be01018809
Summary: Although it's convenient to reuse the pvo_plist for deletion, RB_TREE insertion and removal is not free, and can result in a lot of extra work to rebalance the tree. Instead, use a SLIST as a LIFO delete queue, which gives us almost free insertion, deletion, and traversal. Reviewed by: luporl Differential Revision: https://reviews.freebsd.org/D21061
2942 lines
75 KiB
C
2942 lines
75 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2008-2015 Nathan Whitehorn
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Manages physical address maps.
|
|
*
|
|
* Since the information managed by this module is also stored by the
|
|
* logical address mapping module, this module may throw away valid virtual
|
|
* to physical mappings at almost any time. However, invalidations of
|
|
* mappings must be done as requested.
|
|
*
|
|
* In order to cope with hardware architectures which make virtual to
|
|
* physical map invalidates expensive, this module may delay invalidate
|
|
* reduced protection operations until such time as they are actually
|
|
* necessary. This module is given full information as to which processors
|
|
* are currently using which maps, and to when physical maps must be made
|
|
* correct.
|
|
*/
|
|
|
|
#include "opt_kstack_pages.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/cpuset.h>
|
|
#include <sys/kerneldump.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/smp.h>
|
|
|
|
#include <sys/kdb.h>
|
|
|
|
#include <dev/ofw/openfirm.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/uma.h>
|
|
|
|
#include <machine/_inttypes.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/platform.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/bat.h>
|
|
#include <machine/hid.h>
|
|
#include <machine/pte.h>
|
|
#include <machine/sr.h>
|
|
#include <machine/trap.h>
|
|
#include <machine/mmuvar.h>
|
|
|
|
#include "mmu_oea64.h"
|
|
#include "mmu_if.h"
|
|
#include "moea64_if.h"
|
|
|
|
void moea64_release_vsid(uint64_t vsid);
|
|
uintptr_t moea64_get_unique_vsid(void);
|
|
|
|
#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR)
|
|
#define ENABLE_TRANS(msr) mtmsr(msr)
|
|
|
|
#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
|
|
#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
|
|
#define VSID_HASH_MASK 0x0000007fffffffffULL
|
|
|
|
/*
|
|
* Locking semantics:
|
|
*
|
|
* There are two locks of interest: the page locks and the pmap locks, which
|
|
* protect their individual PVO lists and are locked in that order. The contents
|
|
* of all PVO entries are protected by the locks of their respective pmaps.
|
|
* The pmap of any PVO is guaranteed not to change so long as the PVO is linked
|
|
* into any list.
|
|
*
|
|
*/
|
|
|
|
#define PV_LOCK_PER_DOM PA_LOCK_COUNT*3
|
|
#define PV_LOCK_COUNT PV_LOCK_PER_DOM*MAXMEMDOM
|
|
static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
|
|
|
|
/*
|
|
* Cheap NUMA-izing of the pv locks, to reduce contention across domains.
|
|
* NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
|
|
* index at (N << 45).
|
|
*/
|
|
#ifdef __powerpc64__
|
|
#define PV_LOCK_IDX(pa) (pa_index(pa) % PV_LOCK_PER_DOM + \
|
|
(((pa) >> 45) % MAXMEMDOM) * PV_LOCK_PER_DOM)
|
|
#else
|
|
#define PV_LOCK_IDX(pa) (pa_index(pa) % PV_LOCK_COUNT)
|
|
#endif
|
|
#define PV_LOCKPTR(pa) ((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
|
|
#define PV_LOCK(pa) mtx_lock(PV_LOCKPTR(pa))
|
|
#define PV_UNLOCK(pa) mtx_unlock(PV_LOCKPTR(pa))
|
|
#define PV_LOCKASSERT(pa) mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
|
|
#define PV_PAGE_LOCK(m) PV_LOCK(VM_PAGE_TO_PHYS(m))
|
|
#define PV_PAGE_UNLOCK(m) PV_UNLOCK(VM_PAGE_TO_PHYS(m))
|
|
#define PV_PAGE_LOCKASSERT(m) PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
|
|
|
|
struct ofw_map {
|
|
cell_t om_va;
|
|
cell_t om_len;
|
|
uint64_t om_pa;
|
|
cell_t om_mode;
|
|
};
|
|
|
|
extern unsigned char _etext[];
|
|
extern unsigned char _end[];
|
|
|
|
extern void *slbtrap, *slbtrapend;
|
|
|
|
/*
|
|
* Map of physical memory regions.
|
|
*/
|
|
static struct mem_region *regions;
|
|
static struct mem_region *pregions;
|
|
static struct numa_mem_region *numa_pregions;
|
|
static u_int phys_avail_count;
|
|
static int regions_sz, pregions_sz, numapregions_sz;
|
|
|
|
extern void bs_remap_earlyboot(void);
|
|
|
|
/*
|
|
* Lock for the SLB tables.
|
|
*/
|
|
struct mtx moea64_slb_mutex;
|
|
|
|
/*
|
|
* PTEG data.
|
|
*/
|
|
u_long moea64_pteg_count;
|
|
u_long moea64_pteg_mask;
|
|
|
|
/*
|
|
* PVO data.
|
|
*/
|
|
|
|
uma_zone_t moea64_pvo_zone; /* zone for pvo entries */
|
|
|
|
static struct pvo_entry *moea64_bpvo_pool;
|
|
static int moea64_bpvo_pool_index = 0;
|
|
static int moea64_bpvo_pool_size = 327680;
|
|
TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
|
|
&moea64_bpvo_pool_index, 0, "");
|
|
|
|
#define VSID_NBPW (sizeof(u_int32_t) * 8)
|
|
#ifdef __powerpc64__
|
|
#define NVSIDS (NPMAPS * 16)
|
|
#define VSID_HASHMASK 0xffffffffUL
|
|
#else
|
|
#define NVSIDS NPMAPS
|
|
#define VSID_HASHMASK 0xfffffUL
|
|
#endif
|
|
static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
|
|
|
|
static boolean_t moea64_initialized = FALSE;
|
|
|
|
#ifdef MOEA64_STATS
|
|
/*
|
|
* Statistics.
|
|
*/
|
|
u_int moea64_pte_valid = 0;
|
|
u_int moea64_pte_overflow = 0;
|
|
u_int moea64_pvo_entries = 0;
|
|
u_int moea64_pvo_enter_calls = 0;
|
|
u_int moea64_pvo_remove_calls = 0;
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
|
|
&moea64_pte_valid, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
|
|
&moea64_pte_overflow, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
|
|
&moea64_pvo_entries, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
|
|
&moea64_pvo_enter_calls, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
|
|
&moea64_pvo_remove_calls, 0, "");
|
|
#endif
|
|
|
|
vm_offset_t moea64_scratchpage_va[2];
|
|
struct pvo_entry *moea64_scratchpage_pvo[2];
|
|
struct mtx moea64_scratchpage_mtx;
|
|
|
|
uint64_t moea64_large_page_mask = 0;
|
|
uint64_t moea64_large_page_size = 0;
|
|
int moea64_large_page_shift = 0;
|
|
|
|
/*
|
|
* PVO calls.
|
|
*/
|
|
static int moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
|
|
struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
|
|
static void moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
|
|
static void moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
|
|
static void moea64_pvo_remove_from_page_locked(mmu_t mmu,
|
|
struct pvo_entry *pvo, vm_page_t m);
|
|
static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
|
|
|
|
/*
|
|
* Utility routines.
