freebsd-skq/sys/dev/my/if_my.c
John Baldwin bd295e68c6 - Remove pre-new-bus code under #if 0 and some other rotted code under
#if 0.
- Use pci_enable_busmaster() to enable busmastering instead of frobbing
  the command register directly.
- Don't check to see if memory or I/O can be enabled by writing to the
  command register.  The PCI bus driver's bus_alloc_resource() method
  already checks this and will fail if it can't enable the bit.
2005-08-10 20:21:29 +00:00

1770 lines
43 KiB
C

/*-
* Written by: yen_cw@myson.com.tw
* Copyright (c) 2002 Myson Technology Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#define NBPFILTER 1
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miibus_if.h"
/*
* #define MY_USEIOSPACE
*/
static int MY_USEIOSPACE = 1;
#if (MY_USEIOSPACE)
#define MY_RES SYS_RES_IOPORT
#define MY_RID MY_PCI_LOIO
#else
#define MY_RES SYS_RES_MEMORY
#define MY_RID MY_PCI_LOMEM
#endif
#include <dev/my/if_myreg.h>
#ifndef lint
static const char rcsid[] =
"$Id: if_my.c,v 1.16 2003/04/15 06:37:25 mdodd Exp $";
#endif
/*
* Various supported device vendors/types and their names.
*/
struct my_type *my_info_tmp;
static struct my_type my_devs[] = {
{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
{0, 0, NULL}
};
/*
* Various supported PHY vendors/types and their names. Note that this driver
* will work with pretty much any MII-compliant PHY, so failure to positively
* identify the chip is not a fatal error.
*/
static struct my_type my_phys[] = {
{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
{0, 0, "<MII-compliant physical interface>"}
};
static int my_probe(device_t);
static int my_attach(device_t);
static int my_detach(device_t);
static int my_newbuf(struct my_softc *, struct my_chain_onefrag *);
static int my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
static void my_rxeof(struct my_softc *);
static void my_txeof(struct my_softc *);
static void my_txeoc(struct my_softc *);
static void my_intr(void *);
static void my_start(struct ifnet *);
static int my_ioctl(struct ifnet *, u_long, caddr_t);
static void my_init(void *);
static void my_stop(struct my_softc *);
static void my_watchdog(struct ifnet *);
static void my_shutdown(device_t);
static int my_ifmedia_upd(struct ifnet *);
static void my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static u_int16_t my_phy_readreg(struct my_softc *, int);
static void my_phy_writereg(struct my_softc *, int, int);
static void my_autoneg_xmit(struct my_softc *);
static void my_autoneg_mii(struct my_softc *, int, int);
static void my_setmode_mii(struct my_softc *, int);
static void my_getmode_mii(struct my_softc *);
static void my_setcfg(struct my_softc *, int);
static void my_setmulti(struct my_softc *);
static void my_reset(struct my_softc *);
static int my_list_rx_init(struct my_softc *);
static int my_list_tx_init(struct my_softc *);
static long my_send_cmd_to_phy(struct my_softc *, int, int);
#define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
#define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
static device_method_t my_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, my_probe),
DEVMETHOD(device_attach, my_attach),
DEVMETHOD(device_detach, my_detach),
DEVMETHOD(device_shutdown, my_shutdown),
{0, 0}
};
static driver_t my_driver = {
"my",
my_methods,
sizeof(struct my_softc)
};
static devclass_t my_devclass;
DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
MODULE_DEPEND(my, pci, 1, 1, 1);
MODULE_DEPEND(my, ether, 1, 1, 1);
static long
my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
{
long miir;
int i;
int mask, data;
MY_LOCK(sc);
/* enable MII output */
miir = CSR_READ_4(sc, MY_MANAGEMENT);
miir &= 0xfffffff0;
miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
/* send 32 1's preamble */
for (i = 0; i < 32; i++) {
/* low MDC; MDO is already high (miir) */
miir &= ~MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
/* high MDC */
miir |= MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
}
/* calculate ST+OP+PHYAD+REGAD+TA */
data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
/* sent out */
