freebsd-skq/sys/dev/ixgbe/ixgbe_phy.c
jfv 298341aaac Add quad port probe support, this gives the admin proper information about the slot
(which should be a PCIE Gen 3 slot for this adapter) by looking back thru the PCI
parent devices to the slot device.

The fix above also corrects the bandwidth display to GT/s rather than the
incorrect Gb/s

Next, allow the use of ALTQ if you select the compile option IXGBE_LEGACY_TX.

Allow the use of 'unsupported' optic modules by a compile option as well.

Add a phy reset capability into the stop code, this is so a static configured
driver will still behave properly when taken down (not being able to unload it).

This revision synchronizes the shared code with Intel internal current code,
and note that it now includes DCB supporting code, this was necessitated by
some internal changes with the code, but it also will provide the opportunity
to develop this feature in the core driver down the road.

I have edited the README to get rid of some of the worse anachronisms in it
as well, its by no means as robust as I might wish at this point however.

Oh, I also have included some conditional stuff in the code so it will be
compatible in both the 9.X and 10 environments.

Performance has been a focus in recent changes and I believe this revision
driver will perform very well in most workloads.

MFC after: 2 weeks
2013-06-18 21:28:19 +00:00

1971 lines
52 KiB
C

/******************************************************************************
Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
/*$FreeBSD$*/
#include "ixgbe_api.h"
#include "ixgbe_common.h"
#include "ixgbe_phy.h"
static void ixgbe_i2c_start(struct ixgbe_hw *hw);
static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
static bool ixgbe_get_i2c_data(u32 *i2cctl);
static s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
u8 *sff8472_data);
/**
* ixgbe_init_phy_ops_generic - Inits PHY function ptrs
* @hw: pointer to the hardware structure
*
* Initialize the function pointers.
**/
s32 ixgbe_init_phy_ops_generic(struct ixgbe_hw *hw)
{
struct ixgbe_phy_info *phy = &hw->phy;
DEBUGFUNC("ixgbe_init_phy_ops_generic");
/* PHY */
phy->ops.identify = &ixgbe_identify_phy_generic;
phy->ops.reset = &ixgbe_reset_phy_generic;
phy->ops.read_reg = &ixgbe_read_phy_reg_generic;
phy->ops.write_reg = &ixgbe_write_phy_reg_generic;
phy->ops.read_reg_mdi = &ixgbe_read_phy_reg_mdi;
phy->ops.write_reg_mdi = &ixgbe_write_phy_reg_mdi;
phy->ops.setup_link = &ixgbe_setup_phy_link_generic;
phy->ops.setup_link_speed = &ixgbe_setup_phy_link_speed_generic;
phy->ops.check_link = NULL;
phy->ops.get_firmware_version = ixgbe_get_phy_firmware_version_generic;
phy->ops.read_i2c_byte = &ixgbe_read_i2c_byte_generic;
phy->ops.write_i2c_byte = &ixgbe_write_i2c_byte_generic;
phy->ops.read_i2c_sff8472 = &ixgbe_read_i2c_sff8472_generic;
phy->ops.read_i2c_eeprom = &ixgbe_read_i2c_eeprom_generic;
phy->ops.write_i2c_eeprom = &ixgbe_write_i2c_eeprom_generic;
phy->ops.i2c_bus_clear = &ixgbe_i2c_bus_clear;
phy->ops.identify_sfp = &ixgbe_identify_module_generic;
phy->sfp_type = ixgbe_sfp_type_unknown;
phy->ops.check_overtemp = &ixgbe_tn_check_overtemp;
return IXGBE_SUCCESS;
}
/**
* ixgbe_identify_phy_generic - Get physical layer module
* @hw: pointer to hardware structure
*
* Determines the physical layer module found on the current adapter.
**/
s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
{
s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
u32 phy_addr;
u16 ext_ability = 0;
DEBUGFUNC("ixgbe_identify_phy_generic");
if (hw->phy.type == ixgbe_phy_unknown) {
for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
if (ixgbe_validate_phy_addr(hw, phy_addr)) {
hw->phy.addr = phy_addr;
ixgbe_get_phy_id(hw);
hw->phy.type =
ixgbe_get_phy_type_from_id(hw->phy.id);
if (hw->phy.type == ixgbe_phy_unknown) {
hw->phy.ops.read_reg(hw,
IXGBE_MDIO_PHY_EXT_ABILITY,
IXGBE_MDIO_PMA_PMD_DEV_TYPE,
&ext_ability);
if (ext_ability &
(IXGBE_MDIO_PHY_10GBASET_ABILITY |
IXGBE_MDIO_PHY_1000BASET_ABILITY))
hw->phy.type =
ixgbe_phy_cu_unknown;
else
hw->phy.type =
ixgbe_phy_generic;
}
status = IXGBE_SUCCESS;
break;
}
}
/* clear value if nothing found */
if (status != IXGBE_SUCCESS) {
hw->phy.addr = 0;
ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
"Could not identify valid PHY address");
}
} else {
status = IXGBE_SUCCESS;
}
return status;
}
/**
* ixgbe_validate_phy_addr - Determines phy address is valid
* @hw: pointer to hardware structure
*
**/
bool ixgbe_validate_phy_addr(struct ixgbe_hw *hw, u32 phy_addr)
{
u16 phy_id = 0;
bool valid = FALSE;
DEBUGFUNC("ixgbe_validate_phy_addr");
hw->phy.addr = phy_addr;
hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_HIGH,
IXGBE_MDIO_PMA_PMD_DEV_TYPE, &phy_id);
if (phy_id != 0xFFFF && phy_id != 0x0)
valid = TRUE;
return valid;
}
/**
* ixgbe_get_phy_id - Get the phy type
* @hw: pointer to hardware structure
*
**/
s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
{
u32 status;
u16 phy_id_high = 0;
u16 phy_id_low = 0;
DEBUGFUNC("ixgbe_get_phy_id");
status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_HIGH,
IXGBE_MDIO_PMA_PMD_DEV_TYPE,
&phy_id_high);
if (status == IXGBE_SUCCESS) {
hw->phy.id = (u32)(phy_id_high << 16);
status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_LOW,
IXGBE_MDIO_PMA_PMD_DEV_TYPE,
&phy_id_low);
hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
}
return status;
}
/**
* ixgbe_get_phy_type_from_id - Get the phy type
* @hw: pointer to hardware structure
*
**/
enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
{
enum ixgbe_phy_type phy_type;
DEBUGFUNC("ixgbe_get_phy_type_from_id");
switch (phy_id) {
case TN1010_PHY_ID:
phy_type = ixgbe_phy_tn;
break;
case X540_PHY_ID:
phy_type = ixgbe_phy_aq;
break;
case QT2022_PHY_ID:
phy_type = ixgbe_phy_qt;
break;
case ATH_PHY_ID:
phy_type = ixgbe_phy_nl;
break;
default:
phy_type = ixgbe_phy_unknown;
break;
}
DEBUGOUT1("phy type found is %d\n", phy_type);
return phy_type;
}
/**
* ixgbe_reset_phy_generic - Performs a PHY reset
* @hw: pointer to hardware structure
**/
s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
{
u32 i;
u16 ctrl = 0;
s32 status = IXGBE_SUCCESS;
DEBUGFUNC("ixgbe_reset_phy_generic");
if (hw->phy.type == ixgbe_phy_unknown)
status = ixgbe_identify_phy_generic(hw);
if (status != IXGBE_SUCCESS || hw->phy.type == ixgbe_phy_none)
goto out;
/* Don't reset PHY if it's shut down due to overtemp. */
if (!hw->phy.reset_if_overtemp &&
(IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
goto out;
/*
* Perform soft PHY reset to the PHY_XS.
