freebsd-skq/sys/arm/at91/at91_mci.c

1415 lines
41 KiB
C

/*-
* Copyright (c) 2006 Bernd Walter. All rights reserved.
* Copyright (c) 2006 M. Warner Losh. All rights reserved.
* Copyright (c) 2010 Greg Ansley. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_platform.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/watchdog.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/resource.h>
#include <machine/intr.h>
#include <arm/at91/at91var.h>
#include <arm/at91/at91_mcireg.h>
#include <arm/at91/at91_pdcreg.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmcbrvar.h>
#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#endif
#include "mmcbr_if.h"
#include "opt_at91.h"
/*
* About running the MCI bus above 25MHz
*
* Historically, the MCI bus has been run at 30MHz on systems with a 60MHz
* master clock, in part due to a bug in dev/mmc.c making always request
* 30MHz, and in part over clocking the bus because 15MHz was too slow.
* Fixing that bug causes the mmc driver to request a 25MHz clock (as it
* should) and the logic in at91_mci_update_ios() picks the highest speed that
* doesn't exceed that limit. With a 60MHz MCK that would be 15MHz, and
* that's a real performance buzzkill when you've been getting away with 30MHz
* all along.
*
* By defining AT91_MCI_ALLOW_OVERCLOCK (or setting the allow_overclock=1
* device hint or sysctl) you can enable logic in at91_mci_update_ios() to
* overlcock the SD bus a little by running it at MCK / 2 when the requested
* speed is 25MHz and the next highest speed is 15MHz or less. This appears
* to work on virtually all SD cards, since it is what this driver has been
* doing prior to the introduction of this option, where the overclocking vs
* underclocking decision was automaticly "overclock". Modern SD cards can
* run at 45mhz/1-bit in standard mode (high speed mode enable commands not
* sent) without problems.
*
* Speaking of high-speed mode, the rm9200 manual says the MCI device supports
* the SD v1.0 specification and can run up to 50MHz. This is interesting in
* that the SD v1.0 spec caps the speed at 25MHz; high speed mode was added in
* the v1.10 spec. Furthermore, high speed mode doesn't just crank up the
* clock, it alters the signal timing. The rm9200 MCI device doesn't support
* these altered timings. So while speeds over 25MHz may work, they only work
* in what the SD spec calls "default" speed mode, and it amounts to violating
* the spec by overclocking the bus.
*
* If you also enable 4-wire mode it's possible transfers faster than 25MHz
* will fail. On the AT91RM9200, due to bugs in the bus contention logic, if
* you have the USB host device and OHCI driver enabled will fail. Even
* underclocking to 15MHz, intermittant overrun and underrun errors occur.
* Note that you don't even need to have usb devices attached to the system,
* the errors begin to occur as soon as the OHCI driver sets the register bit
* to enable periodic transfers. It appears (based on brief investigation)
* that the usb host controller uses so much ASB bandwidth that sometimes the
* DMA for MCI transfers doesn't get a bus grant in time and data gets
* dropped. Adding even a modicum of network activity changes the symptom
* from intermittant to very frequent. Members of the AT91SAM9 family have
* corrected this problem, or are at least better about their use of the bus.
*/
#ifndef AT91_MCI_ALLOW_OVERCLOCK
#define AT91_MCI_ALLOW_OVERCLOCK 1
#endif
/*
* Allocate 2 bounce buffers we'll use to endian-swap the data due to the rm9200
* erratum. We use a pair of buffers because when reading that lets us begin
* endian-swapping the data in the first buffer while the DMA is reading into
* the second buffer. (We can't use the same trick for writing because we might
* not get all the data in the 2nd buffer swapped before the hardware needs it;
* dealing with that would add complexity to the driver.)
*
* The buffers are sized at 16K each due to the way the busdma cache sync
* operations work on arm. A dcache_inv_range() operation on a range larger
* than 16K gets turned into a dcache_wbinv_all(). That needlessly flushes the
* entire data cache, impacting overall system performance.
*/
#define BBCOUNT 2
#define BBSIZE (16*1024)
#define MAX_BLOCKS ((BBSIZE*BBCOUNT)/512)
static int mci_debug;
struct at91_mci_softc {
void *intrhand; /* Interrupt handle */
device_t dev;
int sc_cap;
#define CAP_HAS_4WIRE 1 /* Has 4 wire bus */
#define CAP_NEEDS_BYTESWAP 2 /* broken hardware needing bounce */
#define CAP_MCI1_REV2XX 4 /* MCI 1 rev 2.x */
int flags;
#define PENDING_CMD 0x01
#define PENDING_STOP 0x02
#define CMD_MULTIREAD 0x10
#define CMD_MULTIWRITE 0x20
int has_4wire;
int allow_overclock;
struct resource *irq_res; /* IRQ resource */
struct resource *mem_res; /* Memory resource */
struct mtx sc_mtx;
bus_dma_tag_t dmatag;
struct mmc_host host;
int bus_busy;
struct mmc_request *req;
struct mmc_command *curcmd;
bus_dmamap_t bbuf_map[BBCOUNT];
char * bbuf_vaddr[BBCOUNT]; /* bounce bufs in KVA space */
uint32_t bbuf_len[BBCOUNT]; /* len currently queued for bounce buf */
uint32_t bbuf_curidx; /* which bbuf is the active DMA buffer */
uint32_t xfer_offset; /* offset so far into caller's buf */
};
/* bus entry points */
static int at91_mci_probe(device_t dev);
static int at91_mci_attach(device_t dev);
static int at91_mci_detach(device_t dev);
static void at91_mci_intr(void *);
/* helper routines */
static int at91_mci_activate(device_t dev);
static void at91_mci_deactivate(device_t dev);
static int at91_mci_is_mci1rev2xx(void);
#define AT91_MCI_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define AT91_MCI_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define AT91_MCI_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \
"mci", MTX_DEF)
#define AT91_MCI_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define AT91_MCI_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define AT91_MCI_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
static inline uint32_t
RD4(struct at91_mci_softc *sc, bus_size_t off)
{
return (bus_read_4(sc->mem_res, off));
}
static inline void
WR4(struct at91_mci_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->mem_res, off, val);
}
static void
at91_bswap_buf(struct at91_mci_softc *sc, void * dptr, void * sptr, uint32_t memsize)
{
uint32_t * dst = (uint32_t *)dptr;
uint32_t * src = (uint32_t *)sptr;
uint32_t i;
/*
* If the hardware doesn't need byte-swapping, let bcopy() do the
* work. Use bounce buffer even if we don't need byteswap, since
* buffer may straddle a page boundry, and we don't handle
* multi-segment transfers in hardware. Seen from 'bsdlabel -w' which
* uses raw geom access to the volume. Greg Ansley (gja (at)
* ansley.com)
*/
if (!(sc->sc_cap & CAP_NEEDS_BYTESWAP)) {
memcpy(dptr, sptr, memsize);
return;
}
/*
* Nice performance boost for slightly unrolling this loop.