mask = 0x8000;
while (mask) {
/* low MDC, prepare MDO */
miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
if (mask & data)
miir |= MY_MASK_MIIR_MII_MDO;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
/* high MDC */
miir |= MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
DELAY(30);
/* next */
mask >>= 1;
if (mask == 0x2 && opcode == MY_OP_READ)
miir &= ~MY_MASK_MIIR_MII_WRITE;
}
MY_UNLOCK(sc);
return miir;
}
static u_int16_t
my_phy_readreg(struct my_softc * sc, int reg)
{
long miir;
int mask, data;
MY_LOCK(sc);
if (sc->my_info->my_did == MTD803ID)
data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
else {
miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
/* read data */
mask = 0x8000;
data = 0;
while (mask) {
/* low MDC */
miir &= ~MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
/* read MDI */
miir = CSR_READ_4(sc, MY_MANAGEMENT);
if (miir & MY_MASK_MIIR_MII_MDI)
data |= mask;
/* high MDC, and wait */
miir |= MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
DELAY(30);
/* next */
mask >>= 1;
}
/* low MDC */
miir &= ~MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
}
MY_UNLOCK(sc);
return (u_int16_t) data;
}
static void
my_phy_writereg(struct my_softc * sc, int reg, int data)
{
long miir;
int mask;
MY_LOCK(sc);
if (sc->my_info->my_did == MTD803ID)
CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
else {
miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
/* write data */
mask = 0x8000;
while (mask) {
/* low MDC, prepare MDO */
miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
if (mask & data)
miir |= MY_MASK_MIIR_MII_MDO;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
DELAY(1);
/* high MDC */
miir |= MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
DELAY(1);
/* next */
mask >>= 1;
}
/* low MDC */
miir &= ~MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
}
MY_UNLOCK(sc);
return;
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
my_setmulti(struct my_softc * sc)
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = {0, 0};
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
int mcnt = 0;
MY_LOCK(sc);
ifp = sc->my_ifp;
rxfilt = CSR_READ_4(sc, MY_TCRRCR);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= MY_AM;
CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
MY_UNLOCK(sc);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, MY_MAR0, 0);
CSR_WRITE_4(sc, MY_MAR1, 0);
/* now program new ones */
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
IF_ADDR_UNLOCK(ifp);
if (mcnt)
rxfilt |= MY_AM;
else
rxfilt &= ~MY_AM;
CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
MY_UNLOCK(sc);
return;
}
/*
* Initiate an autonegotiation session.
*/
static void
my_autoneg_xmit(struct my_softc * sc)
{
u_int16_t phy_sts = 0;
MY_LOCK(sc);
my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
phy_sts = my_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
my_phy_writereg(sc, PHY_BMCR, phy_sts);
MY_UNLOCK(sc);
return;
}
/*
* Invoke autonegotiation on a PHY.
*/
static void
my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
{
u_int16_t phy_sts = 0, media, advert, ability;
u_int16_t ability2 = 0;
struct ifnet *ifp;
struct ifmedia *ifm;
MY_LOCK(sc);
ifm = &sc->ifmedia;
ifp = sc->my_ifp;
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
#ifndef FORCE_AUTONEG_TFOUR
/*
* First, see if autoneg is supported. If not, there's no point in
* continuing.
*/
phy_sts = my_phy_readreg(sc, PHY_BMSR);
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
if (verbose)
if_printf(ifp, "autonegotiation not supported\n");
ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
MY_UNLOCK(sc);
return;
}
#endif
switch (flag) {
case MY_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks for
* three whole seconds after we've gone multi-user is really
* bad manners.
*/
my_autoneg_xmit(sc);
DELAY(5000000);
break;
case MY_FLAG_SCHEDDELAY:
/*
* Wait for the transmitter to go idle before starting an
* autoneg session, otherwise my_start() may clobber our
* timeout, and we don't want to allow transmission during an
* autoneg session since that can screw it up.