* This will cause a soft reset to the PHY
*/
hw->phy.ops.write_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
IXGBE_MDIO_PHY_XS_DEV_TYPE,
IXGBE_MDIO_PHY_XS_RESET);
/*
* Poll for reset bit to self-clear indicating reset is complete.
* Some PHYs could take up to 3 seconds to complete and need about
* 1.7 usec delay after the reset is complete.
*/
for (i = 0; i < 30; i++) {
msec_delay(100);
hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
IXGBE_MDIO_PHY_XS_DEV_TYPE, &ctrl);
if (!(ctrl & IXGBE_MDIO_PHY_XS_RESET)) {
usec_delay(2);
break;
}
}
if (ctrl & IXGBE_MDIO_PHY_XS_RESET) {
status = IXGBE_ERR_RESET_FAILED;
ERROR_REPORT1(IXGBE_ERROR_POLLING,
"PHY reset polling failed to complete.\n");
}
out:
return status;
}
/**
* ixgbe_read_phy_mdi - Reads a value from a specified PHY register without
* the SWFW lock
* @hw: pointer to hardware structure
* @reg_addr: 32 bit address of PHY register to read
* @phy_data: Pointer to read data from PHY register
**/
s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
u16 *phy_data)
{
u32 i, data, command;
/* Setup and write the address cycle command */
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
(hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
(IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
/*
* Check every 10 usec to see if the address cycle completed.
* The MDI Command bit will clear when the operation is
* complete
*/
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
usec_delay(10);
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
break;
}
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
ERROR_REPORT1(IXGBE_ERROR_POLLING, "PHY address command did not complete.\n");
return IXGBE_ERR_PHY;
}
/*
* Address cycle complete, setup and write the read
* command
*/
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
(hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
(IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
/*
* Check every 10 usec to see if the address cycle
* completed. The MDI Command bit will clear when the
* operation is complete
*/
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
usec_delay(10);
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
break;
}
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
ERROR_REPORT1(IXGBE_ERROR_POLLING, "PHY read command didn't complete\n");
return IXGBE_ERR_PHY;
}
/*
* Read operation is complete. Get the data
* from MSRWD
*/
data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
*phy_data = (u16)(data);
return IXGBE_SUCCESS;
}
/**
* ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
* using the SWFW lock - this function is needed in most cases
* @hw: pointer to hardware structure
* @reg_addr: 32 bit address of PHY register to read
* @phy_data: Pointer to read data from PHY register
**/
s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
u32 device_type, u16 *phy_data)
{
s32 status;
u16 gssr;
DEBUGFUNC("ixgbe_read_phy_reg_generic");
if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
gssr = IXGBE_GSSR_PHY1_SM;
else
gssr = IXGBE_GSSR_PHY0_SM;
if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == IXGBE_SUCCESS) {
status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
phy_data);
hw->mac.ops.release_swfw_sync(hw, gssr);
} else {
status = IXGBE_ERR_SWFW_SYNC;
}
return status;
}
/**
* ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
* without SWFW lock
* @hw: pointer to hardware structure
* @reg_addr: 32 bit PHY register to write
* @device_type: 5 bit device type
* @phy_data: Data to write to the PHY register
**/
s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
u32 device_type, u16 phy_data)
{
u32 i, command;
/* Put the data in the MDI single read and write data register*/
IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
/* Setup and write the address cycle command */
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
(hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
(IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
/*
* Check every 10 usec to see if the address cycle completed.
* The MDI Command bit will clear when the operation is
* complete
*/
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
usec_delay(10);
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
break;
}
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
ERROR_REPORT1(IXGBE_ERROR_POLLING, "PHY address cmd didn't complete\n");
return IXGBE_ERR_PHY;
}
/*
* Address cycle complete, setup and write the write
* command
*/
command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
(hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
(IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
/*
* Check every 10 usec to see if the address cycle
* completed. The MDI Command bit will clear when the
* operation is complete
*/
for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
usec_delay(10);
command = IXGBE_READ_REG(hw, IXGBE_MSCA);
if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
break;
}
if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
ERROR_REPORT1(IXGBE_ERROR_POLLING, "PHY write cmd didn't complete\n");
return IXGBE_ERR_PHY;
}
return IXGBE_SUCCESS;
}
/**
* ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
* using SWFW lock- this function is needed in most cases
* @hw: pointer to hardware structure
* @reg_addr: 32 bit PHY register to write
* @device_type: 5 bit device type
* @phy_data: Data to write to the PHY register
**/
s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
u32 device_type, u16 phy_data)
{
s32 status;
u16 gssr;
DEBUGFUNC("ixgbe_write_phy_reg_generic");
if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
gssr = IXGBE_GSSR_PHY1_SM;
else
gssr = IXGBE_GSSR_PHY0_SM;
if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == IXGBE_SUCCESS) {
status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
phy_data);
hw->mac.ops.release_swfw_sync(hw, gssr);
} else {
status = IXGBE_ERR_SWFW_SYNC;
}
return status;
}
/**
* ixgbe_setup_phy_link_generic - Set and restart autoneg
* @hw: pointer to hardware structure
*
* Restart autonegotiation and PHY and waits for completion.