* (But very little extra boost for further unrolling it.)
*/
for (i = 0; i < memsize; i += 16) {
*dst++ = bswap32(*src++);
*dst++ = bswap32(*src++);
*dst++ = bswap32(*src++);
*dst++ = bswap32(*src++);
}
/* Mop up the last 1-3 words, if any. */
for (i = 0; i < (memsize & 0x0F); i += 4) {
*dst++ = bswap32(*src++);
}
}
static void
at91_mci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static void
at91_mci_pdc_disable(struct at91_mci_softc *sc)
{
WR4(sc, PDC_PTCR, PDC_PTCR_TXTDIS | PDC_PTCR_RXTDIS);
WR4(sc, PDC_RPR, 0);
WR4(sc, PDC_RCR, 0);
WR4(sc, PDC_RNPR, 0);
WR4(sc, PDC_RNCR, 0);
WR4(sc, PDC_TPR, 0);
WR4(sc, PDC_TCR, 0);
WR4(sc, PDC_TNPR, 0);
WR4(sc, PDC_TNCR, 0);
}
/*
* Reset the controller, then restore most of the current state.
*
* This is called after detecting an error. It's also called after stopping a
* multi-block write, to un-wedge the device so that it will handle the NOTBUSY
* signal correctly. See comments in at91_mci_stop_done() for more details.
*/
static void at91_mci_reset(struct at91_mci_softc *sc)
{
uint32_t mr;
uint32_t sdcr;
uint32_t dtor;
uint32_t imr;
at91_mci_pdc_disable(sc);
/* save current state */
imr = RD4(sc, MCI_IMR);
mr = RD4(sc, MCI_MR) & 0x7fff;
sdcr = RD4(sc, MCI_SDCR);
dtor = RD4(sc, MCI_DTOR);
/* reset the controller */
WR4(sc, MCI_IDR, 0xffffffff);
WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST);
/* restore state */
WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN);
WR4(sc, MCI_MR, mr);
WR4(sc, MCI_SDCR, sdcr);
WR4(sc, MCI_DTOR, dtor);
WR4(sc, MCI_IER, imr);
/*
* Make sure sdio interrupts will fire. Not sure why reading
* SR ensures that, but this is in the linux driver.
*/
RD4(sc, MCI_SR);
}
static void
at91_mci_init(device_t dev)
{
struct at91_mci_softc *sc = device_get_softc(dev);
uint32_t val;
WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST); /* device into reset */
WR4(sc, MCI_IDR, 0xffffffff); /* Turn off interrupts */
WR4(sc, MCI_DTOR, MCI_DTOR_DTOMUL_1M | 1);
val = MCI_MR_PDCMODE;
val |= 0x34a; /* PWSDIV = 3; CLKDIV = 74 */
// if (sc->sc_cap & CAP_MCI1_REV2XX)
// val |= MCI_MR_RDPROOF | MCI_MR_WRPROOF;
WR4(sc, MCI_MR, val);
#ifndef AT91_MCI_SLOT_B
WR4(sc, MCI_SDCR, 0); /* SLOT A, 1 bit bus */
#else
/*
* XXX Really should add second "unit" but nobody using using
* a two slot card that we know of. XXX
*/
WR4(sc, MCI_SDCR, 1); /* SLOT B, 1 bit bus */
#endif
/*
* Enable controller, including power-save. The slower clock
* of the power-save mode is only in effect when there is no
* transfer in progress, so it can be left in this mode all
* the time.
*/
WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN);
}
static void
at91_mci_fini(device_t dev)
{
struct at91_mci_softc *sc = device_get_softc(dev);
WR4(sc, MCI_IDR, 0xffffffff); /* Turn off interrupts */
at91_mci_pdc_disable(sc);
WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST); /* device into reset */
}
static int
at91_mci_probe(device_t dev)
{
#ifdef FDT
if (!ofw_bus_is_compatible(dev, "atmel,hsmci"))
return (ENXIO);
#endif
device_set_desc(dev, "MCI mmc/sd host bridge");
return (0);
}
static int
at91_mci_attach(device_t dev)
{
struct at91_mci_softc *sc = device_get_softc(dev);
struct sysctl_ctx_list *sctx;
struct sysctl_oid *soid;
device_t child;
int err, i;
sctx = device_get_sysctl_ctx(dev);
soid = device_get_sysctl_tree(dev);
sc->dev = dev;
sc->sc_cap = 0;
if (at91_is_rm92())
sc->sc_cap |= CAP_NEEDS_BYTESWAP;
/*
* MCI1 Rev 2 controllers need some workarounds, flag if so.