*/
if (sc->my_cdata.my_tx_head != NULL) {
sc->my_want_auto = 1;
MY_UNLOCK(sc);
return;
}
my_autoneg_xmit(sc);
ifp->if_timer = 5;
sc->my_autoneg = 1;
sc->my_want_auto = 0;
MY_UNLOCK(sc);
return;
case MY_FLAG_DELAYTIMEO:
ifp->if_timer = 0;
sc->my_autoneg = 0;
break;
default:
if_printf(ifp, "invalid autoneg flag: %d\n", flag);
return;
}
if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
if (verbose)
if_printf(ifp, "autoneg complete, ");
phy_sts = my_phy_readreg(sc, PHY_BMSR);
} else {
if (verbose)
if_printf(ifp, "autoneg not complete, ");
}
media = my_phy_readreg(sc, PHY_BMCR);
/* Link is good. Report modes and set duplex mode. */
if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
if (verbose)
if_printf(ifp, "link status good. ");
advert = my_phy_readreg(sc, PHY_ANAR);
ability = my_phy_readreg(sc, PHY_LPAR);
if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
(sc->my_pinfo->my_vid == LevelOnePHYID0)) {
ability2 = my_phy_readreg(sc, PHY_1000SR);
if (ability2 & PHY_1000SR_1000BTXFULL) {
advert = 0;
ability = 0;
/*
* this version did not support 1000M,
* ifm->ifm_media =
* IFM_ETHER|IFM_1000_T|IFM_FDX;
*/
ifm->ifm_media =
IFM_ETHER | IFM_100_TX | IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_1000;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 1000Mbps)\n");
} else if (ability2 & PHY_1000SR_1000BTXHALF) {
advert = 0;
ability = 0;
/*
* this version did not support 1000M,
* ifm->ifm_media = IFM_ETHER|IFM_1000_T;
*/
ifm->ifm_media = IFM_ETHER | IFM_100_TX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
media |= PHY_BMCR_1000;
printf("(half-duplex, 1000Mbps)\n");
}
}
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
ifm->ifm_media = IFM_ETHER | IFM_100_T4;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(100baseT4)\n");
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
media |= PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 10Mbps)\n");
} else if (advert) {
ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 10Mbps)\n");
}
media &= ~PHY_BMCR_AUTONEGENBL;
/* Set ASIC's duplex mode to match the PHY. */
my_phy_writereg(sc, PHY_BMCR, media);
my_setcfg(sc, media);
} else {
if (verbose)
if_printf(ifp, "no carrier\n");
}
my_init(sc);
if (sc->my_tx_pend) {
sc->my_autoneg = 0;
sc->my_tx_pend = 0;
my_start(ifp);
}
MY_UNLOCK(sc);
return;
}
/*
* To get PHY ability.
*/
static void
my_getmode_mii(struct my_softc * sc)
{
u_int16_t bmsr;
struct ifnet *ifp;
MY_LOCK(sc);
ifp = sc->my_ifp;
bmsr = my_phy_readreg(sc, PHY_BMSR);
if (bootverbose)
if_printf(ifp, "PHY status word: %x\n", bmsr);
/* fallback */
sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
if (bmsr & PHY_BMSR_10BTHALF) {
if (bootverbose)
if_printf(ifp, "10Mbps half-duplex mode supported\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
}
if (bmsr & PHY_BMSR_10BTFULL) {
if (bootverbose)
if_printf(ifp, "10Mbps full-duplex mode supported\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
}
if (bmsr & PHY_BMSR_100BTXHALF) {
if (bootverbose)
if_printf(ifp, "100Mbps half-duplex mode supported\n");
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
}
if (bmsr & PHY_BMSR_100BTXFULL) {
if (bootverbose)
if_printf(ifp, "100Mbps full-duplex mode supported\n");
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
}
/* Some also support 100BaseT4. */
if (bmsr & PHY_BMSR_100BT4) {
if (bootverbose)
if_printf(ifp, "100baseT4 mode supported\n");
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
#ifdef FORCE_AUTONEG_TFOUR
if (bootverbose)
if_printf(ifp, "forcing on autoneg support for BT4\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
#endif
}
#if 0 /* this version did not support 1000M, */
if (sc->my_pinfo->my_vid == MarvellPHYID0) {
if (bootverbose)
if_printf(ifp, "1000Mbps half-duplex mode supported\n");
ifp->if_baudrate = 1000000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
0, NULL);
if (bootverbose)
if_printf(ifp, "1000Mbps full-duplex mode supported\n");
ifp->if_baudrate = 1000000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
}
#endif
if (bmsr & PHY_BMSR_CANAUTONEG) {
if (bootverbose)
if_printf(ifp, "autoneg supported\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
}
MY_UNLOCK(sc);
return;
}
/*
* Set speed and duplex mode.
*/
static void
my_setmode_mii(struct my_softc * sc, int media)
{
u_int16_t bmcr;
struct ifnet *ifp;
MY_LOCK(sc);
ifp = sc->my_ifp;
/*
* If an autoneg session is in progress, stop it.