**/
s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
{
s32 status = IXGBE_SUCCESS;
u32 time_out;
u32 max_time_out = 10;
u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
bool autoneg = FALSE;
ixgbe_link_speed speed;
DEBUGFUNC("ixgbe_setup_phy_link_generic");
ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
/* Set or unset auto-negotiation 10G advertisement */
hw->phy.ops.read_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
&autoneg_reg);
autoneg_reg &= ~IXGBE_MII_10GBASE_T_ADVERTISE;
if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
autoneg_reg |= IXGBE_MII_10GBASE_T_ADVERTISE;
hw->phy.ops.write_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
autoneg_reg);
}
if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
/* Set or unset auto-negotiation 1G advertisement */
hw->phy.ops.read_reg(hw,
IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
&autoneg_reg);
autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
hw->phy.ops.write_reg(hw,
IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
autoneg_reg);
}
if (speed & IXGBE_LINK_SPEED_100_FULL) {
/* Set or unset auto-negotiation 100M advertisement */
hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
&autoneg_reg);
autoneg_reg &= ~(IXGBE_MII_100BASE_T_ADVERTISE |
IXGBE_MII_100BASE_T_ADVERTISE_HALF);
if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
autoneg_reg |= IXGBE_MII_100BASE_T_ADVERTISE;
hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
autoneg_reg);
}
/* Restart PHY autonegotiation and wait for completion */
hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
autoneg_reg |= IXGBE_MII_RESTART;
hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
/* Wait for autonegotiation to finish */
for (time_out = 0; time_out < max_time_out; time_out++) {
usec_delay(10);
/* Restart PHY autonegotiation and wait for completion */
status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_STATUS,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
&autoneg_reg);
autoneg_reg &= IXGBE_MII_AUTONEG_COMPLETE;
if (autoneg_reg == IXGBE_MII_AUTONEG_COMPLETE)
break;
}
if (time_out == max_time_out) {
status = IXGBE_ERR_LINK_SETUP;
ERROR_REPORT1(IXGBE_ERROR_POLLING,
"PHY autonegotiation time out");
}
return status;
}
/**
* ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
* @hw: pointer to hardware structure
* @speed: new link speed
**/
s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
ixgbe_link_speed speed,
bool autoneg_wait_to_complete)
{
UNREFERENCED_1PARAMETER(autoneg_wait_to_complete);
DEBUGFUNC("ixgbe_setup_phy_link_speed_generic");
/*
* Clear autoneg_advertised and set new values based on input link
* speed.
*/
hw->phy.autoneg_advertised = 0;
if (speed & IXGBE_LINK_SPEED_10GB_FULL)
hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
if (speed & IXGBE_LINK_SPEED_1GB_FULL)
hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
if (speed & IXGBE_LINK_SPEED_100_FULL)
hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
/* Setup link based on the new speed settings */
hw->phy.ops.setup_link(hw);
return IXGBE_SUCCESS;
}
/**
* ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
* @hw: pointer to hardware structure
* @speed: pointer to link speed
* @autoneg: boolean auto-negotiation value
*
* Determines the link capabilities by reading the AUTOC register.
**/
s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
ixgbe_link_speed *speed,
bool *autoneg)
{
s32 status = IXGBE_ERR_LINK_SETUP;
u16 speed_ability;
DEBUGFUNC("ixgbe_get_copper_link_capabilities_generic");
*speed = 0;
*autoneg = TRUE;
status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_SPEED_ABILITY,
IXGBE_MDIO_PMA_PMD_DEV_TYPE,
&speed_ability);
if (status == IXGBE_SUCCESS) {
if (speed_ability & IXGBE_MDIO_PHY_SPEED_10G)
*speed |= IXGBE_LINK_SPEED_10GB_FULL;
if (speed_ability & IXGBE_MDIO_PHY_SPEED_1G)
*speed |= IXGBE_LINK_SPEED_1GB_FULL;
if (speed_ability & IXGBE_MDIO_PHY_SPEED_100M)
*speed |= IXGBE_LINK_SPEED_100_FULL;
}
return status;
}
/**
* ixgbe_check_phy_link_tnx - Determine link and speed status
* @hw: pointer to hardware structure
*
* Reads the VS1 register to determine if link is up and the current speed for
* the PHY.
**/
s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
bool *link_up)
{
s32 status = IXGBE_SUCCESS;
u32 time_out;
u32 max_time_out = 10;
u16 phy_link = 0;
u16 phy_speed = 0;
u16 phy_data = 0;
DEBUGFUNC("ixgbe_check_phy_link_tnx");
/* Initialize speed and link to default case */
*link_up = FALSE;
*speed = IXGBE_LINK_SPEED_10GB_FULL;
/*
* Check current speed and link status of the PHY register.
* This is a vendor specific register and may have to
* be changed for other copper PHYs.
*/
for (time_out = 0; time_out < max_time_out; time_out++) {
usec_delay(10);
status = hw->phy.ops.read_reg(hw,
IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
&phy_data);
phy_link = phy_data & IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
phy_speed = phy_data &
IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
*link_up = TRUE;
if (phy_speed ==
IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
*speed = IXGBE_LINK_SPEED_1GB_FULL;
break;
}
}
return status;
}
/**
* ixgbe_setup_phy_link_tnx - Set and restart autoneg
* @hw: pointer to hardware structure
*
* Restart autonegotiation and PHY and waits for completion.