*/
if (at91_mci_is_mci1rev2xx())
sc->sc_cap |= CAP_MCI1_REV2XX;
err = at91_mci_activate(dev);
if (err)
goto out;
AT91_MCI_LOCK_INIT(sc);
at91_mci_fini(dev);
at91_mci_init(dev);
/*
* Allocate DMA tags and maps and bounce buffers.
*
* The parms in the tag_create call cause the dmamem_alloc call to
* create each bounce buffer as a single contiguous buffer of BBSIZE
* bytes aligned to a 4096 byte boundary.
*
* Do not use DMA_COHERENT for these buffers because that maps the
* memory as non-cachable, which prevents cache line burst fills/writes,
* which is something we need since we're trying to overlap the
* byte-swapping with the DMA operations.
*/
err = bus_dma_tag_create(bus_get_dma_tag(dev), 4096, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
BBSIZE, 1, BBSIZE, 0, NULL, NULL, &sc->dmatag);
if (err != 0)
goto out;
for (i = 0; i < BBCOUNT; ++i) {
err = bus_dmamem_alloc(sc->dmatag, (void **)&sc->bbuf_vaddr[i],
BUS_DMA_NOWAIT, &sc->bbuf_map[i]);
if (err != 0)
goto out;
}
/*
* Activate the interrupt
*/
err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, at91_mci_intr, sc, &sc->intrhand);
if (err) {
AT91_MCI_LOCK_DESTROY(sc);
goto out;
}
/*
* Allow 4-wire to be initially set via #define.
* Allow a device hint to override that.
* Allow a sysctl to override that.
*/
#if defined(AT91_MCI_HAS_4WIRE) && AT91_MCI_HAS_4WIRE != 0
sc->has_4wire = 1;
#endif
resource_int_value(device_get_name(dev), device_get_unit(dev),
"4wire", &sc->has_4wire);
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "4wire",
CTLFLAG_RW, &sc->has_4wire, 0, "has 4 wire SD Card bus");
if (sc->has_4wire)
sc->sc_cap |= CAP_HAS_4WIRE;
sc->allow_overclock = AT91_MCI_ALLOW_OVERCLOCK;
resource_int_value(device_get_name(dev), device_get_unit(dev),
"allow_overclock", &sc->allow_overclock);
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "allow_overclock",
CTLFLAG_RW, &sc->allow_overclock, 0,
"Allow up to 30MHz clock for 25MHz request when next highest speed 15MHz or less.");
/*
* Our real min freq is master_clock/512, but upper driver layers are
* going to set the min speed during card discovery, and the right speed
* for that is 400kHz, so advertise a safe value just under that.
*
* For max speed, while the rm9200 manual says the max is 50mhz, it also
* says it supports only the SD v1.0 spec, which means the real limit is
* 25mhz. On the other hand, historical use has been to slightly violate
* the standard by running the bus at 30MHz. For more information on
* that, see the comments at the top of this file.
*/
sc->host.f_min = 375000;
sc->host.f_max = at91_master_clock / 2;
if (sc->host.f_max > 25000000)
sc->host.f_max = 25000000;
sc->host.host_ocr = MMC_OCR_320_330 | MMC_OCR_330_340;
sc->host.caps = 0;
if (sc->sc_cap & CAP_HAS_4WIRE)
sc->host.caps |= MMC_CAP_4_BIT_DATA;
child = device_add_child(dev, "mmc", 0);
device_set_ivars(dev, &sc->host);
err = bus_generic_attach(dev);
out:
if (err)
at91_mci_deactivate(dev);
return (err);
}
static int
at91_mci_detach(device_t dev)
{
struct at91_mci_softc *sc = device_get_softc(dev);
at91_mci_fini(dev);
at91_mci_deactivate(dev);
bus_dmamem_free(sc->dmatag, sc->bbuf_vaddr[0], sc->bbuf_map[0]);
bus_dmamem_free(sc->dmatag, sc->bbuf_vaddr[1], sc->bbuf_map[1]);
bus_dma_tag_destroy(sc->dmatag);
return (EBUSY); /* XXX */
}
static int
at91_mci_activate(device_t dev)
{
struct at91_mci_softc *sc;
int rid;
sc = device_get_softc(dev);
rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->mem_res == NULL)
goto errout;
rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res == NULL)
goto errout;
return (0);
errout:
at91_mci_deactivate(dev);
return (ENOMEM);
}
static void
at91_mci_deactivate(device_t dev)
{
struct at91_mci_softc *sc;
sc = device_get_softc(dev);
if (sc->intrhand)
bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
sc->intrhand = 0;
bus_generic_detach(sc->dev);
if (sc->mem_res)
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(sc->mem_res), sc->mem_res);
sc->mem_res = 0;
if (sc->irq_res)
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->irq_res), sc->irq_res);
sc->irq_res = 0;
return;
}
static int
at91_mci_is_mci1rev2xx(void)
{
switch (soc_info.type) {
case AT91_T_SAM9260:
case AT91_T_SAM9263:
case AT91_T_CAP9:
case AT91_T_SAM9G10:
case AT91_T_SAM9G20:
case AT91_T_SAM9RL:
return(1);
default:
return (0);
}
}
static int
at91_mci_update_ios(device_t brdev, device_t reqdev)
{
struct at91_mci_softc *sc;
struct mmc_ios *ios;
uint32_t clkdiv;
uint32_t freq;
sc = device_get_softc(brdev);
ios = &sc->host.ios;
/*
* Calculate our closest available clock speed that doesn't exceed the
* requested speed.
*
* When overclocking is allowed, the requested clock is 25MHz, the
* computed frequency is 15MHz or smaller and clockdiv is 1, use
* clockdiv of 0 to double that. If less than 12.5MHz, double
* regardless of the overclocking setting.