*/
if (sc->my_autoneg) {
if_printf(ifp, "canceling autoneg session\n");
ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0;
bmcr = my_phy_readreg(sc, PHY_BMCR);
bmcr &= ~PHY_BMCR_AUTONEGENBL;
my_phy_writereg(sc, PHY_BMCR, bmcr);
}
if_printf(ifp, "selecting MII, ");
bmcr = my_phy_readreg(sc, PHY_BMCR);
bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
#if 0 /* this version did not support 1000M, */
if (IFM_SUBTYPE(media) == IFM_1000_T) {
printf("1000Mbps/T4, half-duplex\n");
bmcr &= ~PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
bmcr |= PHY_BMCR_1000;
}
#endif
if (IFM_SUBTYPE(media) == IFM_100_T4) {
printf("100Mbps/T4, half-duplex\n");
bmcr |= PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
printf("100Mbps, ");
bmcr |= PHY_BMCR_SPEEDSEL;
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10Mbps, ");
bmcr &= ~PHY_BMCR_SPEEDSEL;
}
if ((media & IFM_GMASK) == IFM_FDX) {
printf("full duplex\n");
bmcr |= PHY_BMCR_DUPLEX;
} else {
printf("half duplex\n");
bmcr &= ~PHY_BMCR_DUPLEX;
}
my_phy_writereg(sc, PHY_BMCR, bmcr);
my_setcfg(sc, bmcr);
MY_UNLOCK(sc);
return;
}
/*
* The Myson manual states that in order to fiddle with the 'full-duplex' and
* '100Mbps' bits in the netconfig register, we first have to put the
* transmit and/or receive logic in the idle state.
*/
static void
my_setcfg(struct my_softc * sc, int bmcr)
{
int i, restart = 0;
MY_LOCK(sc);
if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
restart = 1;
MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
for (i = 0; i < MY_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, MY_TCRRCR) &
(MY_TXRUN | MY_RXRUN)))
break;
}
if (i == MY_TIMEOUT)
if_printf(sc->my_ifp,
"failed to force tx and rx to idle \n");
}
MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
if (bmcr & PHY_BMCR_1000)
MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
else if (!(bmcr & PHY_BMCR_SPEEDSEL))
MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
if (bmcr & PHY_BMCR_DUPLEX)
MY_SETBIT(sc, MY_TCRRCR, MY_FD);
else
MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
if (restart)
MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
MY_UNLOCK(sc);
return;
}
static void
my_reset(struct my_softc * sc)
{
register int i;
MY_LOCK(sc);
MY_SETBIT(sc, MY_BCR, MY_SWR);
for (i = 0; i < MY_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
break;
}
if (i == MY_TIMEOUT)
if_printf(sc->my_ifp, "reset never completed!\n");
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
MY_UNLOCK(sc);
return;
}
/*
* Probe for a Myson chip. Check the PCI vendor and device IDs against our
* list and return a device name if we find a match.
*/
static int
my_probe(device_t dev)
{
struct my_type *t;
t = my_devs;
while (t->my_name != NULL) {
if ((pci_get_vendor(dev) == t->my_vid) &&
(pci_get_device(dev) == t->my_did)) {
device_set_desc(dev, t->my_name);
my_info_tmp = t;
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia setup and
* ethernet/BPF attach.