**/
s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
{
s32 status = IXGBE_SUCCESS;
u32 time_out;
u32 max_time_out = 10;
u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
bool autoneg = FALSE;
ixgbe_link_speed speed;
DEBUGFUNC("ixgbe_setup_phy_link_tnx");
ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
/* Set or unset auto-negotiation 10G advertisement */
hw->phy.ops.read_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
&autoneg_reg);
autoneg_reg &= ~IXGBE_MII_10GBASE_T_ADVERTISE;
if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
autoneg_reg |= IXGBE_MII_10GBASE_T_ADVERTISE;
hw->phy.ops.write_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
autoneg_reg);
}
if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
/* Set or unset auto-negotiation 1G advertisement */
hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
&autoneg_reg);
autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
autoneg_reg);
}
if (speed & IXGBE_LINK_SPEED_100_FULL) {
/* Set or unset auto-negotiation 100M advertisement */
hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
&autoneg_reg);
autoneg_reg &= ~IXGBE_MII_100BASE_T_ADVERTISE;
if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
autoneg_reg |= IXGBE_MII_100BASE_T_ADVERTISE;
hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
autoneg_reg);
}
/* Restart PHY autonegotiation and wait for completion */
hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
autoneg_reg |= IXGBE_MII_RESTART;
hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
/* Wait for autonegotiation to finish */
for (time_out = 0; time_out < max_time_out; time_out++) {
usec_delay(10);
/* Restart PHY autonegotiation and wait for completion */
status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_STATUS,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
&autoneg_reg);
autoneg_reg &= IXGBE_MII_AUTONEG_COMPLETE;
if (autoneg_reg == IXGBE_MII_AUTONEG_COMPLETE)
break;
}
if (time_out == max_time_out) {
status = IXGBE_ERR_LINK_SETUP;
DEBUGOUT("ixgbe_setup_phy_link_tnx: time out");
}
return status;
}
/**
* ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
* @hw: pointer to hardware structure
* @firmware_version: pointer to the PHY Firmware Version
**/
s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
u16 *firmware_version)
{
s32 status = IXGBE_SUCCESS;
DEBUGFUNC("ixgbe_get_phy_firmware_version_tnx");
status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
firmware_version);
return status;
}
/**
* ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version
* @hw: pointer to hardware structure
* @firmware_version: pointer to the PHY Firmware Version
**/
s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw,
u16 *firmware_version)
{
s32 status = IXGBE_SUCCESS;
DEBUGFUNC("ixgbe_get_phy_firmware_version_generic");
status = hw->phy.ops.read_reg(hw, AQ_FW_REV,
IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
firmware_version);
return status;
}
/**
* ixgbe_reset_phy_nl - Performs a PHY reset
* @hw: pointer to hardware structure
**/
s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
{
u16 phy_offset, control, eword, edata, block_crc;
bool end_data = FALSE;
u16 list_offset, data_offset;
u16 phy_data = 0;
s32 ret_val = IXGBE_SUCCESS;
u32 i;
DEBUGFUNC("ixgbe_reset_phy_nl");
hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
IXGBE_MDIO_PHY_XS_DEV_TYPE, &phy_data);
/* reset the PHY and poll for completion */
hw->phy.ops.write_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
IXGBE_MDIO_PHY_XS_DEV_TYPE,
(phy_data | IXGBE_MDIO_PHY_XS_RESET));
for (i = 0; i < 100; i++) {
hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
IXGBE_MDIO_PHY_XS_DEV_TYPE, &phy_data);
if ((phy_data & IXGBE_MDIO_PHY_XS_RESET) == 0)
break;
msec_delay(10);
}
if ((phy_data & IXGBE_MDIO_PHY_XS_RESET) != 0) {
DEBUGOUT("PHY reset did not complete.\n");
ret_val = IXGBE_ERR_PHY;
goto out;
}
/* Get init offsets */
ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
&data_offset);
if (ret_val != IXGBE_SUCCESS)
goto out;
ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
data_offset++;
while (!end_data) {
/*
* Read control word from PHY init contents offset
*/
ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
if (ret_val)
goto err_eeprom;
control = (eword & IXGBE_CONTROL_MASK_NL) >>
IXGBE_CONTROL_SHIFT_NL;
edata = eword & IXGBE_DATA_MASK_NL;
switch (control) {
case IXGBE_DELAY_NL:
data_offset++;
DEBUGOUT1("DELAY: %d MS\n", edata);
msec_delay(edata);
break;
case IXGBE_DATA_NL:
DEBUGOUT("DATA:\n");
data_offset++;
ret_val = hw->eeprom.ops.read(hw, data_offset,
&phy_offset);
if (ret_val)
goto err_eeprom;
data_offset++;
for (i = 0; i < edata; i++) {
ret_val = hw->eeprom.ops.read(hw, data_offset,
&eword);
if (ret_val)
goto err_eeprom;
hw->phy.ops.write_reg(hw, phy_offset,
IXGBE_TWINAX_DEV, eword);
DEBUGOUT2("Wrote %4.4x to %4.4x\n", eword,
phy_offset);
data_offset++;
phy_offset++;
}
break;
case IXGBE_CONTROL_NL:
data_offset++;
DEBUGOUT("CONTROL:\n");
if (edata == IXGBE_CONTROL_EOL_NL) {
DEBUGOUT("EOL\n");
end_data = TRUE;
} else if (edata == IXGBE_CONTROL_SOL_NL) {
DEBUGOUT("SOL\n");
} else {
DEBUGOUT("Bad control value\n");
ret_val = IXGBE_ERR_PHY;
goto out;
}
break;
default:
DEBUGOUT("Bad control type\n");
ret_val = IXGBE_ERR_PHY;
goto out;
}
}
out:
return ret_val;
err_eeprom:
ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
"eeprom read at offset %d failed", data_offset);
return IXGBE_ERR_PHY;
}
/**
* ixgbe_identify_module_generic - Identifies module type
* @hw: pointer to hardware structure
*
* Determines HW type and calls appropriate function.
**/
s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
{
s32 status = IXGBE_ERR_SFP_NOT_PRESENT;
DEBUGFUNC("ixgbe_identify_module_generic");
switch (hw->mac.ops.get_media_type(hw)) {
case ixgbe_media_type_fiber:
status = ixgbe_identify_sfp_module_generic(hw);
break;
default:
hw->phy.sfp_type = ixgbe_sfp_type_not_present;
status = IXGBE_ERR_SFP_NOT_PRESENT;
break;
}
return status;
}
/**
* ixgbe_identify_sfp_module_generic - Identifies SFP modules
* @hw: pointer to hardware structure
*
* Searches for and identifies the SFP module and assigns appropriate PHY type.
