_code ret_code = I40E_ERR_NVM;
|
|
|
|
DEBUGFUNC("i40e_write_nvm_aq");
|
|
|
|
/* Here we are checking the SR limit only for the flat memory model.
|
|
* We cannot do it for the module-based model, as we did not acquire
|
|
* the NVM resource yet (we cannot get the module pointer value).
|
|
* Firmware will check the module-based model.
|
|
*/
|
|
if ((offset + words) > hw->nvm.sr_size)
|
|
DEBUGOUT("NVM write error: offset beyond Shadow RAM limit.\n");
|
|
else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
|
|
/* We can write only up to 4KB (one sector), in one AQ write */
|
|
DEBUGOUT("NVM write fail error: cannot write more than 4KB in a single write.\n");
|
|
else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
|
|
!= (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
|
|
/* A single write cannot spread over two sectors */
|
|
DEBUGOUT("NVM write error: cannot spread over two sectors in a single write.\n");
|
|
else
|
|
ret_code = i40e_aq_update_nvm(hw, module_pointer,
|
|
2 * offset, /*bytes*/
|
|
2 * words, /*bytes*/
|
|
data, last_command, NULL);
|
|
|
|
return ret_code;
|
|
}
|
|
|
|
/**
|
|
* i40e_write_nvm_word - Writes Shadow RAM word
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the Shadow RAM word to write
|
|
* @data: word to write to the Shadow RAM
|
|
*
|
|
* Writes a 16 bit word to the SR using the i40e_write_nvm_aq() method.
|
|
* NVM ownership have to be acquired and released (on ARQ completion event
|
|
* reception) by caller. To commit SR to NVM update checksum function
|
|
* should be called.
|
|
**/
|
|
enum i40e_status_code i40e_write_nvm_word(struct i40e_hw *hw, u32 offset,
|
|
void *data)
|
|
{
|
|
DEBUGFUNC("i40e_write_nvm_word");
|
|
|
|
*((__le16 *)data) = CPU_TO_LE16(*((u16 *)data));
|
|
|
|
/* Value 0x00 below means that we treat SR as a flat mem */
|
|
return i40e_write_nvm_aq(hw, 0x00, offset, 1, data, FALSE);
|
|
}
|
|
|
|
/**
|
|
* i40e_write_nvm_buffer - Writes Shadow RAM buffer
|
|
* @hw: pointer to the HW structure
|
|
* @module_pointer: module pointer location in words from the NVM beginning
|
|
* @offset: offset of the Shadow RAM buffer to write
|
|
* @words: number of words to write
|
|
* @data: words to write to the Shadow RAM
|
|
*
|
|
* Writes a 16 bit words buffer to the Shadow RAM using the admin command.
|
|
* NVM ownership must be acquired before calling this function and released
|
|
* on ARQ completion event reception by caller. To commit SR to NVM update
|
|
* checksum function should be called.
|
|
**/
|
|
enum i40e_status_code i40e_write_nvm_buffer(struct i40e_hw *hw,
|
|
u8 module_pointer, u32 offset,
|
|
u16 words, void *data)
|
|
{
|
|
__le16 *le_word_ptr = (__le16 *)data;
|
|
u16 *word_ptr = (u16 *)data;
|
|
u32 i = 0;
|
|
|
|
DEBUGFUNC("i40e_write_nvm_buffer");
|
|
|
|
for (i = 0; i < words; i++)
|
|
le_word_ptr[i] = CPU_TO_LE16(word_ptr[i]);
|
|
|
|
/* Here we will only write one buffer as the size of the modules
|
|
* mirrored in the Shadow RAM is always less than 4K.
|
|
*/
|
|
return i40e_write_nvm_aq(hw, module_pointer, offset, words,
|
|
data, FALSE);
|
|
}
|
|
|
|
/**
|
|
* i40e_calc_nvm_checksum - Calculates and returns the checksum
|
|
* @hw: pointer to hardware structure
|
|
* @checksum: pointer to the checksum
|
|
*
|
|
* This function calculates SW Checksum that covers the whole 64kB shadow RAM
|
|
* except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
|
|
* is customer specific and unknown. Therefore, this function skips all maximum
|
|
* possible size of VPD (1kB).