|
|
*/
|
|
static boolean_t moea64_query_bit(mmu_t, vm_page_t, uint64_t);
|
|
static u_int moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
|
|
static void moea64_kremove(mmu_t, vm_offset_t);
|
|
static void moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
|
|
vm_paddr_t pa, vm_size_t sz);
|
|
static void moea64_pmap_init_qpages(void);
|
|
|
|
/*
|
|
* Kernel MMU interface
|
|
*/
|
|
void moea64_clear_modify(mmu_t, vm_page_t);
|
|
void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
|
|
void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
|
|
vm_page_t *mb, vm_offset_t b_offset, int xfersize);
|
|
int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
|
|
u_int flags, int8_t psind);
|
|
void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
|
|
vm_prot_t);
|
|
void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
|
|
vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
|
|
vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
|
|
void moea64_init(mmu_t);
|
|
boolean_t moea64_is_modified(mmu_t, vm_page_t);
|
|
boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
|
|
boolean_t moea64_is_referenced(mmu_t, vm_page_t);
|
|
int moea64_ts_referenced(mmu_t, vm_page_t);
|
|
vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
|
|
boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
|
|
void moea64_page_init(mmu_t, vm_page_t);
|
|
int moea64_page_wired_mappings(mmu_t, vm_page_t);
|
|
void moea64_pinit(mmu_t, pmap_t);
|
|
void moea64_pinit0(mmu_t, pmap_t);
|
|
void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
|
|
void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
|
|
void moea64_qremove(mmu_t, vm_offset_t, int);
|
|
void moea64_release(mmu_t, pmap_t);
|
|
void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
|
|
void moea64_remove_pages(mmu_t, pmap_t);
|
|
void moea64_remove_all(mmu_t, vm_page_t);
|
|
void moea64_remove_write(mmu_t, vm_page_t);
|
|
void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
|
|
void moea64_zero_page(mmu_t, vm_page_t);
|
|
void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
|
|
void moea64_activate(mmu_t, struct thread *);
|
|
void moea64_deactivate(mmu_t, struct thread *);
|
|
void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
|
|
void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
|
|
void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
|
|
vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
|
|
void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
|
|
void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
|
|
void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
|
|
boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
|
|
static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
|
|
void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
|
|
void **va);
|
|
void moea64_scan_init(mmu_t mmu);
|
|
vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
|
|
void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
|
|
static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm,
|
|
volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
|
|
static int moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
|
|
int *is_user, vm_offset_t *decoded_addr);
|
|
|
|
|
|
static mmu_method_t moea64_methods[] = {
|
|
MMUMETHOD(mmu_clear_modify, moea64_clear_modify),
|
|
MMUMETHOD(mmu_copy_page, moea64_copy_page),
|
|
MMUMETHOD(mmu_copy_pages, moea64_copy_pages),
|
|
MMUMETHOD(mmu_enter, moea64_enter),
|
|
MMUMETHOD(mmu_enter_object, moea64_enter_object),
|
|
MMUMETHOD(mmu_enter_quick, moea64_enter_quick),
|
|
MMUMETHOD(mmu_extract, moea64_extract),
|
|
MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold),
|
|
MMUMETHOD(mmu_init, moea64_init),
|
|
MMUMETHOD(mmu_is_modified, moea64_is_modified),
|
|
MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable),
|
|
MMUMETHOD(mmu_is_referenced, moea64_is_referenced),
|
|
MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced),
|
|
MMUMETHOD(mmu_map, moea64_map),
|
|
MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
|
|
MMUMETHOD(mmu_page_init, moea64_page_init),
|
|
MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
|
|
MMUMETHOD(mmu_pinit, moea64_pinit),
|
|
MMUMETHOD(mmu_pinit0, moea64_pinit0),
|
|
MMUMETHOD(mmu_protect, moea64_protect),
|
|
MMUMETHOD(mmu_qenter, moea64_qenter),
|
|
MMUMETHOD(mmu_qremove, moea64_qremove),
|
|
MMUMETHOD(mmu_release, moea64_release),
|
|
MMUMETHOD(mmu_remove, moea64_remove),
|
|
MMUMETHOD(mmu_remove_pages, moea64_remove_pages),
|
|
MMUMETHOD(mmu_remove_all, moea64_remove_all),
|
|
MMUMETHOD(mmu_remove_write, moea64_remove_write),
|
|
MMUMETHOD(mmu_sync_icache, moea64_sync_icache),
|
|
MMUMETHOD(mmu_unwire, moea64_unwire),
|
|
MMUMETHOD(mmu_zero_page, moea64_zero_page),
|
|
MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area),
|
|
MMUMETHOD(mmu_activate, moea64_activate),
|
|
MMUMETHOD(mmu_deactivate, moea64_deactivate),
|
|
MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr),
|
|
MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
|
|
MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
|
|
|
|
/* Internal interfaces */
|
|
MMUMETHOD(mmu_mapdev, moea64_mapdev),
|
|
MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr),
|
|
MMUMETHOD(mmu_unmapdev, moea64_unmapdev),
|
|
MMUMETHOD(mmu_kextract, moea64_kextract),
|
|
MMUMETHOD(mmu_kenter, moea64_kenter),
|
|
MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr),
|
|
MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
|
|
MMUMETHOD(mmu_scan_init, moea64_scan_init),
|
|
MMUMETHOD(mmu_dumpsys_map, moea64_dumpsys_map),
|
|
MMUMETHOD(mmu_map_user_ptr, moea64_map_user_ptr),
|
|
MMUMETHOD(mmu_decode_kernel_ptr, moea64_decode_kernel_ptr),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
|
|
|
|
static struct pvo_head *
|
|
vm_page_to_pvoh(vm_page_t m)
|
|
{
|
|
|
|
mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
|
|
return (&m->md.mdpg_pvoh);
|
|
}
|
|
|
|
static struct pvo_entry *
|
|
alloc_pvo_entry(int bootstrap, int flags)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
|
|
KASSERT(bootstrap || (flags & M_WAITOK) || (flags & M_NOWAIT),
|
|
("Either M_WAITOK or M_NOWAIT flag must be specified "
|
|
"when bootstrap is 0"));
|
|
KASSERT(!bootstrap || !(flags & M_WAITOK),
|
|
("M_WAITOK can't be used with bootstrap"));
|
|
|
|
if (!moea64_initialized || bootstrap) {
|
|
if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
|
|
panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
|
|
moea64_bpvo_pool_index, moea64_bpvo_pool_size,
|
|
moea64_bpvo_pool_size * sizeof(struct pvo_entry));
|
|
}
|
|
pvo = &moea64_bpvo_pool[
|
|
atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
|
|
bzero(pvo, sizeof(*pvo));
|
|
pvo->pvo_vaddr = PVO_BOOTSTRAP;
|
|
} else
|
|
pvo = uma_zalloc(moea64_pvo_zone, flags | M_ZERO);
|
|
|
|
return (pvo);
|
|
}
|
|
|
|
|
|
static void
|
|
init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