**/
s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
{
s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
u32 vendor_oui = 0;
enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
u8 identifier = 0;
u8 comp_codes_1g = 0;
u8 comp_codes_10g = 0;
u8 oui_bytes[3] = {0, 0, 0};
u8 cable_tech = 0;
u8 cable_spec = 0;
u16 enforce_sfp = 0;
DEBUGFUNC("ixgbe_identify_sfp_module_generic");
if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
hw->phy.sfp_type = ixgbe_sfp_type_not_present;
status = IXGBE_ERR_SFP_NOT_PRESENT;
goto out;
}
status = hw->phy.ops.read_i2c_eeprom(hw,
IXGBE_SFF_IDENTIFIER,
&identifier);
if (status != IXGBE_SUCCESS)
goto err_read_i2c_eeprom;
/* LAN ID is needed for sfp_type determination */
hw->mac.ops.set_lan_id(hw);
if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
hw->phy.type = ixgbe_phy_sfp_unsupported;
status = IXGBE_ERR_SFP_NOT_SUPPORTED;
} else {
status = hw->phy.ops.read_i2c_eeprom(hw,
IXGBE_SFF_1GBE_COMP_CODES,
&comp_codes_1g);
if (status != IXGBE_SUCCESS)
goto err_read_i2c_eeprom;
status = hw->phy.ops.read_i2c_eeprom(hw,
IXGBE_SFF_10GBE_COMP_CODES,
&comp_codes_10g);
if (status != IXGBE_SUCCESS)
goto err_read_i2c_eeprom;
status = hw->phy.ops.read_i2c_eeprom(hw,
IXGBE_SFF_CABLE_TECHNOLOGY,
&cable_tech);
if (status != IXGBE_SUCCESS)
goto err_read_i2c_eeprom;
/* ID Module
* =========
* 0 SFP_DA_CU
* 1 SFP_SR
* 2 SFP_LR
* 3 SFP_DA_CORE0 - 82599-specific
* 4 SFP_DA_CORE1 - 82599-specific
* 5 SFP_SR/LR_CORE0 - 82599-specific
* 6 SFP_SR/LR_CORE1 - 82599-specific
* 7 SFP_act_lmt_DA_CORE0 - 82599-specific
* 8 SFP_act_lmt_DA_CORE1 - 82599-specific
* 9 SFP_1g_cu_CORE0 - 82599-specific
* 10 SFP_1g_cu_CORE1 - 82599-specific
* 11 SFP_1g_sx_CORE0 - 82599-specific
* 12 SFP_1g_sx_CORE1 - 82599-specific
*/
if (hw->mac.type == ixgbe_mac_82598EB) {
if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
hw->phy.sfp_type = ixgbe_sfp_type_sr;
else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
hw->phy.sfp_type = ixgbe_sfp_type_lr;
else
hw->phy.sfp_type = ixgbe_sfp_type_unknown;
} else if (hw->mac.type == ixgbe_mac_82599EB) {
if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
if (hw->bus.lan_id == 0)
hw->phy.sfp_type =
ixgbe_sfp_type_da_cu_core0;
else
hw->phy.sfp_type =
ixgbe_sfp_type_da_cu_core1;
} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
hw->phy.ops.read_i2c_eeprom(
hw, IXGBE_SFF_CABLE_SPEC_COMP,
&cable_spec);
if (cable_spec &
IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
if (hw->bus.lan_id == 0)
hw->phy.sfp_type =
ixgbe_sfp_type_da_act_lmt_core0;
else
hw->phy.sfp_type =
ixgbe_sfp_type_da_act_lmt_core1;
} else {
hw->phy.sfp_type =
ixgbe_sfp_type_unknown;
}
} else if (comp_codes_10g &
(IXGBE_SFF_10GBASESR_CAPABLE |
IXGBE_SFF_10GBASELR_CAPABLE)) {
if (hw->bus.lan_id == 0)
hw->phy.sfp_type =
ixgbe_sfp_type_srlr_core0;
else
hw->phy.sfp_type =
ixgbe_sfp_type_srlr_core1;
} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
if (hw->bus.lan_id == 0)
hw->phy.sfp_type =
ixgbe_sfp_type_1g_cu_core0;
else
hw->phy.sfp_type =
ixgbe_sfp_type_1g_cu_core1;
} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
if (hw->bus.lan_id == 0)
hw->phy.sfp_type =
ixgbe_sfp_type_1g_sx_core0;
else
hw->phy.sfp_type =
ixgbe_sfp_type_1g_sx_core1;
} else {
hw->phy.sfp_type = ixgbe_sfp_type_unknown;
}
}
if (hw->phy.sfp_type != stored_sfp_type)
hw->phy.sfp_setup_needed = TRUE;
/* Determine if the SFP+ PHY is dual speed or not. */
hw->phy.multispeed_fiber = FALSE;
if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
(comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
(comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
hw->phy.multispeed_fiber = TRUE;
/* Determine PHY vendor */
if (hw->phy.type != ixgbe_phy_nl) {
hw->phy.id = identifier;
status = hw->phy.ops.read_i2c_eeprom(hw,
IXGBE_SFF_VENDOR_OUI_BYTE0,
&oui_bytes[0]);
if (status != IXGBE_SUCCESS)
goto err_read_i2c_eeprom;
status = hw->phy.ops.read_i2c_eeprom(hw,
IXGBE_SFF_VENDOR_OUI_BYTE1,
&oui_bytes[1]);
if (status != IXGBE_SUCCESS)
goto err_read_i2c_eeprom;
status = hw->phy.ops.read_i2c_eeprom(hw,
IXGBE_SFF_VENDOR_OUI_BYTE2,
&oui_bytes[2]);
if (status != IXGBE_SUCCESS)
goto err_read_i2c_eeprom;
vendor_oui =
((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
(oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
(oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
switch (vendor_oui) {
case IXGBE_SFF_VENDOR_OUI_TYCO:
if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
hw->phy.type =
ixgbe_phy_sfp_passive_tyco;
break;
case IXGBE_SFF_VENDOR_OUI_FTL:
if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
hw->phy.type = ixgbe_phy_sfp_ftl_active;
else
hw->phy.type = ixgbe_phy_sfp_ftl;
break;
case IXGBE_SFF_VENDOR_OUI_AVAGO:
hw->phy.type = ixgbe_phy_sfp_avago;
break;
case IXGBE_SFF_VENDOR_OUI_INTEL:
hw->phy.type = ixgbe_phy_sfp_intel;
break;
default:
if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
hw->phy.type =
ixgbe_phy_sfp_passive_unknown;
else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
hw->phy.type =
ixgbe_phy_sfp_active_unknown;
else
hw->phy.type = ixgbe_phy_sfp_unknown;
break;
}
}
/* Allow any DA cable vendor */
if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
IXGBE_SFF_DA_ACTIVE_CABLE)) {
status = IXGBE_SUCCESS;
goto out;
}
/* Verify supported 1G SFP modules */
if (comp_codes_10g == 0 &&
!(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
hw->phy.type = ixgbe_phy_sfp_unsupported;
status = IXGBE_ERR_SFP_NOT_SUPPORTED;
goto out;
}
/* Anything else 82598-based is supported */
if (hw->mac.type == ixgbe_mac_82598EB) {
status = IXGBE_SUCCESS;
goto out;
}
ixgbe_get_device_caps(hw, &enforce_sfp);
if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
!(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
/* Make sure we're a supported PHY type */
if (hw->phy.type == ixgbe_phy_sfp_intel) {
status = IXGBE_SUCCESS;
} else {
if (hw->allow_unsupported_sfp == TRUE) {
EWARN(hw, "WARNING: Intel (R) Network "
"Connections are quality tested "
"using Intel (R) Ethernet Optics."