|
|
**/
|
|
enum i40e_status_code i40e_calc_nvm_checksum(struct i40e_hw *hw, u16 *checksum)
|
|
{
|
|
enum i40e_status_code ret_code = I40E_SUCCESS;
|
|
struct i40e_virt_mem vmem;
|
|
u16 pcie_alt_module = 0;
|
|
u16 checksum_local = 0;
|
|
u16 vpd_module = 0;
|
|
u16 *data;
|
|
u16 i = 0;
|
|
|
|
DEBUGFUNC("i40e_calc_nvm_checksum");
|
|
|
|
ret_code = i40e_allocate_virt_mem(hw, &vmem,
|
|
I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
|
|
if (ret_code)
|
|
goto i40e_calc_nvm_checksum_exit;
|
|
data = (u16 *)vmem.va;
|
|
|
|
/* read pointer to VPD area */
|
|
ret_code = i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
|
|
if (ret_code != I40E_SUCCESS) {
|
|
ret_code = I40E_ERR_NVM_CHECKSUM;
|
|
goto i40e_calc_nvm_checksum_exit;
|
|
}
|
|
|
|
/* read pointer to PCIe Alt Auto-load module */
|
|
ret_code = i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
|
|
&pcie_alt_module);
|
|
if (ret_code != I40E_SUCCESS) {
|
|
ret_code = I40E_ERR_NVM_CHECKSUM;
|
|
goto i40e_calc_nvm_checksum_exit;
|
|
}
|
|
|
|
/* Calculate SW checksum that covers the whole 64kB shadow RAM
|
|
* except the VPD and PCIe ALT Auto-load modules
|
|
*/
|
|
for (i = 0; i < hw->nvm.sr_size; i++) {
|
|
/* Read SR page */
|
|
if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
|
|
u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
|
|
ret_code = i40e_read_nvm_buffer(hw, i, &words, data);
|
|
if (ret_code != I40E_SUCCESS) {
|
|
ret_code = I40E_ERR_NVM_CHECKSUM;
|
|
goto i40e_calc_nvm_checksum_exit;
|
|
}
|
|
}
|
|
|
|
/* Skip Checksum word */
|
|
if (i == I40E_SR_SW_CHECKSUM_WORD)
|
|
continue;
|
|
/* Skip VPD module (convert byte size to word count) */
|
|
if ((i >= (u32)vpd_module) &&
|
|
(i < ((u32)vpd_module +
|
|
(I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
|
|
continue;
|
|
}
|
|
/* Skip PCIe ALT module (convert byte size to word count) */
|
|
if ((i >= (u32)pcie_alt_module) &&
|
|
(i < ((u32)pcie_alt_module +
|
|
(I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
|
|
continue;
|
|
}
|
|
|
|
checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
|
|
}
|
|
|
|
*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
|
|
|
|
i40e_calc_nvm_checksum_exit:
|
|
i40e_free_virt_mem(hw, &vmem);
|
|
return ret_code;
|
|
}
|
|
|
|
/**
|
|
* i40e_update_nvm_checksum - Updates the NVM checksum
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* NVM ownership must be acquired before calling this function and released
|
|
* on ARQ completion event reception by caller.
|
|
* This function will commit SR to NVM.
|
|
**/
|
|
enum i40e_status_code i40e_update_nvm_checksum(struct i40e_hw *hw)
|
|
{
|
|
enum i40e_status_code ret_code = I40E_SUCCESS;
|
|
u16 checksum;
|
|
|
|
DEBUGFUNC("i40e_update_nvm_checksum");
|
|
|
|
ret_code = i40e_calc_nvm_checksum(hw, &checksum);
|
|
if (ret_code == I40E_SUCCESS)
|
|
ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
|
|
1, &checksum, TRUE);
|
|
|
|
return ret_code;
|
|
}
|
|
|
|
/**
|
|
* i40e_validate_nvm_checksum - Validate EEPROM checksum
|
|
* @hw: pointer to hardware structure
|
|
* @checksum: calculated checksum
|
|
*
|
|
* Performs checksum calculation and validates the NVM SW checksum. If the
|
|
* caller does not need checksum, the value can be NULL.
|
|
**/
|
|
enum i40e_status_code i40e_validate_nvm_checksum(struct i40e_hw *hw,
|
|
u16 *checksum)
|
|
{
|
|
enum i40e_status_code ret_code = I40E_SUCCESS;
|
|
u16 checksum_sr = 0;
|
|
u16 checksum_local = 0;
|
|
|
|
DEBUGFUNC("i40e_validate_nvm_checksum");
|
|
|
|
ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
|
|
if (ret_code != I40E_SUCCESS)
|
|
goto i40e_validate_nvm_checksum_exit;
|
|
|
|
/* Do not use i40e_read_nvm_word() because we do not want to take
|
|
* the synchronization semaphores twice here.
|
|
*/
|
|
i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
|
|
|
|
/* Verify read checksum from EEPROM is the same as
|
|
* calculated checksum
|
|
*/
|
|
if (checksum_local != checksum_sr)
|
|
ret_code = I40E_ERR_NVM_CHECKSUM;
|
|
|
|
/* If the user cares, return the calculated checksum */
|
|
if (checksum)
|
|
*checksum = checksum_local;
|
|
|
|
i40e_validate_nvm_checksum_exit:
|
|
return ret_code;
|
|
}
|