|
|
{
|
|
uint64_t vsid;
|
|
uint64_t hash;
|
|
int shift;
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
|
|
pvo->pvo_pmap = pmap;
|
|
va &= ~ADDR_POFF;
|
|
pvo->pvo_vaddr |= va;
|
|
vsid = va_to_vsid(pmap, va);
|
|
pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
|
|
| (vsid << 16);
|
|
|
|
shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
|
|
ADDR_PIDX_SHFT;
|
|
hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
|
|
pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
|
|
}
|
|
|
|
static void
|
|
free_pvo_entry(struct pvo_entry *pvo)
|
|
{
|
|
|
|
if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
|
|
uma_zfree(moea64_pvo_zone, pvo);
|
|
}
|
|
|
|
void
|
|
moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
|
|
{
|
|
|
|
lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
|
|
LPTE_AVPN_MASK;
|
|
lpte->pte_hi |= LPTE_VALID;
|
|
|
|
if (pvo->pvo_vaddr & PVO_LARGE)
|
|
lpte->pte_hi |= LPTE_BIG;
|
|
if (pvo->pvo_vaddr & PVO_WIRED)
|
|
lpte->pte_hi |= LPTE_WIRED;
|
|
if (pvo->pvo_vaddr & PVO_HID)
|
|
lpte->pte_hi |= LPTE_HID;
|
|
|
|
lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
|
|
if (pvo->pvo_pte.prot & VM_PROT_WRITE)
|
|
lpte->pte_lo |= LPTE_BW;
|
|
else
|
|
lpte->pte_lo |= LPTE_BR;
|
|
|
|
if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
|
|
lpte->pte_lo |= LPTE_NOEXEC;
|
|
}
|
|
|
|
static __inline uint64_t
|
|
moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
|
|
{
|
|
uint64_t pte_lo;
|
|
int i;
|
|
|
|
if (ma != VM_MEMATTR_DEFAULT) {
|
|
switch (ma) {
|
|
case VM_MEMATTR_UNCACHEABLE:
|
|
return (LPTE_I | LPTE_G);
|
|
case VM_MEMATTR_CACHEABLE:
|
|
return (LPTE_M);
|
|
case VM_MEMATTR_WRITE_COMBINING:
|
|
case VM_MEMATTR_WRITE_BACK:
|
|
case VM_MEMATTR_PREFETCHABLE:
|
|
return (LPTE_I);
|
|
case VM_MEMATTR_WRITE_THROUGH:
|
|
return (LPTE_W | LPTE_M);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Assume the page is cache inhibited and access is guarded unless
|
|
* it's in our available memory array.
|
|
*/
|
|
pte_lo = LPTE_I | LPTE_G;
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
if ((pa >= pregions[i].mr_start) &&
|
|
(pa < (pregions[i].mr_start + pregions[i].mr_size))) {
|
|
pte_lo &= ~(LPTE_I | LPTE_G);
|
|
pte_lo |= LPTE_M;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return pte_lo;
|
|
}
|
|
|
|
/*
|
|
* Quick sort callout for comparing memory regions.
|
|
*/
|
|
static int om_cmp(const void *a, const void *b);
|
|
|
|
static int
|
|
om_cmp(const void *a, const void *b)
|
|
{
|
|
const struct ofw_map *mapa;
|
|
const struct ofw_map *mapb;
|
|
|
|
mapa = a;
|
|
mapb = b;
|
|
if (mapa->om_pa < mapb->om_pa)
|
|
return (-1);
|
|
else if (mapa->om_pa > mapb->om_pa)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
|
|
{
|
|
struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
|
|
pcell_t acells, trans_cells[sz/sizeof(cell_t)];
|
|
struct pvo_entry *pvo;
|
|
register_t msr;
|
|
vm_offset_t off;
|
|
vm_paddr_t pa_base;
|
|
int i, j;
|
|
|
|
bzero(translations, sz);
|
|
OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
|
|
sizeof(acells));
|
|
if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
|
|
panic("moea64_bootstrap: can't get ofw translations");
|
|
|
|
CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
|
|
sz /= sizeof(cell_t);
|
|
for (i = 0, j = 0; i < sz; j++) {
|
|
translations[j].om_va = trans_cells[i++];
|
|
translations[j].om_len = trans_cells[i++];
|
|
translations[j].om_pa = trans_cells[i++];
|
|
if (acells == 2) {
|
|
translations[j].om_pa <<= 32;
|
|
translations[j].om_pa |= trans_cells[i++];
|
|
}
|
|
translations[j].om_mode = trans_cells[i++];
|
|
}
|
|
KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
|
|
i, sz));
|
|
|
|
sz = j;
|
|
qsort(translations, sz, sizeof (*translations), om_cmp);
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
pa_base = translations[i].om_pa;
|
|
#ifndef __powerpc64__
|
|
if ((translations[i].om_pa >> 32) != 0)
|
|
panic("OFW translations above 32-bit boundary!");
|
|
#endif
|
|
|
|
if (pa_base % PAGE_SIZE)
|
|
panic("OFW translation not page-aligned (phys)!");
|
|
if (translations[i].om_va % PAGE_SIZE)
|
|
panic("OFW translation not page-aligned (virt)!");
|
|
|
|
CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
|
|
pa_base, translations[i].om_va, translations[i].om_len);
|
|
|
|
/* Now enter the pages for this mapping */
|
|
|
|
DISABLE_TRANS(msr);
|
|
for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
|
|
/* If this address is direct-mapped, skip remapping */
|
|
if (hw_direct_map &&
|
|
translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
|
|
moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
|
|
== LPTE_M)
|
|
continue;
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
pvo = moea64_pvo_find_va(kernel_pmap,
|
|
translations[i].om_va + off);
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
if (pvo != NULL)
|
|
continue;
|
|
|
|
moea64_kenter(mmup, translations[i].om_va + off,
|
|
pa_base + off);
|
|
}
|
|
ENABLE_TRANS(msr);
|
|
}
|
|
}
|
|
|
|
#ifdef __powerpc64__
|
|
static void
|
|
moea64_probe_large_page(void)
|
|
{
|
|
uint16_t pvr = mfpvr() >> 16;
|
|
|
|
switch (pvr) {
|
|
case IBM970:
|
|
case IBM970FX:
|
|
case IBM970MP:
|
|
powerpc_sync(); isync();
|
|
mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
|
|
powerpc_sync(); isync();
|
|
|
|
/* FALLTHROUGH */
|
|
default:
|
|
if (moea64_large_page_size == 0) {
|
|
moea64_large_page_size = 0x1000000; /* 16 MB */
|
|
moea64_large_page_shift = 24;
|
|
}
|
|
}
|
|
|
|
moea64_large_page_mask = moea64_large_page_size - 1;
|
|
}
|
|
|
|
static void
|
|
moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
|
|
{
|
|
struct slb *cache;
|
|
struct slb entry;
|
|
uint64_t esid, slbe;
|
|
uint64_t i;
|
|
|
|
cache = PCPU_GET(aim.slb);
|
|
esid = va >> ADDR_SR_SHFT;
|
|
slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
if (cache[i].slbe == (slbe | i))
|
|
return;
|
|
}
|
|
|
|
entry.slbe = slbe;
|
|
entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
|
|
if (large)
|
|
entry.slbv |= SLBV_L;
|
|
|
|
slb_insert_kernel(entry.slbe, entry.slbv);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
|
|
vm_offset_t kernelend)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
register_t msr;
|
|
vm_paddr_t pa, pkernelstart, pkernelend;
|
|
vm_offset_t size, off;
|
|
uint64_t pte_lo;
|
|
int i;
|
|
|
|
if (moea64_large_page_size == 0)
|
|
hw_direct_map = 0;
|
|
|
|
DISABLE_TRANS(msr);
|
|
if (hw_direct_map) {
|
|
PMAP_LOCK(kernel_pmap);
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
|
|
pregions[i].mr_size; pa += moea64_large_page_size) {
|
|
pte_lo = LPTE_M;
|
|
|
|
pvo = alloc_pvo_entry(1 /* bootstrap */, 0);
|
|
pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
|
|
init_pvo_entry(pvo, kernel_pmap, PHYS_TO_DMAP(pa));
|
|
|
|
/*
|
|
* Set memory access as guarded if prefetch within
|
|
* the page could exit the available physmem area.