" Using untested modules is not "
"supported and may cause unstable"
" operation or damage to the "
"module or the adapter. Intel "
"Corporation is not responsible "
"for any harm caused by using "
"untested modules.\n", status);
status = IXGBE_SUCCESS;
} else {
DEBUGOUT("SFP+ module not supported\n");
hw->phy.type =
ixgbe_phy_sfp_unsupported;
status = IXGBE_ERR_SFP_NOT_SUPPORTED;
}
}
} else {
status = IXGBE_SUCCESS;
}
}
out:
return status;
err_read_i2c_eeprom:
hw->phy.sfp_type = ixgbe_sfp_type_not_present;
if (hw->phy.type != ixgbe_phy_nl) {
hw->phy.id = 0;
hw->phy.type = ixgbe_phy_unknown;
}
return IXGBE_ERR_SFP_NOT_PRESENT;
}
/**
* ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
* @hw: pointer to hardware structure
* @list_offset: offset to the SFP ID list
* @data_offset: offset to the SFP data block
*
* Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
* so it returns the offsets to the phy init sequence block.
**/
s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
u16 *list_offset,
u16 *data_offset)
{
u16 sfp_id;
u16 sfp_type = hw->phy.sfp_type;
DEBUGFUNC("ixgbe_get_sfp_init_sequence_offsets");
if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
return IXGBE_ERR_SFP_NOT_SUPPORTED;
if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
return IXGBE_ERR_SFP_NOT_PRESENT;
if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
(hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
return IXGBE_ERR_SFP_NOT_SUPPORTED;
/*
* Limiting active cables and 1G Phys must be initialized as
* SR modules
*/
if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
sfp_type == ixgbe_sfp_type_1g_sx_core0)
sfp_type = ixgbe_sfp_type_srlr_core0;
else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
sfp_type == ixgbe_sfp_type_1g_sx_core1)
sfp_type = ixgbe_sfp_type_srlr_core1;
/* Read offset to PHY init contents */
if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
"eeprom read at offset %d failed",
IXGBE_PHY_INIT_OFFSET_NL);
return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
}
if ((!*list_offset) || (*list_offset == 0xFFFF))
return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
/* Shift offset to first ID word */
(*list_offset)++;
/*
* Find the matching SFP ID in the EEPROM
* and program the init sequence
*/
if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
goto err_phy;
while (sfp_id != IXGBE_PHY_INIT_END_NL) {
if (sfp_id == sfp_type) {
(*list_offset)++;
if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
goto err_phy;
if ((!*data_offset) || (*data_offset == 0xFFFF)) {
DEBUGOUT("SFP+ module not supported\n");
return IXGBE_ERR_SFP_NOT_SUPPORTED;
} else {
break;
}
} else {
(*list_offset) += 2;
if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
goto err_phy;
}
}
if (sfp_id == IXGBE_PHY_INIT_END_NL) {
DEBUGOUT("No matching SFP+ module found\n");
return IXGBE_ERR_SFP_NOT_SUPPORTED;
}
return IXGBE_SUCCESS;
err_phy:
ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
"eeprom read at offset %d failed", *list_offset);
return IXGBE_ERR_PHY;
}
/**
* ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
* @hw: pointer to hardware structure
* @byte_offset: EEPROM byte offset to read
* @eeprom_data: value read
*
* Performs byte read operation to SFP module's EEPROM over I2C interface.
**/
s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
u8 *eeprom_data)
{
DEBUGFUNC("ixgbe_read_i2c_eeprom_generic");
return hw->phy.ops.read_i2c_byte(hw, byte_offset,
IXGBE_I2C_EEPROM_DEV_ADDR,
eeprom_data);
}
/**
* ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
* @hw: pointer to hardware structure
* @byte_offset: byte offset at address 0xA2
* @eeprom_data: value read
*
* Performs byte read operation to SFP module's SFF-8472 data over I2C
**/
static s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
u8 *sff8472_data)
{
return hw->phy.ops.read_i2c_byte(hw, byte_offset,
IXGBE_I2C_EEPROM_DEV_ADDR2,
sff8472_data);
}
/**
* ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
* @hw: pointer to hardware structure
* @byte_offset: EEPROM byte offset to write
* @eeprom_data: value to write
*
* Performs byte write operation to SFP module's EEPROM over I2C interface.
**/
s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
u8 eeprom_data)
{
DEBUGFUNC("ixgbe_write_i2c_eeprom_generic");
return hw->phy.ops.write_i2c_byte(hw, byte_offset,
IXGBE_I2C_EEPROM_DEV_ADDR,
eeprom_data);
}
/**
* ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to read
* @data: value read
*
* Performs byte read operation to SFP module's EEPROM over I2C interface at
* a specified device address.