*
* Whatever we come up with, store it back into ios->clock so that the
* upper layer drivers can report the actual speed of the bus.
*/
if (ios->clock == 0) {
WR4(sc, MCI_CR, MCI_CR_MCIDIS);
clkdiv = 0;
} else {
WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN);
if ((at91_master_clock % (ios->clock * 2)) == 0)
clkdiv = ((at91_master_clock / ios->clock) / 2) - 1;
else
clkdiv = (at91_master_clock / ios->clock) / 2;
freq = at91_master_clock / ((clkdiv+1) * 2);
if (clkdiv == 1 && ios->clock == 25000000 && freq <= 15000000) {
if (sc->allow_overclock || freq <= 12500000) {
clkdiv = 0;
freq = at91_master_clock / ((clkdiv+1) * 2);
}
}
ios->clock = freq;
}
if (ios->bus_width == bus_width_4)
WR4(sc, MCI_SDCR, RD4(sc, MCI_SDCR) | MCI_SDCR_SDCBUS);
else
WR4(sc, MCI_SDCR, RD4(sc, MCI_SDCR) & ~MCI_SDCR_SDCBUS);
WR4(sc, MCI_MR, (RD4(sc, MCI_MR) & ~MCI_MR_CLKDIV) | clkdiv);
/* Do we need a settle time here? */
/* XXX We need to turn the device on/off here with a GPIO pin */
return (0);
}
static void
at91_mci_start_cmd(struct at91_mci_softc *sc, struct mmc_command *cmd)
{
uint32_t cmdr, mr;
struct mmc_data *data;
sc->curcmd = cmd;
data = cmd->data;
/* XXX Upper layers don't always set this */
cmd->mrq = sc->req;
/* Begin setting up command register. */
cmdr = cmd->opcode;
if (sc->host.ios.bus_mode == opendrain)
cmdr |= MCI_CMDR_OPDCMD;
/* Set up response handling. Allow max timeout for responses. */
if (MMC_RSP(cmd->flags) == MMC_RSP_NONE)
cmdr |= MCI_CMDR_RSPTYP_NO;
else {
cmdr |= MCI_CMDR_MAXLAT;
if (cmd->flags & MMC_RSP_136)
cmdr |= MCI_CMDR_RSPTYP_136;
else
cmdr |= MCI_CMDR_RSPTYP_48;
}
/*
* If there is no data transfer, just set up the right interrupt mask
* and start the command.
*
* The interrupt mask needs to be CMDRDY plus all non-data-transfer
* errors. It's important to leave the transfer-related errors out, to
* avoid spurious timeout or crc errors on a STOP command following a
* multiblock read. When a multiblock read is in progress, sending a
* STOP in the middle of a block occasionally triggers such errors, but
* we're totally disinterested in them because we've already gotten all
* the data we wanted without error before sending the STOP command.
*/
if (data == NULL) {
uint32_t ier = MCI_SR_CMDRDY |
MCI_SR_RTOE | MCI_SR_RENDE |
MCI_SR_RCRCE | MCI_SR_RDIRE | MCI_SR_RINDE;
at91_mci_pdc_disable(sc);
if (cmd->opcode == MMC_STOP_TRANSMISSION)
cmdr |= MCI_CMDR_TRCMD_STOP;
/* Ignore response CRC on CMD2 and ACMD41, per standard. */
if (cmd->opcode == MMC_SEND_OP_COND ||
cmd->opcode == ACMD_SD_SEND_OP_COND)
ier &= ~MCI_SR_RCRCE;
if (mci_debug)
printf("CMDR %x (opcode %d) ARGR %x no data\n",
cmdr, cmd->opcode, cmd->arg);
WR4(sc, MCI_ARGR, cmd->arg);
WR4(sc, MCI_CMDR, cmdr);
WR4(sc, MCI_IDR, 0xffffffff);
WR4(sc, MCI_IER, ier);
return;
}
/* There is data, set up the transfer-related parts of the command. */
if (data->flags & MMC_DATA_READ)
cmdr |= MCI_CMDR_TRDIR;
if (data->flags & (MMC_DATA_READ | MMC_DATA_WRITE))
cmdr |= MCI_CMDR_TRCMD_START;
if (data->flags & MMC_DATA_STREAM)
cmdr |= MCI_CMDR_TRTYP_STREAM;
else if (data->flags & MMC_DATA_MULTI) {
cmdr |= MCI_CMDR_TRTYP_MULTIPLE;
sc->flags |= (data->flags & MMC_DATA_READ) ?
CMD_MULTIREAD : CMD_MULTIWRITE;
}
/*
* Disable PDC until we're ready.
*
* Set block size and turn on PDC mode for dma xfer.
* Note that the block size is the smaller of the amount of data to be
* transferred, or 512 bytes. The 512 size is fixed by the standard;
* smaller blocks are possible, but never larger.
*/
WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS);
mr = RD4(sc,MCI_MR) & ~MCI_MR_BLKLEN;
mr |= min(data->len, 512) << 16;
WR4(sc, MCI_MR, mr | MCI_MR_PDCMODE|MCI_MR_PDCPADV);
/*
* Set up DMA.
*
* Use bounce buffers even if we don't need to byteswap, because doing
* multi-block IO with large DMA buffers is way fast (compared to
* single-block IO), even after incurring the overhead of also copying
* from/to the caller's buffers (which may be in non-contiguous physical
* pages).
*
* In an ideal non-byteswap world we could create a dma tag that allows
* for discontiguous segments and do the IO directly from/to the
* caller's buffer(s), using ENDRX/ENDTX interrupts to chain the
* discontiguous buffers through the PDC. Someday.