*/
static int
my_attach(device_t dev)
{
int s, i;
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t iobase;
struct my_softc *sc;
struct ifnet *ifp;
int media = IFM_ETHER | IFM_100_TX | IFM_FDX;
unsigned int round;
caddr_t roundptr;
struct my_type *p;
u_int16_t phy_vid, phy_did, phy_sts = 0;
int rid, error = 0;
s = splimp();
sc = device_get_softc(dev);
mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
MY_LOCK(sc);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
if (my_info_tmp->my_did == MTD800ID) {
iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
if (iobase & 0x300)
MY_USEIOSPACE = 0;
}
rid = MY_RID;
sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
if (sc->my_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
sc->my_btag = rman_get_bustag(sc->my_res);
sc->my_bhandle = rman_get_bushandle(sc->my_res);
rid = 0;
sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->my_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET,
my_intr, sc, &sc->my_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
device_printf(dev, "couldn't set up irq\n");
goto fail;
}
callout_handle_init(&sc->my_stat_ch);
sc->my_info = my_info_tmp;
/* Reset the adapter. */
my_reset(sc);
/*
* Get station address
*/
for (i = 0; i < ETHER_ADDR_LEN; ++i)
eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
M_DEVBUF, M_NOWAIT);
if (sc->my_ldata_ptr == NULL) {
device_printf(dev, "no memory for list buffers!\n");
error = ENXIO;
goto fail;
}
sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
round = (uintptr_t)sc->my_ldata_ptr & 0xF;
roundptr = sc->my_ldata_ptr;
for (i = 0; i < 8; i++) {
if (round % 8) {
round++;
roundptr++;
} else
break;
}
sc->my_ldata = (struct my_list_data *) roundptr;
bzero(sc->my_ldata, sizeof(struct my_list_data));
ifp = sc->my_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = my_ioctl;
ifp->if_start = my_start;
ifp->if_watchdog = my_watchdog;
ifp->if_init = my_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
if (sc->my_info->my_did == MTD803ID)
sc->my_pinfo = my_phys;
else {
if (bootverbose)
device_printf(dev, "probing for a PHY\n");
for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
if (bootverbose)
device_printf(dev, "checking address: %d\n", i);
sc->my_phy_addr = i;
phy_sts = my_phy_readreg(sc, PHY_BMSR);
if ((phy_sts != 0) && (phy_sts != 0xffff))
break;
else
phy_sts = 0;
}
if (phy_sts) {
phy_vid = my_phy_readreg(sc, PHY_VENID);
phy_did = my_phy_readreg(sc, PHY_DEVID);
if (bootverbose) {
device_printf(dev, "found PHY at address %d, ",
sc->my_phy_addr);
printf("vendor id: %x device id: %x\n",
phy_vid, phy_did);
}
p = my_phys;
while (p->my_vid) {
if (phy_vid == p->my_vid) {
sc->my_pinfo = p;
break;
}
p++;
}
if (sc->my_pinfo == NULL)
sc->my_pinfo = &my_phys[PHY_UNKNOWN];
if (bootverbose)
device_printf(dev, "PHY type: %s\n",
sc->my_pinfo->my_name);
} else {
device_printf(dev, "MII without any phy!\n");
error = ENXIO;
goto fail;
}
}
/* Do ifmedia setup. */
ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
my_getmode_mii(sc);
my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
media = sc->ifmedia.ifm_media;
my_stop(sc);
ifmedia_set(&sc->ifmedia, media);
ether_ifattach(ifp, eaddr);
MY_UNLOCK(sc);
return (0);
fail:
MY_UNLOCK(sc);
mtx_destroy(&sc->my_mtx);
if (sc->my_ldata_ptr != NULL)
free(sc->my_ldata_ptr, M_DEVBUF);
splx(s);
return (error);
}
static int
my_detach(device_t dev)
{
struct my_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = device_get_softc(dev);
MY_LOCK(sc);
ifp = sc->my_ifp;
ether_ifdetach(ifp);
if_free(ifp);
my_stop(sc);
bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
MY_UNLOCK(sc);
splx(s);
mtx_destroy(&sc->my_mtx);
return (0);
}
/*
* Initialize the transmit descriptors.