|
|
*/
|
|
if (pa & moea64_large_page_mask) {
|
|
pa &= moea64_large_page_mask;
|
|
pte_lo |= LPTE_G;
|
|
}
|
|
if (pa + moea64_large_page_size >
|
|
pregions[i].mr_start + pregions[i].mr_size)
|
|
pte_lo |= LPTE_G;
|
|
|
|
pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
|
|
VM_PROT_EXECUTE;
|
|
pvo->pvo_pte.pa = pa | pte_lo;
|
|
moea64_pvo_enter(mmup, pvo, NULL, NULL);
|
|
}
|
|
}
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
}
|
|
|
|
/*
|
|
* Make sure the kernel and BPVO pool stay mapped on systems either
|
|
* without a direct map or on which the kernel is not already executing
|
|
* out of the direct-mapped region.
|
|
*/
|
|
if (kernelstart < DMAP_BASE_ADDRESS) {
|
|
/*
|
|
* For pre-dmap execution, we need to use identity mapping
|
|
* because we will be operating with the mmu on but in the
|
|
* wrong address configuration until we __restartkernel().
|
|
*/
|
|
for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
|
|
pa += PAGE_SIZE)
|
|
moea64_kenter(mmup, pa, pa);
|
|
} else if (!hw_direct_map) {
|
|
pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
|
|
pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
|
|
for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
|
|
pa += PAGE_SIZE)
|
|
moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
|
|
}
|
|
|
|
if (!hw_direct_map) {
|
|
size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
|
|
off = (vm_offset_t)(moea64_bpvo_pool);
|
|
for (pa = off; pa < off + size; pa += PAGE_SIZE)
|
|
moea64_kenter(mmup, pa, pa);
|
|
|
|
/* Map exception vectors */
|
|
for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
|
|
moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
|
|
}
|
|
ENABLE_TRANS(msr);
|
|
|
|
/*
|
|
* Allow user to override unmapped_buf_allowed for testing.
|
|
* XXXKIB Only direct map implementation was tested.
|
|
*/
|
|
if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
|
|
&unmapped_buf_allowed))
|
|
unmapped_buf_allowed = hw_direct_map;
|
|
}
|
|
|
|
/* Quick sort callout for comparing physical addresses. */
|
|
static int
|
|
pa_cmp(const void *a, const void *b)
|
|
{
|
|
const vm_paddr_t *pa = a, *pb = b;
|
|
|
|
if (*pa < *pb)
|
|
return (-1);
|
|
else if (*pa > *pb)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
|
|
{
|
|
int i, j;
|
|
vm_size_t physsz, hwphyssz;
|
|
vm_paddr_t kernelphysstart, kernelphysend;
|
|
int rm_pavail;
|
|
|
|
#ifndef __powerpc64__
|
|
/* We don't have a direct map since there is no BAT */
|
|
hw_direct_map = 0;
|
|
|
|
/* Make sure battable is zero, since we have no BAT */
|
|
for (i = 0; i < 16; i++) {
|
|
battable[i].batu = 0;
|
|
battable[i].batl = 0;
|
|
}
|
|
#else
|
|
moea64_probe_large_page();
|
|
|
|
/* Use a direct map if we have large page support */
|
|
if (moea64_large_page_size > 0)
|
|
hw_direct_map = 1;
|
|
else
|
|
hw_direct_map = 0;
|
|
|
|
/* Install trap handlers for SLBs */
|
|
bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
|
|
bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
|
|
__syncicache((void *)EXC_DSE, 0x80);
|
|
__syncicache((void *)EXC_ISE, 0x80);
|
|
#endif
|
|
|
|
kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
|
|
kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
|
|
|
|
/* Get physical memory regions from firmware */
|
|
mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz);
|
|
CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
|
|
|
|
if (nitems(phys_avail) < regions_sz)
|
|
panic("moea64_bootstrap: phys_avail too small");
|
|
|
|
phys_avail_count = 0;
|
|
physsz = 0;
|
|
hwphyssz = 0;
|
|
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
|
|
for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
|
|
CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
|
|
regions[i].mr_start, regions[i].mr_start +
|
|
regions[i].mr_size, regions[i].mr_size);
|
|
if (hwphyssz != 0 &&
|
|
(physsz + regions[i].mr_size) >= hwphyssz) {
|
|
if (physsz < hwphyssz) {
|
|
phys_avail[j] = regions[i].mr_start;
|
|
phys_avail[j + 1] = regions[i].mr_start +
|
|
hwphyssz - physsz;
|
|
physsz = hwphyssz;
|
|
phys_avail_count++;
|
|
}
|
|
break;
|
|
}
|
|
phys_avail[j] = regions[i].mr_start;
|
|
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
|
|
phys_avail_count++;
|
|
physsz += regions[i].mr_size;
|
|
}
|
|
|
|
/* Check for overlap with the kernel and exception vectors */
|
|
rm_pavail = 0;
|
|
for (j = 0; j < 2*phys_avail_count; j+=2) {
|
|
if (phys_avail[j] < EXC_LAST)
|
|
phys_avail[j] += EXC_LAST;
|
|
|
|
if (phys_avail[j] >= kernelphysstart &&
|
|
phys_avail[j+1] <= kernelphysend) {
|
|
phys_avail[j] = phys_avail[j+1] = ~0;
|
|
rm_pavail++;
|
|
continue;
|
|
}
|
|
|
|
if (kernelphysstart >= phys_avail[j] &&
|
|
kernelphysstart < phys_avail[j+1]) {
|
|
if (kernelphysend < phys_avail[j+1]) {
|
|
phys_avail[2*phys_avail_count] =
|
|
(kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
|
|
phys_avail[2*phys_avail_count + 1] =
|
|
phys_avail[j+1];
|
|
phys_avail_count++;
|
|
}
|
|
|
|
phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
|
|
}
|
|
|
|
if (kernelphysend >= phys_avail[j] &&
|
|
kernelphysend < phys_avail[j+1]) {
|
|
if (kernelphysstart > phys_avail[j]) {
|
|
phys_avail[2*phys_avail_count] = phys_avail[j];
|
|
phys_avail[2*phys_avail_count + 1] =
|
|
kernelphysstart & ~PAGE_MASK;
|
|
phys_avail_count++;
|
|
}
|
|
|
|
phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
|
|
PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/* Remove physical available regions marked for removal (~0) */
|
|
if (rm_pavail) {
|
|
qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
|
|
pa_cmp);
|
|
phys_avail_count -= rm_pavail;
|
|
for (i = 2*phys_avail_count;
|
|
i < 2*(phys_avail_count + rm_pavail); i+=2)
|
|
phys_avail[i] = phys_avail[i+1] = 0;
|
|
}
|
|
|
|
physmem = btoc(physsz);
|
|
|
|
#ifdef PTEGCOUNT
|
|
moea64_pteg_count = PTEGCOUNT;
|
|
#else
|
|
moea64_pteg_count = 0x1000;
|
|
|
|
while (moea64_pteg_count < physmem)
|
|
moea64_pteg_count <<= 1;
|
|
|
|
moea64_pteg_count >>= 1;
|
|
#endif /* PTEGCOUNT */
|
|
}
|
|
|
|
void
|
|
moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Set PTEG mask
|
|
*/
|
|
moea64_pteg_mask = moea64_pteg_count - 1;
|
|
|
|
/*
|
|
* Initialize SLB table lock and page locks
|
|
*/
|
|
mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
|
|
for (i = 0; i < PV_LOCK_COUNT; i++)
|
|
mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
|
|
|
|
/*
|
|
* Initialise the bootstrap pvo pool.