*
* If a read is bigger than 2k, split it in half so that we can start
* byte-swapping the first half while the second half is on the wire.
* It would be best if we could split it into 8k chunks, but we can't
* always keep up with the byte-swapping due to other system activity,
* and if an RXBUFF interrupt happens while we're still handling the
* byte-swap from the prior buffer (IE, we haven't returned from
* handling the prior interrupt yet), then data will get dropped on the
* floor and we can't easily recover from that. The right fix for that
* would be to have the interrupt handling only keep the DMA flowing and
* enqueue filled buffers to be byte-swapped in a non-interrupt context.
* Even that won't work on the write side of things though; in that
* context we have to have all the data ready to go before starting the
* dma.
*
* XXX what about stream transfers?
*/
sc->xfer_offset = 0;
sc->bbuf_curidx = 0;
if (data->flags & (MMC_DATA_READ | MMC_DATA_WRITE)) {
uint32_t len;
uint32_t remaining = data->len;
bus_addr_t paddr;
int err;
if (remaining > (BBCOUNT*BBSIZE))
panic("IO read size exceeds MAXDATA\n");
if (data->flags & MMC_DATA_READ) {
if (remaining > 2048) // XXX
len = remaining / 2;
else
len = remaining;
err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[0],
sc->bbuf_vaddr[0], len, at91_mci_getaddr,
&paddr, BUS_DMA_NOWAIT);
if (err != 0)
panic("IO read dmamap_load failed\n");
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[0],
BUS_DMASYNC_PREREAD);
WR4(sc, PDC_RPR, paddr);
WR4(sc, PDC_RCR, len / 4);
sc->bbuf_len[0] = len;
remaining -= len;
if (remaining == 0) {
sc->bbuf_len[1] = 0;
} else {
len = remaining;
err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[1],
sc->bbuf_vaddr[1], len, at91_mci_getaddr,
&paddr, BUS_DMA_NOWAIT);
if (err != 0)
panic("IO read dmamap_load failed\n");
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[1],
BUS_DMASYNC_PREREAD);
WR4(sc, PDC_RNPR, paddr);
WR4(sc, PDC_RNCR, len / 4);
sc->bbuf_len[1] = len;
remaining -= len;
}
WR4(sc, PDC_PTCR, PDC_PTCR_RXTEN);
} else {
len = min(BBSIZE, remaining);
/*
* If this is MCI1 revision 2xx controller, apply
* a work-around for the "Data Write Operation and
* number of bytes" erratum.
*/
if ((sc->sc_cap & CAP_MCI1_REV2XX) && len < 12) {
len = 12;
memset(sc->bbuf_vaddr[0], 0, 12);
}
at91_bswap_buf(sc, sc->bbuf_vaddr[0], data->data, len);
err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[0],
sc->bbuf_vaddr[0], len, at91_mci_getaddr,
&paddr, BUS_DMA_NOWAIT);
if (err != 0)
panic("IO write dmamap_load failed\n");
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[0],
BUS_DMASYNC_PREWRITE);
WR4(sc, PDC_TPR,paddr);
WR4(sc, PDC_TCR, len / 4);
sc->bbuf_len[0] = len;
remaining -= len;
if (remaining == 0) {
sc->bbuf_len[1] = 0;
} else {
len = remaining;
at91_bswap_buf(sc, sc->bbuf_vaddr[1],
((char *)data->data)+BBSIZE, len);
err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[1],
sc->bbuf_vaddr[1], len, at91_mci_getaddr,
&paddr, BUS_DMA_NOWAIT);
if (err != 0)
panic("IO write dmamap_load failed\n");
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[1],
BUS_DMASYNC_PREWRITE);
WR4(sc, PDC_TNPR, paddr);
WR4(sc, PDC_TNCR, len / 4);
sc->bbuf_len[1] = len;
remaining -= len;
}
/* do not enable PDC xfer until CMDRDY asserted */
}
data->xfer_len = 0; /* XXX what's this? appears to be unused. */
}
if (mci_debug)
printf("CMDR %x (opcode %d) ARGR %x with data len %d\n",
cmdr, cmd->opcode, cmd->arg, cmd->data->len);
WR4(sc, MCI_ARGR, cmd->arg);
WR4(sc, MCI_CMDR, cmdr);
WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_CMDRDY);
}
static void
at91_mci_next_operation(struct at91_mci_softc *sc)
{
struct mmc_request *req;
req = sc->req;
if (req == NULL)
return;
if (sc->flags & PENDING_CMD) {
sc->flags &= ~PENDING_CMD;
at91_mci_start_cmd(sc, req->cmd);
return;
} else if (sc->flags & PENDING_STOP) {
sc->flags &= ~PENDING_STOP;
at91_mci_start_cmd(sc, req->stop);
return;
}
WR4(sc, MCI_IDR, 0xffffffff);
sc->req = NULL;
sc->curcmd = NULL;
//printf("req done\n");
req->done(req);
}
static int
at91_mci_request(device_t brdev, device_t reqdev, struct mmc_request *req)
{
struct at91_mci_softc *sc = device_get_softc(brdev);
AT91_MCI_LOCK(sc);
if (sc->req != NULL) {
AT91_MCI_UNLOCK(sc);
return (EBUSY);
}
//printf("new req\n");
sc->req = req;
sc->flags = PENDING_CMD;
if (sc->req->stop)
sc->flags |= PENDING_STOP;
at91_mci_next_operation(sc);
AT91_MCI_UNLOCK(sc);
return (0);
}
static int
at91_mci_get_ro(device_t brdev, device_t reqdev)
{
return (0);
}
static int
at91_mci_acquire_host(device_t brdev, device_t reqdev)
{
struct at91_mci_softc *sc = device_get_softc(brdev);
int err = 0;
AT91_MCI_LOCK(sc);
while (sc->bus_busy)
msleep(sc, &sc->sc_mtx, PZERO, "mciah", hz / 5);
sc->bus_busy++;
AT91_MCI_UNLOCK(sc);
return (err);
}
static int
at91_mci_release_host(device_t brdev, device_t reqdev)
{
struct at91_mci_softc *sc = device_get_softc(brdev);
AT91_MCI_LOCK(sc);
sc->bus_busy--;
wakeup(sc);
AT91_MCI_UNLOCK(sc);
return (0);
}
static void
at91_mci_read_done(struct at91_mci_softc *sc, uint32_t sr)
{
struct mmc_command *cmd = sc->curcmd;
char * dataptr = (char *)cmd->data->data;
uint32_t curidx = sc->bbuf_curidx;
uint32_t len = sc->bbuf_len[curidx];
/*
* We arrive here when a DMA transfer for a read is done, whether it's
* a single or multi-block read.