*/
static int
my_list_tx_init(struct my_softc * sc)
{
struct my_chain_data *cd;
struct my_list_data *ld;
int i;
MY_LOCK(sc);
cd = &sc->my_cdata;
ld = sc->my_ldata;
for (i = 0; i < MY_TX_LIST_CNT; i++) {
cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
if (i == (MY_TX_LIST_CNT - 1))
cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
else
cd->my_tx_chain[i].my_nextdesc =
&cd->my_tx_chain[i + 1];
}
cd->my_tx_free = &cd->my_tx_chain[0];
cd->my_tx_tail = cd->my_tx_head = NULL;
MY_UNLOCK(sc);
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that we
* arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
my_list_rx_init(struct my_softc * sc)
{
struct my_chain_data *cd;
struct my_list_data *ld;
int i;
MY_LOCK(sc);
cd = &sc->my_cdata;
ld = sc->my_ldata;
for (i = 0; i < MY_RX_LIST_CNT; i++) {
cd->my_rx_chain[i].my_ptr =
(struct my_desc *) & ld->my_rx_list[i];
if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
MY_UNLOCK(sc);
return (ENOBUFS);
}
if (i == (MY_RX_LIST_CNT - 1)) {
cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
} else {
cd->my_rx_chain[i].my_nextdesc =
&cd->my_rx_chain[i + 1];
ld->my_rx_list[i].my_next =
vtophys(&ld->my_rx_list[i + 1]);
}
}
cd->my_rx_head = &cd->my_rx_chain[0];
MY_UNLOCK(sc);
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
{
struct mbuf *m_new = NULL;
MY_LOCK(sc);
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
if_printf(sc->my_ifp,
"no memory for rx list -- packet dropped!\n");
MY_UNLOCK(sc);
return (ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
if_printf(sc->my_ifp,
"no memory for rx list -- packet dropped!\n");
m_freem(m_new);
MY_UNLOCK(sc);
return (ENOBUFS);
}
c->my_mbuf = m_new;
c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
c->my_ptr->my_status = MY_OWNByNIC;
MY_UNLOCK(sc);
return (0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to the higher
* level protocols.
*/
static void
my_rxeof(struct my_softc * sc)
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct my_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
MY_LOCK(sc);
ifp = sc->my_ifp;
while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
& MY_OWNByNIC)) {
cur_rx = sc->my_cdata.my_rx_head;
sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
if (rxstat & MY_ES) { /* error summary: give up this rx pkt */
ifp->if_ierrors++;
cur_rx->my_ptr->my_status = MY_OWNByNIC;
continue;
}
/* No errors; receive the packet. */
total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
total_len -= ETHER_CRC_LEN;
if (total_len < MINCLSIZE) {
m = m_devget(mtod(cur_rx->my_mbuf, char *),
total_len, 0, ifp, NULL);
cur_rx->my_ptr->my_status = MY_OWNByNIC;
if (m == NULL) {
ifp->if_ierrors++;
continue;
}
} else {
m = cur_rx->my_mbuf;
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition
* and should leave the buffer in place and continue.
* This will result in a lost packet, but there's
* little else we can do in this situation.
*/
if (my_newbuf(sc, cur_rx) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->my_ptr->my_status = MY_OWNByNIC;
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
}
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's a
* broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
BPF_MTAP(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, IFP2ENADDR(sc->my_ifp),
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
#endif
MY_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
MY_LOCK(sc);
}
MY_UNLOCK(sc);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up the list
* buffers.
*/
static void
my_txeof(struct my_softc * sc)
{
struct my_chain *cur_tx;
struct ifnet *ifp;
MY_LOCK(sc);
ifp = sc->my_ifp;
/* Clear the timeout timer. */
ifp->if_timer = 0;
if (sc->my_cdata.my_tx_head == NULL) {
MY_UNLOCK(sc);
return;
}
/*
* Go through our tx list and free mbufs for those frames that have
* been transmitted.
*/
while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->my_cdata.my_tx_head;
txstat = MY_TXSTATUS(cur_tx);
if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
break;
if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
if (txstat & MY_TXERR) {
ifp->if_oerrors++;
if (txstat & MY_EC) /* excessive collision */
ifp->if_collisions++;
if (txstat & MY_LC) /* late collision */
ifp->if_collisions++;
}
ifp->if_collisions += (txstat & MY_NCRMASK) >>
MY_NCRShift;
}
ifp->if_opackets++;
m_freem(cur_tx->my_mbuf);
cur_tx->my_mbuf = NULL;
if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
sc->my_cdata.my_tx_head = NULL;
sc->my_cdata.my_tx_tail = NULL;
break;
}
sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
}
if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
}
MY_UNLOCK(sc);
return;
}
/*
* TX 'end of channel' interrupt handler.