**/
s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
u8 dev_addr, u8 *data)
{
s32 status = IXGBE_SUCCESS;
u32 max_retry = 10;
u32 retry = 0;
u16 swfw_mask = 0;
bool nack = 1;
*data = 0;
DEBUGFUNC("ixgbe_read_i2c_byte_generic");
if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
swfw_mask = IXGBE_GSSR_PHY1_SM;
else
swfw_mask = IXGBE_GSSR_PHY0_SM;
do {
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
!= IXGBE_SUCCESS) {
status = IXGBE_ERR_SWFW_SYNC;
goto read_byte_out;
}
ixgbe_i2c_start(hw);
/* Device Address and write indication */
status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
ixgbe_i2c_start(hw);
/* Device Address and read indication */
status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_clock_in_i2c_byte(hw, data);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_clock_out_i2c_bit(hw, nack);
if (status != IXGBE_SUCCESS)
goto fail;
ixgbe_i2c_stop(hw);
break;
fail:
ixgbe_i2c_bus_clear(hw);
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
msec_delay(100);
retry++;
if (retry < max_retry)
DEBUGOUT("I2C byte read error - Retrying.\n");
else
DEBUGOUT("I2C byte read error.\n");
} while (retry < max_retry);
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
read_byte_out:
return status;
}
/**
* ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to write
* @data: value to write
*
* Performs byte write operation to SFP module's EEPROM over I2C interface at
* a specified device address.
**/
s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
u8 dev_addr, u8 data)
{
s32 status = IXGBE_SUCCESS;
u32 max_retry = 1;
u32 retry = 0;
u16 swfw_mask = 0;
DEBUGFUNC("ixgbe_write_i2c_byte_generic");
if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
swfw_mask = IXGBE_GSSR_PHY1_SM;
else
swfw_mask = IXGBE_GSSR_PHY0_SM;
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != IXGBE_SUCCESS) {
status = IXGBE_ERR_SWFW_SYNC;
goto write_byte_out;
}
do {
ixgbe_i2c_start(hw);
status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_clock_out_i2c_byte(hw, data);
if (status != IXGBE_SUCCESS)
goto fail;
status = ixgbe_get_i2c_ack(hw);
if (status != IXGBE_SUCCESS)
goto fail;
ixgbe_i2c_stop(hw);
break;
fail:
ixgbe_i2c_bus_clear(hw);
retry++;
if (retry < max_retry)
DEBUGOUT("I2C byte write error - Retrying.\n");
else
DEBUGOUT("I2C byte write error.\n");
} while (retry < max_retry);
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
write_byte_out:
return status;
}
/**
* ixgbe_i2c_start - Sets I2C start condition
* @hw: pointer to hardware structure
*
* Sets I2C start condition (High -> Low on SDA while SCL is High)
**/
static void ixgbe_i2c_start(struct ixgbe_hw *hw)
{
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
DEBUGFUNC("ixgbe_i2c_start");
/* Start condition must begin with data and clock high */
ixgbe_set_i2c_data(hw, &i2cctl, 1);
ixgbe_raise_i2c_clk(hw, &i2cctl);
/* Setup time for start condition (4.7us) */
usec_delay(IXGBE_I2C_T_SU_STA);
ixgbe_set_i2c_data(hw, &i2cctl, 0);
/* Hold time for start condition (4us) */
usec_delay(IXGBE_I2C_T_HD_STA);
ixgbe_lower_i2c_clk(hw, &i2cctl);
/* Minimum low period of clock is 4.7 us */
usec_delay(IXGBE_I2C_T_LOW);
}
/**
* ixgbe_i2c_stop - Sets I2C stop condition
* @hw: pointer to hardware structure
*
* Sets I2C stop condition (Low -> High on SDA while SCL is High)
**/
static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
{
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
DEBUGFUNC("ixgbe_i2c_stop");
/* Stop condition must begin with data low and clock high */
ixgbe_set_i2c_data(hw, &i2cctl, 0);
ixgbe_raise_i2c_clk(hw, &i2cctl);
/* Setup time for stop condition (4us) */
usec_delay(IXGBE_I2C_T_SU_STO);
ixgbe_set_i2c_data(hw, &i2cctl, 1);
/* bus free time between stop and start (4.7us)*/
usec_delay(IXGBE_I2C_T_BUF);
}
/**
* ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
* @hw: pointer to hardware structure
* @data: data byte to clock in
*
* Clocks in one byte data via I2C data/clock
**/
static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
{
s32 i;
bool bit = 0;
DEBUGFUNC("ixgbe_clock_in_i2c_byte");
for (i = 7; i >= 0; i--) {
ixgbe_clock_in_i2c_bit(hw, &bit);
*data |= bit << i;
}
return IXGBE_SUCCESS;
}
/**
* ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
* @hw: pointer to hardware structure
* @data: data byte clocked out
*
* Clocks out one byte data via I2C data/clock
**/
static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
{
s32 status = IXGBE_SUCCESS;
s32 i;
u32 i2cctl;
bool bit = 0;
DEBUGFUNC("ixgbe_clock_out_i2c_byte");
for (i = 7; i >= 0; i--) {
bit = (data >> i) & 0x1;
status = ixgbe_clock_out_i2c_bit(hw, bit);
if (status != IXGBE_SUCCESS)
break;
}
/* Release SDA line (set high) */
i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
i2cctl |= IXGBE_I2C_DATA_OUT;
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
IXGBE_WRITE_FLUSH(hw);
return status;
}
/**
* ixgbe_get_i2c_ack - Polls for I2C ACK
* @hw: pointer to hardware structure
*
* Clocks in/out one bit via I2C data/clock
**/
static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
{
s32 status = IXGBE_SUCCESS;
u32 i = 0;
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
u32 timeout = 10;
bool ack = 1;
DEBUGFUNC("ixgbe_get_i2c_ack");
ixgbe_raise_i2c_clk(hw, &i2cctl);
/* Minimum high period of clock is 4us */
usec_delay(IXGBE_I2C_T_HIGH);
/* Poll for ACK. Note that ACK in I2C spec is
* transition from 1 to 0 */
for (i = 0; i < timeout; i++) {
i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