*
* We byte-swap the buffer that just completed, and if that is the
* last buffer that's part of this read then we move on to the next
* operation, otherwise we wait for another ENDRX for the next bufer.
*/
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[curidx], BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->dmatag, sc->bbuf_map[curidx]);
at91_bswap_buf(sc, dataptr + sc->xfer_offset, sc->bbuf_vaddr[curidx], len);
if (mci_debug) {
printf("read done sr %x curidx %d len %d xfer_offset %d\n",
sr, curidx, len, sc->xfer_offset);
}
sc->xfer_offset += len;
sc->bbuf_curidx = !curidx; /* swap buffers */
/*
* If we've transferred all the data, move on to the next operation.
*
* If we're still transferring the last buffer, RNCR is already zero but
* we have to write a zero anyway to clear the ENDRX status so we don't
* re-interrupt until the last buffer is done.
*/
if (sc->xfer_offset == cmd->data->len) {
WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS);
cmd->error = MMC_ERR_NONE;
at91_mci_next_operation(sc);
} else {
WR4(sc, PDC_RNCR, 0);
WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_ENDRX);
}
}
static void
at91_mci_write_done(struct at91_mci_softc *sc, uint32_t sr)
{
struct mmc_command *cmd = sc->curcmd;
/*
* We arrive here when the entire DMA transfer for a write is done,
* whether it's a single or multi-block write. If it's multi-block we
* have to immediately move on to the next operation which is to send
* the stop command. If it's a single-block transfer we need to wait
* for NOTBUSY, but if that's already asserted we can avoid another
* interrupt and just move on to completing the request right away.
*/
WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS);
bus_dmamap_sync(sc->dmatag, sc->bbuf_map[sc->bbuf_curidx],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->dmatag, sc->bbuf_map[sc->bbuf_curidx]);
if ((cmd->data->flags & MMC_DATA_MULTI) || (sr & MCI_SR_NOTBUSY)) {
cmd->error = MMC_ERR_NONE;
at91_mci_next_operation(sc);
} else {
WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY);
}
}
static void
at91_mci_notbusy(struct at91_mci_softc *sc)
{
struct mmc_command *cmd = sc->curcmd;
/*
* We arrive here by either completion of a single-block write, or
* completion of the stop command that ended a multi-block write (and,
* I suppose, after a card-select or erase, but I haven't tested
* those). Anyway, we're done and it's time to move on to the next
* command.
*/
cmd->error = MMC_ERR_NONE;
at91_mci_next_operation(sc);
}
static void
at91_mci_stop_done(struct at91_mci_softc *sc, uint32_t sr)
{
struct mmc_command *cmd = sc->curcmd;
/*
* We arrive here after receiving CMDRDY for a MMC_STOP_TRANSMISSION
* command. Depending on the operation being stopped, we may have to
* do some unusual things to work around hardware bugs.
*/
/*
* This is known to be true of at91rm9200 hardware; it may or may not
* apply to more recent chips:
*
* After stopping a multi-block write, the NOTBUSY bit in MCI_SR does
* not properly reflect the actual busy state of the card as signaled
* on the DAT0 line; it always claims the card is not-busy. If we
* believe that and let operations continue, following commands will
* fail with response timeouts (except of course MMC_SEND_STATUS -- it
* indicates the card is busy in the PRG state, which was the smoking
* gun that showed MCI_SR NOTBUSY was not tracking DAT0 correctly).
*
* The atmel docs are emphatic: "This flag [NOTBUSY] must be used only
* for Write Operations." I guess technically since we sent a stop
* it's not a write operation anymore. But then just what did they
* think it meant for the stop command to have "...an optional busy
* signal transmitted on the data line" according to the SD spec?
*
* I tried a variety of things to un-wedge the MCI and get the status
* register to reflect NOTBUSY correctly again, but the only thing
* that worked was a full device reset. It feels like an awfully big
* hammer, but doing a full reset after every multiblock write is
* still faster than doing single-block IO (by almost two orders of
* magnitude: 20KB/sec improves to about 1.8MB/sec best case).
*
* After doing the reset, wait for a NOTBUSY interrupt before
* continuing with the next operation.
*
* This workaround breaks multiwrite on the rev2xx parts, but some other
* workaround is needed.
*/
if ((sc->flags & CMD_MULTIWRITE) && (sc->sc_cap & CAP_NEEDS_BYTESWAP)) {
at91_mci_reset(sc);
WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY);
return;
}
/*
* This is known to be true of at91rm9200 hardware; it may or may not
* apply to more recent chips:
*
* After stopping a multi-block read, loop to read and discard any
* data that coasts in after we sent the stop command. The docs don't
* say anything about it, but empirical testing shows that 1-3
* additional words of data get buffered up in some unmentioned
* internal fifo and if we don't read and discard them here they end
* up on the front of the next read DMA transfer we do.