*/
static void
my_txeoc(struct my_softc * sc)
{
struct ifnet *ifp;
MY_LOCK(sc);
ifp = sc->my_ifp;
ifp->if_timer = 0;
if (sc->my_cdata.my_tx_head == NULL) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->my_cdata.my_tx_tail = NULL;
if (sc->my_want_auto)
my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
} else {
if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
ifp->if_timer = 5;
CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
}
}
MY_UNLOCK(sc);
return;
}
static void
my_intr(void *arg)
{
struct my_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
MY_LOCK(sc);
ifp = sc->my_ifp;
if (!(ifp->if_flags & IFF_UP)) {
MY_UNLOCK(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, MY_IMR, 0x00000000);
for (;;) {
status = CSR_READ_4(sc, MY_ISR);
status &= MY_INTRS;
if (status)
CSR_WRITE_4(sc, MY_ISR, status);
else
break;
if (status & MY_RI) /* receive interrupt */
my_rxeof(sc);
if ((status & MY_RBU) || (status & MY_RxErr)) {
/* rx buffer unavailable or rx error */
ifp->if_ierrors++;
#ifdef foo
my_stop(sc);
my_reset(sc);
my_init(sc);
#endif
}
if (status & MY_TI) /* tx interrupt */
my_txeof(sc);
if (status & MY_ETI) /* tx early interrupt */
my_txeof(sc);
if (status & MY_TBU) /* tx buffer unavailable */
my_txeoc(sc);
#if 0 /* 90/1/18 delete */
if (status & MY_FBE) {
my_reset(sc);
my_init(sc);
}
#endif
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
if (ifp->if_snd.ifq_head != NULL)
my_start(ifp);
MY_UNLOCK(sc);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
{
struct my_desc *f = NULL;
int total_len;
struct mbuf *m, *m_new = NULL;
MY_LOCK(sc);
/* calculate the total tx pkt length */
total_len = 0;
for (m = m_head; m != NULL; m = m->m_next)
total_len += m->m_len;
/*
* Start packing the mbufs in this chain into the fragment pointers.
* Stop when we run out of fragments or hit the end of the mbuf
* chain.
*/
m = m_head;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
if_printf(sc->my_ifp, "no memory for tx list");
MY_UNLOCK(sc);
return (1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
if_printf(sc->my_ifp, "no memory for tx list");
MY_UNLOCK(sc);
return (1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->my_ptr->my_frag[0];
f->my_status = 0;
f->my_data = vtophys(mtod(m_new, caddr_t));
total_len = m_new->m_len;
f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
f->my_ctl |= total_len << MY_PKTShift; /* pkt size */
f->my_ctl |= total_len; /* buffer size */
/* 89/12/29 add, for mtd891 *//* [ 89? ] */
if (sc->my_info->my_did == MTD891ID)
f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
c->my_mbuf = m_head;
c->my_lastdesc = 0;
MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
MY_UNLOCK(sc);
return (0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
my_start(struct ifnet * ifp)
{
struct my_softc *sc;
struct mbuf *m_head = NULL;
struct my_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
MY_LOCK(sc);
if (sc->my_autoneg) {
sc->my_tx_pend = 1;
MY_UNLOCK(sc);
return;
}
/*
* Check for an available queue slot. If there are none, punt.
*/
if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
MY_UNLOCK(sc);
return;
}
start_tx = sc->my_cdata.my_tx_free;
while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->my_cdata.my_tx_free;
sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
/* Pack the data into the descriptor. */
my_encap(sc, cur_tx, m_head);
if (cur_tx != start_tx)
MY_TXOWN(cur_tx) = MY_OWNByNIC;
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame to
* him.
*/
BPF_MTAP(ifp, cur_tx->my_mbuf);
#endif
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL) {
MY_UNLOCK(sc);
return;
}
/*
* Place the request for the upload interrupt in the last descriptor
* in the chain. This way, if we're chaining several packets at once,
* we'll only get an interupt once for the whole chain rather than
* once for each packet.
*/
MY_TXCTL(cur_tx) |= MY_TXIC;
cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
sc->my_cdata.my_tx_tail = cur_tx;
if (sc->my_cdata.my_tx_head == NULL)
sc->my_cdata.my_tx_head = start_tx;
MY_TXOWN(start_tx) = MY_OWNByNIC;
CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF); /* tx polling demand */
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
MY_UNLOCK(sc);
return;
}
static void
my_init(void *xsc)
{
struct my_softc *sc = xsc;
struct ifnet *ifp = sc->my_ifp;
int s;
u_int16_t phy_bmcr = 0;
MY_LOCK(sc);
if (sc->my_autoneg) {
MY_UNLOCK(sc);
return;
}
s = splimp();
if (sc->my_pinfo != NULL)
phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
my_stop(sc);
my_reset(sc);
/*
* Set cache alignment and burst length.