ack = ixgbe_get_i2c_data(&i2cctl);
usec_delay(1);
if (ack == 0)
break;
}
if (ack == 1) {
ERROR_REPORT1(IXGBE_ERROR_POLLING,
"I2C ack was not received.\n");
status = IXGBE_ERR_I2C;
}
ixgbe_lower_i2c_clk(hw, &i2cctl);
/* Minimum low period of clock is 4.7 us */
usec_delay(IXGBE_I2C_T_LOW);
return status;
}
/**
* ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
* @hw: pointer to hardware structure
* @data: read data value
*
* Clocks in one bit via I2C data/clock
**/
static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
{
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
DEBUGFUNC("ixgbe_clock_in_i2c_bit");
ixgbe_raise_i2c_clk(hw, &i2cctl);
/* Minimum high period of clock is 4us */
usec_delay(IXGBE_I2C_T_HIGH);
i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
*data = ixgbe_get_i2c_data(&i2cctl);
ixgbe_lower_i2c_clk(hw, &i2cctl);
/* Minimum low period of clock is 4.7 us */
usec_delay(IXGBE_I2C_T_LOW);
return IXGBE_SUCCESS;
}
/**
* ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
* @hw: pointer to hardware structure
* @data: data value to write
*
* Clocks out one bit via I2C data/clock
**/
static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
{
s32 status;
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
DEBUGFUNC("ixgbe_clock_out_i2c_bit");
status = ixgbe_set_i2c_data(hw, &i2cctl, data);
if (status == IXGBE_SUCCESS) {
ixgbe_raise_i2c_clk(hw, &i2cctl);
/* Minimum high period of clock is 4us */
usec_delay(IXGBE_I2C_T_HIGH);
ixgbe_lower_i2c_clk(hw, &i2cctl);
/* Minimum low period of clock is 4.7 us.
* This also takes care of the data hold time.
*/
usec_delay(IXGBE_I2C_T_LOW);
} else {
status = IXGBE_ERR_I2C;
ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
"I2C data was not set to %X\n", data);
}
return status;
}
/**
* ixgbe_raise_i2c_clk - Raises the I2C SCL clock
* @hw: pointer to hardware structure
* @i2cctl: Current value of I2CCTL register
*
* Raises the I2C clock line '0'->'1'
**/
static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
{
u32 i = 0;
u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
u32 i2cctl_r = 0;
DEBUGFUNC("ixgbe_raise_i2c_clk");
for (i = 0; i < timeout; i++) {
*i2cctl |= IXGBE_I2C_CLK_OUT;
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
IXGBE_WRITE_FLUSH(hw);
/* SCL rise time (1000ns) */
usec_delay(IXGBE_I2C_T_RISE);
i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
if (i2cctl_r & IXGBE_I2C_CLK_IN)
break;
}
}
/**
* ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
* @hw: pointer to hardware structure
* @i2cctl: Current value of I2CCTL register
*
* Lowers the I2C clock line '1'->'0'
**/
static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
{
DEBUGFUNC("ixgbe_lower_i2c_clk");
*i2cctl &= ~IXGBE_I2C_CLK_OUT;
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
IXGBE_WRITE_FLUSH(hw);
/* SCL fall time (300ns) */
usec_delay(IXGBE_I2C_T_FALL);
}
/**
* ixgbe_set_i2c_data - Sets the I2C data bit
* @hw: pointer to hardware structure
* @i2cctl: Current value of I2CCTL register
* @data: I2C data value (0 or 1) to set
*
* Sets the I2C data bit
**/
static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
{
s32 status = IXGBE_SUCCESS;
DEBUGFUNC("ixgbe_set_i2c_data");
if (data)
*i2cctl |= IXGBE_I2C_DATA_OUT;
else
*i2cctl &= ~IXGBE_I2C_DATA_OUT;
IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
IXGBE_WRITE_FLUSH(hw);
/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
usec_delay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
/* Verify data was set correctly */
*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
if (data != ixgbe_get_i2c_data(i2cctl)) {
status = IXGBE_ERR_I2C;
ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
"Error - I2C data was not set to %X.\n",
data);
}
return status;
}
/**
* ixgbe_get_i2c_data - Reads the I2C SDA data bit
* @hw: pointer to hardware structure
* @i2cctl: Current value of I2CCTL register
*
* Returns the I2C data bit value
**/
static bool ixgbe_get_i2c_data(u32 *i2cctl)
{
bool data;
DEBUGFUNC("ixgbe_get_i2c_data");
if (*i2cctl & IXGBE_I2C_DATA_IN)
data = 1;
else
data = 0;
return data;
}
/**
* ixgbe_i2c_bus_clear - Clears the I2C bus
* @hw: pointer to hardware structure
*
* Clears the I2C bus by sending nine clock pulses.
* Used when data line is stuck low.
**/
void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
{
u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
u32 i;
DEBUGFUNC("ixgbe_i2c_bus_clear");
ixgbe_i2c_start(hw);
ixgbe_set_i2c_data(hw, &i2cctl, 1);
for (i = 0; i < 9; i++) {
ixgbe_raise_i2c_clk(hw, &i2cctl);
/* Min high period of clock is 4us */
usec_delay(IXGBE_I2C_T_HIGH);
ixgbe_lower_i2c_clk(hw, &i2cctl);
/* Min low period of clock is 4.7us*/
usec_delay(IXGBE_I2C_T_LOW);
}
ixgbe_i2c_start(hw);
/* Put the i2c bus back to default state */
ixgbe_i2c_stop(hw);
}
/**
* ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
* @hw: pointer to hardware structure
*
* Checks if the LASI temp alarm status was triggered due to overtemp
**/
s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
{
s32 status = IXGBE_SUCCESS;
u16 phy_data = 0;
DEBUGFUNC("ixgbe_tn_check_overtemp");
if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
goto out;
/* Check that the LASI temp alarm status was triggered */
hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
IXGBE_MDIO_PMA_PMD_DEV_TYPE, &phy_data);
if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
goto out;
status = IXGBE_ERR_OVERTEMP;
ERROR_REPORT1(IXGBE_ERROR_CAUTION, "Device over temperature");
out:
return status;
}