*
* This appears to be unnecessary for rev2xx parts.
*/
if ((sc->flags & CMD_MULTIREAD) && (sc->sc_cap & CAP_NEEDS_BYTESWAP)) {
uint32_t sr;
int count = 0;
do {
sr = RD4(sc, MCI_SR);
if (sr & MCI_SR_RXRDY) {
RD4(sc, MCI_RDR);
++count;
}
} while (sr & MCI_SR_RXRDY);
at91_mci_reset(sc);
}
cmd->error = MMC_ERR_NONE;
at91_mci_next_operation(sc);
}
static void
at91_mci_cmdrdy(struct at91_mci_softc *sc, uint32_t sr)
{
struct mmc_command *cmd = sc->curcmd;
int i;
if (cmd == NULL)
return;
/*
* We get here at the end of EVERY command. We retrieve the command
* response (if any) then decide what to do next based on the command.
*/
if (cmd->flags & MMC_RSP_PRESENT) {
for (i = 0; i < ((cmd->flags & MMC_RSP_136) ? 4 : 1); i++) {
cmd->resp[i] = RD4(sc, MCI_RSPR + i * 4);
if (mci_debug)
printf("RSPR[%d] = %x sr=%x\n", i, cmd->resp[i], sr);
}
}
/*
* If this was a stop command, go handle the various special
* conditions (read: bugs) that have to be dealt with following a stop.
*/
if (cmd->opcode == MMC_STOP_TRANSMISSION) {
at91_mci_stop_done(sc, sr);
return;
}
/*
* If this command can continue to assert BUSY beyond the response then
* we need to wait for NOTBUSY before the command is really done.
*
* Note that this may not work properly on the at91rm9200. It certainly
* doesn't work for the STOP command that follows a multi-block write,
* so post-stop CMDRDY is handled separately; see the special handling
* in at91_mci_stop_done().
*
* Beside STOP, there are other R1B-type commands that use the busy
* signal after CMDRDY: CMD7 (card select), CMD28-29 (write protect),
* CMD38 (erase). I haven't tested any of them, but I rather expect
* them all to have the same sort of problem with MCI_SR not actually
* reflecting the state of the DAT0-line busy indicator. So this code
* may need to grow some sort of special handling for them too. (This
* just in: CMD7 isn't a problem right now because dev/mmc.c incorrectly
* sets the response flags to R1 rather than R1B.) XXX
*/
if ((cmd->flags & MMC_RSP_BUSY)) {
WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY);
return;
}
/*
* If there is a data transfer with this command, then...
* - If it's a read, we need to wait for ENDRX.
* - If it's a write, now is the time to enable the PDC, and we need
* to wait for a BLKE that follows a TXBUFE, because if we're doing
* a split transfer we get a BLKE after the first half (when TPR/TCR
* get loaded from TNPR/TNCR). So first we wait for the TXBUFE, and
* the handling for that interrupt will then invoke the wait for the
* subsequent BLKE which indicates actual completion.
*/
if (cmd->data) {
uint32_t ier;
if (cmd->data->flags & MMC_DATA_READ) {
ier = MCI_SR_ENDRX;
} else {
ier = MCI_SR_TXBUFE;
WR4(sc, PDC_PTCR, PDC_PTCR_TXTEN);
}
WR4(sc, MCI_IER, MCI_SR_ERROR | ier);
return;
}
/*
* If we made it to here, we don't need to wait for anything more for
* the current command, move on to the next command (will complete the
* request if there is no next command).
*/
cmd->error = MMC_ERR_NONE;
at91_mci_next_operation(sc);
}
static void
at91_mci_intr(void *arg)
{
struct at91_mci_softc *sc = (struct at91_mci_softc*)arg;
struct mmc_command *cmd = sc->curcmd;
uint32_t sr, isr;
AT91_MCI_LOCK(sc);
sr = RD4(sc, MCI_SR);
isr = sr & RD4(sc, MCI_IMR);
if (mci_debug)
printf("i 0x%x sr 0x%x\n", isr, sr);
/*
* All interrupts are one-shot; disable it now.
* The next operation will re-enable whatever interrupts it wants.
*/
WR4(sc, MCI_IDR, isr);
if (isr & MCI_SR_ERROR) {
if (isr & (MCI_SR_RTOE | MCI_SR_DTOE))
cmd->error = MMC_ERR_TIMEOUT;
else if (isr & (MCI_SR_RCRCE | MCI_SR_DCRCE))
cmd->error = MMC_ERR_BADCRC;
else if (isr & (MCI_SR_OVRE | MCI_SR_UNRE))
cmd->error = MMC_ERR_FIFO;
else
cmd->error = MMC_ERR_FAILED;
/*
* CMD8 is used to probe for SDHC cards, a standard SD card
* will get a response timeout; don't report it because it's a
* normal and expected condition. One might argue that all
* error reporting should be left to higher levels, but when
* they report at all it's always EIO, which isn't very
* helpful. XXX bootverbose?
*/
if (cmd->opcode != 8) {
device_printf(sc->dev,
"IO error; status MCI_SR = 0x%b cmd opcode = %d%s\n",
sr, MCI_SR_BITSTRING, cmd->opcode,
(cmd->opcode != 12) ? "" :
(sc->flags & CMD_MULTIREAD) ? " after read" : " after write");
/* XXX not sure RTOE needs a full reset, just a retry */
at91_mci_reset(sc);
}
at91_mci_next_operation(sc);
} else {
if (isr & MCI_SR_TXBUFE) {
// printf("TXBUFE\n");
/*
* We need to wait for a BLKE that follows TXBUFE
* (intermediate BLKEs might happen after ENDTXes if
* we're chaining multiple buffers). If BLKE is also
* asserted at the time we get TXBUFE, we can avoid
* another interrupt and process it right away, below.