|
|
*/
|
|
moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
|
|
moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
|
|
moea64_bpvo_pool_index = 0;
|
|
|
|
/* Place at address usable through the direct map */
|
|
if (hw_direct_map)
|
|
moea64_bpvo_pool = (struct pvo_entry *)
|
|
PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
|
|
|
|
/*
|
|
* Make sure kernel vsid is allocated as well as VSID 0.
|
|
*/
|
|
#ifndef __powerpc64__
|
|
moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
|
|
|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
|
|
moea64_vsid_bitmap[0] |= 1;
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the kernel pmap (which is statically allocated).
|
|
*/
|
|
#ifdef __powerpc64__
|
|
for (i = 0; i < 64; i++) {
|
|
pcpup->pc_aim.slb[i].slbv = 0;
|
|
pcpup->pc_aim.slb[i].slbe = 0;
|
|
}
|
|
#else
|
|
for (i = 0; i < 16; i++)
|
|
kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
|
|
#endif
|
|
|
|
kernel_pmap->pmap_phys = kernel_pmap;
|
|
CPU_FILL(&kernel_pmap->pm_active);
|
|
RB_INIT(&kernel_pmap->pmap_pvo);
|
|
|
|
PMAP_LOCK_INIT(kernel_pmap);
|
|
|
|
/*
|
|
* Now map in all the other buffers we allocated earlier
|
|
*/
|
|
|
|
moea64_setup_direct_map(mmup, kernelstart, kernelend);
|
|
}
|
|
|
|
void
|
|
moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
|
|
{
|
|
ihandle_t mmui;
|
|
phandle_t chosen;
|
|
phandle_t mmu;
|
|
ssize_t sz;
|
|
int i;
|
|
vm_offset_t pa, va;
|
|
void *dpcpu;
|
|
|
|
/*
|
|
* Set up the Open Firmware pmap and add its mappings if not in real
|
|
* mode.
|
|
*/
|
|
|
|
chosen = OF_finddevice("/chosen");
|
|
if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
|
|
mmu = OF_instance_to_package(mmui);
|
|
if (mmu == -1 ||
|
|
(sz = OF_getproplen(mmu, "translations")) == -1)
|
|
sz = 0;
|
|
if (sz > 6144 /* tmpstksz - 2 KB headroom */)
|
|
panic("moea64_bootstrap: too many ofw translations");
|
|
|
|
if (sz > 0)
|
|
moea64_add_ofw_mappings(mmup, mmu, sz);
|
|
}
|
|
|
|
/*
|
|
* Calculate the last available physical address.
|
|
*/
|
|
Maxmem = 0;
|
|
for (i = 0; phys_avail[i + 2] != 0; i += 2)
|
|
Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
|
|
|
|
/*
|
|
* Initialize MMU.
|
|
*/
|
|
MMU_CPU_BOOTSTRAP(mmup,0);
|
|
mtmsr(mfmsr() | PSL_DR | PSL_IR);
|
|
pmap_bootstrapped++;
|
|
|
|
/*
|
|
* Set the start and end of kva.
|
|
*/
|
|
virtual_avail = VM_MIN_KERNEL_ADDRESS;
|
|
virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
|
|
|
|
/*
|
|
* Map the entire KVA range into the SLB. We must not fault there.
|
|
*/
|
|
#ifdef __powerpc64__
|
|
for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
|
|
moea64_bootstrap_slb_prefault(va, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Remap any early IO mappings (console framebuffer, etc.)
|
|
*/
|
|
bs_remap_earlyboot();
|
|
|
|
/*
|
|
* Figure out how far we can extend virtual_end into segment 16
|
|
* without running into existing mappings. Segment 16 is guaranteed
|
|
* to contain neither RAM nor devices (at least on Apple hardware),
|
|
* but will generally contain some OFW mappings we should not
|
|
* step on.
|
|
*/
|
|
|
|
#ifndef __powerpc64__ /* KVA is in high memory on PPC64 */
|
|
PMAP_LOCK(kernel_pmap);
|
|
while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
|
|
moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
|
|
virtual_end += PAGE_SIZE;
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
#endif
|
|
|
|
/*
|
|
* Allocate a kernel stack with a guard page for thread0 and map it
|
|
* into the kernel page map.
|
|
*/
|
|
pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
|
|
va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
|
|
virtual_avail = va + kstack_pages * PAGE_SIZE;
|
|
CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
|
|
thread0.td_kstack = va;
|
|
thread0.td_kstack_pages = kstack_pages;
|
|
for (i = 0; i < kstack_pages; i++) {
|
|
moea64_kenter(mmup, va, pa);
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Allocate virtual address space for the message buffer.
|
|
*/
|
|
pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
|
|
msgbufp = (struct msgbuf *)virtual_avail;
|
|
va = virtual_avail;
|
|
virtual_avail += round_page(msgbufsize);
|
|
while (va < virtual_avail) {
|
|
moea64_kenter(mmup, va, pa);
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Allocate virtual address space for the dynamic percpu area.
|
|
*/
|
|
pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
|
|
dpcpu = (void *)virtual_avail;
|
|
va = virtual_avail;
|
|
virtual_avail += DPCPU_SIZE;
|
|
while (va < virtual_avail) {
|
|
moea64_kenter(mmup, va, pa);
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
dpcpu_init(dpcpu, curcpu);
|
|
|
|
/*
|
|
* Allocate some things for page zeroing. We put this directly
|
|
* in the page table and use MOEA64_PTE_REPLACE to avoid any
|
|
* of the PVO book-keeping or other parts of the VM system
|
|
* from even knowing that this hack exists.
|
|
*/
|
|
|
|
if (!hw_direct_map) {
|
|
mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
|
|
MTX_DEF);
|
|
for (i = 0; i < 2; i++) {
|
|
moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
|
|
virtual_end -= PAGE_SIZE;
|
|
|
|
moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
|
|
kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
}
|
|
}
|
|
|
|
numa_mem_regions(&numa_pregions, &numapregions_sz);
|
|
}
|
|
|
|
static void
|
|
moea64_pmap_init_qpages(void)
|
|
{
|
|
struct pcpu *pc;
|
|
int i;
|
|
|
|
if (hw_direct_map)
|
|
return;
|
|
|
|
CPU_FOREACH(i) {
|
|
pc = pcpu_find(i);
|
|
pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
|
|
if (pc->pc_qmap_addr == 0)
|
|
panic("pmap_init_qpages: unable to allocate KVA");
|
|
PMAP_LOCK(kernel_pmap);
|
|
pc->pc_aim.qmap_pvo =
|
|
moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
|
|
}
|
|
}
|
|
|
|
SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
|
|
|
|
/*
|
|
* Activate a user pmap. This mostly involves setting some non-CPU
|
|
* state.