*/
#if 0 /* 89/9/1 modify, */
CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
#endif
CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
/*
* 89/12/29 add, for mtd891,
*/
if (sc->my_info->my_did == MTD891ID) {
MY_SETBIT(sc, MY_BCR, MY_PROG);
MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
}
my_setcfg(sc, phy_bmcr);
/* Init circular RX list. */
if (my_list_rx_init(sc) == ENOBUFS) {
if_printf(ifp, "init failed: no memory for rx buffers\n");
my_stop(sc);
(void)splx(s);
MY_UNLOCK(sc);
return;
}
/* Init TX descriptors. */
my_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
else
MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST)
MY_SETBIT(sc, MY_TCRRCR, MY_AB);
else
MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
/*
* Program the multicast filter, if necessary.
*/
my_setmulti(sc);
/*
* Load the address of the RX list.
*/
MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
/* Enable receiver and transmitter. */
MY_SETBIT(sc, MY_TCRRCR, MY_RE);
MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
MY_SETBIT(sc, MY_TCRRCR, MY_TE);
/* Restore state of BMCR */
if (sc->my_pinfo != NULL)
my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
(void)splx(s);
MY_UNLOCK(sc);
return;
}
/*
* Set media options.
*/
static int
my_ifmedia_upd(struct ifnet * ifp)
{
struct my_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
MY_LOCK(sc);
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
MY_UNLOCK(sc);
return (EINVAL);
}
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
else
my_setmode_mii(sc, ifm->ifm_media);
MY_UNLOCK(sc);
return (0);
}
/*
* Report current media status.
*/
static void
my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
{
struct my_softc *sc;
u_int16_t advert = 0, ability = 0;
sc = ifp->if_softc;
MY_LOCK(sc);
ifmr->ifm_active = IFM_ETHER;
if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
#if 0 /* this version did not support 1000M, */
if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
#endif
if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
else
ifmr->ifm_active = IFM_ETHER | IFM_10_T;
if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
MY_UNLOCK(sc);
return;
}
ability = my_phy_readreg(sc, PHY_LPAR);
advert = my_phy_readreg(sc, PHY_ANAR);
#if 0 /* this version did not support 1000M, */
if (sc->my_pinfo->my_vid = MarvellPHYID0) {
ability2 = my_phy_readreg(sc, PHY_1000SR);
if (ability2 & PHY_1000SR_1000BTXFULL) {
advert = 0;
ability = 0;
ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
} else if (ability & PHY_1000SR_1000BTXHALF) {
advert = 0;
ability = 0;
ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
}
}
#endif
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
MY_UNLOCK(sc);
return;
}
static int
my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
{
struct my_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
MY_LOCK(sc);
switch (command) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP)
my_init(sc);
else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
my_stop(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
my_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
MY_UNLOCK(sc);
(void)splx(s);
return (error);
}
static void
my_watchdog(struct ifnet * ifp)
{
struct my_softc *sc;
sc = ifp->if_softc;
MY_LOCK(sc);
if (sc->my_autoneg) {
my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
MY_UNLOCK(sc);
return;
}
ifp->if_oerrors++;
if_printf(ifp, "watchdog timeout\n");
if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
if_printf(ifp, "no carrier - transceiver cable problem?\n");
my_stop(sc);
my_reset(sc);
my_init(sc);
if (ifp->if_snd.ifq_head != NULL)
my_start(ifp);
MY_LOCK(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the RX and TX lists.
*/
static void
my_stop(struct my_softc * sc)
{
register int i;
struct ifnet *ifp;
MY_LOCK(sc);
ifp = sc->my_ifp;
ifp->if_timer = 0;
MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
CSR_WRITE_4(sc, MY_IMR, 0x00000000);
CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < MY_RX_LIST_CNT; i++) {
if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
}
}
bzero((char *)&sc->my_ldata->my_rx_list,
sizeof(sc->my_ldata->my_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < MY_TX_LIST_CNT; i++) {
if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
}
}
bzero((char *)&sc->my_ldata->my_tx_list,
sizeof(sc->my_ldata->my_tx_list));
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
MY_UNLOCK(sc);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't get confused
* by errant DMAs when rebooting.
*/
static void
my_shutdown(device_t dev)
{
struct my_softc *sc;
sc = device_get_softc(dev);
my_stop(sc);
return;
}