*/
if (sr & MCI_SR_BLKE)
isr |= MCI_SR_BLKE;
else
WR4(sc, MCI_IER, MCI_SR_BLKE);
}
if (isr & MCI_SR_RXBUFF) {
// printf("RXBUFF\n");
}
if (isr & MCI_SR_ENDTX) {
// printf("ENDTX\n");
}
if (isr & MCI_SR_ENDRX) {
// printf("ENDRX\n");
at91_mci_read_done(sc, sr);
}
if (isr & MCI_SR_NOTBUSY) {
// printf("NOTBUSY\n");
at91_mci_notbusy(sc);
}
if (isr & MCI_SR_DTIP) {
// printf("Data transfer in progress\n");
}
if (isr & MCI_SR_BLKE) {
// printf("Block transfer end\n");
at91_mci_write_done(sc, sr);
}
if (isr & MCI_SR_TXRDY) {
// printf("Ready to transmit\n");
}
if (isr & MCI_SR_RXRDY) {
// printf("Ready to receive\n");
}
if (isr & MCI_SR_CMDRDY) {
// printf("Command ready\n");
at91_mci_cmdrdy(sc, sr);
}
}
AT91_MCI_UNLOCK(sc);
}
static int
at91_mci_read_ivar(device_t bus, device_t child, int which, uintptr_t *result)
{
struct at91_mci_softc *sc = device_get_softc(bus);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
*(int *)result = sc->host.ios.bus_mode;
break;
case MMCBR_IVAR_BUS_WIDTH:
*(int *)result = sc->host.ios.bus_width;
break;
case MMCBR_IVAR_CHIP_SELECT:
*(int *)result = sc->host.ios.chip_select;
break;
case MMCBR_IVAR_CLOCK:
*(int *)result = sc->host.ios.clock;
break;
case MMCBR_IVAR_F_MIN:
*(int *)result = sc->host.f_min;
break;
case MMCBR_IVAR_F_MAX:
*(int *)result = sc->host.f_max;
break;
case MMCBR_IVAR_HOST_OCR:
*(int *)result = sc->host.host_ocr;
break;
case MMCBR_IVAR_MODE:
*(int *)result = sc->host.mode;
break;
case MMCBR_IVAR_OCR:
*(int *)result = sc->host.ocr;
break;
case MMCBR_IVAR_POWER_MODE:
*(int *)result = sc->host.ios.power_mode;
break;
case MMCBR_IVAR_VDD:
*(int *)result = sc->host.ios.vdd;
break;
case MMCBR_IVAR_CAPS:
if (sc->has_4wire) {
sc->sc_cap |= CAP_HAS_4WIRE;
sc->host.caps |= MMC_CAP_4_BIT_DATA;
} else {
sc->sc_cap &= ~CAP_HAS_4WIRE;
sc->host.caps &= ~MMC_CAP_4_BIT_DATA;
}
*(int *)result = sc->host.caps;
break;
case MMCBR_IVAR_MAX_DATA:
/*
* Something is wrong with the 2x parts and multiblock, so
* just do 1 block at a time for now, which really kills
* performance.
*/
if (sc->sc_cap & CAP_MCI1_REV2XX)
*(int *)result = 1;
else
*(int *)result = MAX_BLOCKS;
break;
}
return (0);
}
static int
at91_mci_write_ivar(device_t bus, device_t child, int which, uintptr_t value)
{
struct at91_mci_softc *sc = device_get_softc(bus);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
sc->host.ios.bus_mode = value;
break;
case MMCBR_IVAR_BUS_WIDTH:
sc->host.ios.bus_width = value;
break;
case MMCBR_IVAR_CHIP_SELECT:
sc->host.ios.chip_select = value;
break;
case MMCBR_IVAR_CLOCK:
sc->host.ios.clock = value;
break;
case MMCBR_IVAR_MODE:
sc->host.mode = value;
break;
case MMCBR_IVAR_OCR:
sc->host.ocr = value;
break;
case MMCBR_IVAR_POWER_MODE:
sc->host.ios.power_mode = value;
break;
case MMCBR_IVAR_VDD:
sc->host.ios.vdd = value;
break;
/* These are read-only */
case MMCBR_IVAR_CAPS:
case MMCBR_IVAR_HOST_OCR:
case MMCBR_IVAR_F_MIN:
case MMCBR_IVAR_F_MAX:
case MMCBR_IVAR_MAX_DATA:
return (EINVAL);
}
return (0);
}
static device_method_t at91_mci_methods[] = {
/* device_if */
DEVMETHOD(device_probe, at91_mci_probe),
DEVMETHOD(device_attach, at91_mci_attach),
DEVMETHOD(device_detach, at91_mci_detach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, at91_mci_read_ivar),
DEVMETHOD(bus_write_ivar, at91_mci_write_ivar),
/* mmcbr_if */
DEVMETHOD(mmcbr_update_ios, at91_mci_update_ios),
DEVMETHOD(mmcbr_request, at91_mci_request),
DEVMETHOD(mmcbr_get_ro, at91_mci_get_ro),
DEVMETHOD(mmcbr_acquire_host, at91_mci_acquire_host),
DEVMETHOD(mmcbr_release_host, at91_mci_release_host),
DEVMETHOD_END
};
static driver_t at91_mci_driver = {
"at91_mci",
at91_mci_methods,
sizeof(struct at91_mci_softc),
};
static devclass_t at91_mci_devclass;
#ifdef FDT
DRIVER_MODULE(at91_mci, simplebus, at91_mci_driver, at91_mci_devclass, NULL,
NULL);
#else
DRIVER_MODULE(at91_mci, atmelarm, at91_mci_driver, at91_mci_devclass, NULL,
NULL);
#endif