|
|
*/
|
|
void
|
|
moea64_activate(mmu_t mmu, struct thread *td)
|
|
{
|
|
pmap_t pm;
|
|
|
|
pm = &td->td_proc->p_vmspace->vm_pmap;
|
|
CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
|
|
|
|
#ifdef __powerpc64__
|
|
PCPU_SET(aim.userslb, pm->pm_slb);
|
|
__asm __volatile("slbmte %0, %1; isync" ::
|
|
"r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
|
|
#else
|
|
PCPU_SET(curpmap, pm->pmap_phys);
|
|
mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
moea64_deactivate(mmu_t mmu, struct thread *td)
|
|
{
|
|
pmap_t pm;
|
|
|
|
__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
|
|
|
|
pm = &td->td_proc->p_vmspace->vm_pmap;
|
|
CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
|
|
#ifdef __powerpc64__
|
|
PCPU_SET(aim.userslb, NULL);
|
|
#else
|
|
PCPU_SET(curpmap, NULL);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
struct pvo_entry key, *pvo;
|
|
vm_page_t m;
|
|
int64_t refchg;
|
|
|
|
key.pvo_vaddr = sva;
|
|
PMAP_LOCK(pm);
|
|
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
|
|
pvo != NULL && PVO_VADDR(pvo) < eva;
|
|
pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
|
|
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
|
|
panic("moea64_unwire: pvo %p is missing PVO_WIRED",
|
|
pvo);
|
|
pvo->pvo_vaddr &= ~PVO_WIRED;
|
|
refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
|
|
if ((pvo->pvo_vaddr & PVO_MANAGED) &&
|
|
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
|
|
if (refchg < 0)
|
|
refchg = LPTE_CHG;
|
|
m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
|
|
|
|
refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
|
|
if (refchg & LPTE_CHG)
|
|
vm_page_dirty(m);
|
|
if (refchg & LPTE_REF)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
}
|
|
pm->pm_stats.wired_count--;
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
/*
|
|
* This goes through and sets the physical address of our
|
|
* special scratch PTE to the PA we want to zero or copy. Because
|
|
* of locking issues (this can get called in pvo_enter() by
|
|
* the UMA allocator), we can't use most other utility functions here
|
|
*/
|
|
|
|
static __inline
|
|
void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
|
|
KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
|
|
mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
|
|
|
|
pvo = moea64_scratchpage_pvo[which];
|
|
PMAP_LOCK(pvo->pvo_pmap);
|
|
pvo->pvo_pte.pa =
|
|
moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
|
|
MOEA64_PTE_REPLACE(mmup, pvo, MOEA64_PTE_INVALIDATE);
|
|
PMAP_UNLOCK(pvo->pvo_pmap);
|
|
isync();
|
|
}
|
|
|
|
void
|
|
moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
|
|
{
|
|
vm_offset_t dst;
|
|
vm_offset_t src;
|
|
|
|
dst = VM_PAGE_TO_PHYS(mdst);
|
|
src = VM_PAGE_TO_PHYS(msrc);
|
|
|
|
if (hw_direct_map) {
|
|
bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
|
|
PAGE_SIZE);
|
|
} else {
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
|
|
moea64_set_scratchpage_pa(mmu, 0, src);
|
|
moea64_set_scratchpage_pa(mmu, 1, dst);
|
|
|
|
bcopy((void *)moea64_scratchpage_va[0],
|
|
(void *)moea64_scratchpage_va[1], PAGE_SIZE);
|
|
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
|
|
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
|
|
{
|
|
void *a_cp, *b_cp;
|
|
vm_offset_t a_pg_offset, b_pg_offset;
|
|
int cnt;
|
|
|
|
while (xfersize > 0) {
|
|
a_pg_offset = a_offset & PAGE_MASK;
|
|
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
|
|
a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
|
|
VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
|
|
a_pg_offset;
|
|
b_pg_offset = b_offset & PAGE_MASK;
|
|
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
|
|
b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
|
|
VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
|
|
b_pg_offset;
|
|
bcopy(a_cp, b_cp, cnt);
|
|
a_offset += cnt;
|
|
b_offset += cnt;
|
|
xfersize -= cnt;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
|
|
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
|
|
{
|
|
void *a_cp, *b_cp;
|
|
vm_offset_t a_pg_offset, b_pg_offset;
|
|
int cnt;
|
|
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
while (xfersize > 0) {
|
|
a_pg_offset = a_offset & PAGE_MASK;
|
|
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
|
|
moea64_set_scratchpage_pa(mmu, 0,
|
|
VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
|
|
a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
|
|
b_pg_offset = b_offset & PAGE_MASK;
|
|
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
|
|
moea64_set_scratchpage_pa(mmu, 1,
|
|
VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
|
|
b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
|
|
bcopy(a_cp, b_cp, cnt);
|
|
a_offset += cnt;
|
|
b_offset += cnt;
|
|
xfersize -= cnt;
|
|
}
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
|
|
void
|
|
moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
|
|
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
|
|
{
|
|
|
|
if (hw_direct_map) {
|
|
moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
|
|
xfersize);
|
|
} else {
|
|
moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
|
|
xfersize);
|
|
}
|
|
}
|
|
|
|
void
|
|
moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
|
|
{
|
|
vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
|
|
|
|
if (size + off > PAGE_SIZE)
|
|
panic("moea64_zero_page: size + off > PAGE_SIZE");
|
|
|
|
if (hw_direct_map) {
|
|
bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
|
|
} else {
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
moea64_set_scratchpage_pa(mmu, 0, pa);
|
|
bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Zero a page of physical memory by temporarily mapping it
|
|
*/
|
|
void
|
|
moea64_zero_page(mmu_t mmu, vm_page_t m)
|
|
{
|
|
vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
|
|
vm_offset_t va, off;
|
|
|
|
if (!hw_direct_map) {
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
|
|
moea64_set_scratchpage_pa(mmu, 0, pa);
|
|
va = moea64_scratchpage_va[0];
|
|
} else {
|
|
va = PHYS_TO_DMAP(pa);
|
|
}
|
|
|
|
for (off = 0; off < PAGE_SIZE; off += cacheline_size)
|
|
__asm __volatile("dcbz 0,%0" :: "r"(va + off));
|
|
|
|
if (!hw_direct_map)
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
|
|
vm_offset_t
|
|
moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
|
|
|
|
if (hw_direct_map)
|
|
return (PHYS_TO_DMAP(pa));
|
|
|
|
/*
|
|
* MOEA64_PTE_REPLACE does some locking, so we can't just grab
|
|
* a critical section and access the PCPU data like on i386.
|
|
* Instead, pin the thread and grab the PCPU lock to prevent
|
|
* a preempting thread from using the same PCPU data.
|
|
*/
|
|
sched_pin();
|
|
|
|
mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
|
|
pvo = PCPU_GET(aim.qmap_pvo);
|
|
|
|
mtx_lock(PCPU_PTR(aim.qmap_lock));
|
|
pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
|
|
(uint64_t)pa;
|
|
MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
|
|
isync();
|
|
|
|
return (PCPU_GET(qmap_addr));
|
|
}
|
|
|
|
void
|
|
moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
|
|
{
|
|
if (hw_direct_map)
|
|
return;
|
|
|
|
mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
|
|
KASSERT(PCPU_GET(qmap_addr) == addr,
|
|
("moea64_quick_remove_page: invalid address"));
|
|
mtx_unlock(PCPU_PTR(aim.qmap_lock));
|
|
sched_unpin();
|
|
}
|
|
|
|
/*
|
|
* Map the given physical page at the specified virtual address in the
|
|
* target pmap with the protection requested. If specified the page
|
|
* will be wired down.
|
|
*/
|
|
|
|
int
|
|
moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot, u_int flags, int8_t psind)
|
|
{
|
|
struct pvo_entry *pvo, *oldpvo;
|
|
struct pvo_head *pvo_head;
|
|
uint64_t pte_lo;
|
|
int error;
|
|
|
|
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
|
|
VM_OBJECT_ASSERT_LOCKED(m->object);
|
|
|
|
pvo = alloc_pvo_entry(0, M_NOWAIT);
|
|
if (pvo == NULL)
|
|
return (KERN_RESOURCE_SHORTAGE);
|
|
pvo->pvo_pmap = NULL; /* to be filled in later */
|
|
pvo->pvo_pte.prot = prot;
|
|
|
|
pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
|
|
pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
|
|
|
|
if ((flags & PMAP_ENTER_WIRED) != 0)
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
|
|
if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
|
|
pvo_head = NULL;
|
|
} else {
|
|
pvo_head = &m->md.mdpg_pvoh;
|
|
pvo->pvo_vaddr |= PVO_MANAGED;
|
|
}
|
|
|
|
PV_PAGE_LOCK(m);
|
|
PMAP_LOCK(pmap);
|
|
if (pvo->pvo_pmap == NULL)
|
|
init_pvo_entry(pvo, pmap, va);
|
|
if (prot & VM_PROT_WRITE)
|
|
if (pmap_bootstrapped &&
|
|
(m->oflags & VPO_UNMANAGED) == 0)
|
|
vm_page_aflag_set(m, PGA_WRITEABLE);
|
|
|
|
error = moea64_pvo_enter(mmu, pvo, pvo_head, &oldpvo);
|
|
if (error == EEXIST) {
|
|
if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
|
|
oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
|
|
oldpvo->pvo_pte.prot == prot) {
|
|
/* Identical mapping already exists */
|
|
error = 0;
|
|
|
|
/* If not in page table, reinsert it */
|
|
if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
|
|
STAT_MOEA64(moea64_pte_overflow--);
|
|
MOEA64_PTE_INSERT(mmu, oldpvo);
|
|
}
|
|
|
|
/* Then just clean up and go home */
|
|
PV_PAGE_UNLOCK(m);
|
|
PMAP_UNLOCK(pmap);
|
|
free_pvo_entry(pvo);
|
|
goto out;
|
|
} else {
|
|
/* Otherwise, need to kill it first */
|
|
KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
|
|
"mapping does not match new mapping"));
|
|
moea64_pvo_remove_from_pmap(mmu, oldpvo);
|
|
moea64_pvo_enter(mmu, pvo, pvo_head, NULL);
|
|
}
|
|
}
|
|
PV_PAGE_UNLOCK(m);
|
|
PMAP_UNLOCK(pmap);
|
|
|
|
/* Free any dead pages */
|
|
if (error == EEXIST) {
|
|
moea64_pvo_remove_from_page(mmu, oldpvo);
|
|
free_pvo_entry(oldpvo);
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* Flush the page from the instruction cache if this page is
|
|
* mapped executable and cacheable.
|
|
*/
|
|
if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
|
|
(pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
|
|
vm_page_aflag_set(m, PGA_EXECUTABLE);
|
|
moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
|
|
}
|
|
return (KERN_SUCCESS);
|
|
}
|
|
|
|
static void
|
|
moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
|
|
vm_size_t sz)
|
|
{
|
|
|
|
/*
|
|
* This is much trickier than on older systems because
|
|
* we can't sync the icache on physical addresses directly
|
|
* without a direct map. Instead we check a couple of cases
|
|
* where the memory is already mapped in and, failing that,
|
|
* use the same trick we use for page zeroing to create
|
|
* a temporary mapping for this physical address.
|
|
*/
|
|
|
|
if (!pmap_bootstrapped) {
|
|
/*
|
|
* If PMAP is not bootstrapped, we are likely to be
|
|
* in real mode.
|
|
*/
|
|
__syncicache((void *)(uintptr_t)pa, sz);
|
|
} else if (pmap == kernel_pmap) {
|
|
__syncicache((void *)va, sz);
|
|
} else if (hw_direct_map) {
|
|
__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
|
|
} else {
|
|
/* Use the scratch page to set up a temp mapping */
|
|
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
|
|
moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
|
|
__syncicache((void *)(moea64_scratchpage_va[1] +
|
|
(va & ADDR_POFF)), sz);
|
|
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Maps a sequence of resident pages belonging to the same object.
|
|
* The sequence begins with the given page m_start. This page is
|
|
* mapped at the given virtual address start. Each subsequent page is
|
|
* mapped at a virtual address that is offset from start by the same
|
|
* amount as the page is offset from m_start within the object. The
|
|
* last page in the sequence is the page with the largest offset from
|
|
* m_start that can be mapped at a virtual address less than the given
|
|
* virtual address end. Not every virtual page between start and end
|
|
* is mapped; only those for which a resident page exists with the
|
|
* corresponding offset from m_start are mapped.
|
|
*/
|
|
void
|
|
moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
|
|
vm_page_t m_start, vm_prot_t prot)
|
|
{
|
|
vm_page_t m;
|
|
vm_pindex_t diff, psize;
|
|
|
|
VM_OBJECT_ASSERT_LOCKED(m_start->object);
|
|
|
|
psize = atop(end - start);
|
|
m = m_start;
|
|
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
|
|
moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
|
|
(VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
|
|
m = TAILQ_NEXT(m, listq);
|
|
}
|
|
}
|
|
|
|
void
|
|
moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot)
|
|
{
|
|
|
|
moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
|
|
PMAP_ENTER_NOSLEEP, 0);
|
|
}
|
|
|
|
vm_paddr_t
|
|
moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa;
|
|
|
|
PMAP_LOCK(pm);
|
|
pvo = moea64_pvo_find_va(pm, va);
|
|
if (pvo == NULL)
|
|
pa = 0;
|
|
else
|
|
pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
|
|
PMAP_UNLOCK(pm);
|
|
|
|
return (pa);
|
|
}
|
|
|
|
/*
|
|
* Atomically extract and hold the physical page with the given
|
|
* pmap and virtual address pair if that mapping permits the given
|
|
* protection.
|
|
*/
|
|
vm_page_t
|
|
moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_page_t m;
|
|
vm_paddr_t pa;
|
|
|
|
m = NULL;
|
|
pa = 0;
|
|
PMAP_LOCK(pmap);
|
|
retry:
|
|
pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
|
|
if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
|
|
if (vm_page_pa_tryrelock(pmap,
|
|
pvo->pvo_pte.pa & LPTE_RPGN, &pa))
|
|
goto retry;
|
|
m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
|
|
vm_page_wire(m);
|
|
}
|
|
PA_UNLOCK_COND(pa);
|
|
PMAP_UNLOCK(pmap);
|
|
return (m);
|
|
}
|
|
|
|
static mmu_t installed_mmu;
|
|
|
|
static void *
|
|
moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
|
|
uint8_t *flags, int wait)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_offset_t va;
|
|
vm_page_t m;
|
|
int needed_lock;
|
|
|
|
/*
|
|
* This entire routine is a horrible hack to avoid bothering kmem
|
|
* for new KVA addresses. Because this can get called from inside
|
|
* kmem allocation routines, calling kmem for a new address here
|
|
* can lead to multiply locking non-recursive mutexes.
|
|
*/
|
|
|
|
*flags = UMA_SLAB_PRIV;
|
|
needed_lock = !PMAP_LOCKED(kernel_pmap);
|
|
|
|
m = vm_page_alloc_domain(NULL, 0, domain,
|
|
malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
va = VM_PAGE_TO_PHYS(m);
|
|
|
|
pvo = alloc_pvo_entry(1 /* bootstrap */, 0);
|
|
|
|
pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
|
|
pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
|
|
|
|
if (needed_lock)
|
|
PMAP_LOCK(kernel_pmap);
|
|
|
|
init_pvo_entry(pvo, kernel_pmap, va);
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
|
|
moea64_pvo_enter(installed_mmu, pvo, NULL, NULL);
|
|
|
|
if (needed_lock)
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
|
|
if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
|
|
bzero((void *)va, PAGE_SIZE);
|
|
|
|
return (void *)va;
|
|
}
|
|
|
|
extern int elf32_nxstack;
|
|
|
|
void
|
|
moea64_init(mmu_t mmu)
|
|
{
|
|
|
|
CTR0(KTR_PMAP, "moea64_init");
|
|
|
|
moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
|
|
UMA_ZONE_VM | UMA_ZONE_NOFREE);
|
|
|
|
if (!hw_direct_map) {
|
|
installed_mmu = mmu;
|
|
uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
elf32_nxstack = 1;
|
|
#endif
|
|
|
|
moea64_initialized = TRUE;
|
|
}
|
|
|
|
boolean_t
|
|
moea64_is_referenced(mmu_t mmu, vm_page_t m)
|
|
{
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_is_referenced: page %p is not managed", m));
|
|
|
|
return (moea64_query_bit(mmu, m, LPTE_REF));
|
|
}
|
|
|
|
boolean_t
|
|
moea64_is_modified(mmu_t mmu, vm_page_t m)
|
|
{
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_is_modified: page %p is not managed", m));
|
|
|
|
/*
|
|
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
|
|
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
|
|
* is clear, no PTEs can have LPTE_CHG set.
|
|
*/
|
|
VM_OBJECT_ASSERT_LOCKED(m->object);
|
|
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
|
|
return (FALSE);
|
|
return (moea64_query_bit(mmu, m, LPTE_CHG));
|
|
}
|
|
|
|
boolean_t
|
|
moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
boolean_t rv = TRUE;
|
|
|
|
PMAP_LOCK(pmap);
|
|
pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
|
|
if (pvo != NULL)
|
|
rv = FALSE;
|
|
PMAP_UNLOCK(pmap);
|
|
return (rv);
|
|
}
|
|
|
|
void
|
|
moea64_clear_modify(mmu_t mmu, vm_page_t m)
|
|
{
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_clear_modify: page %p is not managed", m));
|
|
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
|
KASSERT(!vm_page_xbusied(m),
|
|
("moea64_clear_modify: page %p is exclusive busied", m));
|
|
|
|
/*
|
|
* If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
|
|
* set. If the object containing the page is locked and the page is
|
|
* not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
|
|
*/
|
|
if ((m->aflags & PGA_WRITEABLE) == 0)
|
|
return;
|
|
moea64_clear_bit(mmu, m, LPTE_CHG);
|
|
}
|
|
|
|
/*
|
|
* Clear the write and modified bits in each of the given page's mappings.
|
|
*/
|
|
void
|
|
moea64_remove_write(mmu_t mmu, vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int64_t refchg, ret;
|
|
pmap_t pmap;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_remove_write: page %p is not managed", m));
|
|
|
|
/*
|
|
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
|
|
* set by another thread while the object is locked. Thus,
|
|
* if PGA_WRITEABLE is clear, no page table entries need updating.
|
|
*/
|
|
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
|
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
|
|
return;
|
|
powerpc_sync();
|
|
PV_PAGE_LOCK(m);
|
|
refchg = 0;
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
if (!(pvo->pvo_vaddr & PVO_DEAD) &&
|
|
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
|
|
pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
|
|
ret = MOEA64_PTE_REPLACE(mmu, pvo,
|
|
MOEA64_PTE_PROT_UPDATE);
|
|
if (ret < 0)
|
|
ret = LPTE_CHG;
|
|
refchg |= ret;
|
|
if (pvo->pvo_pmap == kernel_pmap)
|
|
isync();
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
|
|
vm_page_dirty(m);
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
PV_PAGE_UNLOCK(m);
|
|
}
|
|
|
|
/*
|
|
* moea64_ts_referenced:
|
|
*
|
|
* Return a count of reference bits for a page, clearing those bits.
|
|
* It is not necessary for every reference bit to be cleared, but it
|
|
* is necessary that 0 only be returned when there are truly no
|
|
* reference bits set.
|
|
*
|
|
* XXX: The exact number of bits to check and clear is a matter that
|
|
* should be tested and standardized at some point in the future for
|
|
* optimal aging of shared pages.
|
|
*/
|
|
int
|
|
moea64_ts_referenced(mmu_t mmu, vm_page_t m)
|
|
{
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_ts_referenced: page %p is not managed", m));
|
|
return (moea64_clear_bit(mmu, m, LPTE_REF));
|
|
}
|
|
|
|
/*
|
|
* Modify the WIMG settings of all mappings for a page.
|
|
*/
|
|
void
|
|
moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int64_t refchg;
|
|
pmap_t pmap;
|
|
uint64_t lo;
|
|
|
|
if ((m->oflags & VPO_UNMANAGED) != 0) {
|
|
m->md.mdpg_cache_attrs = ma;
|
|
return;
|
|
}
|
|
|
|
lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
|
|
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
if (!(pvo->pvo_vaddr & PVO_DEAD)) {
|
|
pvo->pvo_pte.pa &= ~LPTE_WIMG;
|
|
pvo->pvo_pte.pa |= lo;
|
|
refchg = MOEA64_PTE_REPLACE(mmu, pvo,
|
|
MOEA64_PTE_INVALIDATE);
|
|
if (refchg < 0)
|
|
refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
|
|
LPTE_CHG : 0;
|
|
if ((pvo->pvo_vaddr & PVO_MANAGED) &&
|
|
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
|
|
refchg |=
|
|
atomic_readandclear_32(&m->md.mdpg_attrs);
|
|
if (refchg & LPTE_CHG)
|
|
vm_page_dirty(m);
|
|
if (refchg & LPTE_REF)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
}
|
|
if (pvo->pvo_pmap == kernel_pmap)
|
|
isync();
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
m->md.mdpg_cache_attrs = ma;
|
|
PV_PAGE_UNLOCK(m);
|
|
}
|
|
|
|
/*
|
|
* Map a wired page into kernel virtual address space.
|
|
*/
|
|
void
|
|
moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
|
|
{
|
|
int error;
|
|
struct pvo_entry *pvo, *oldpvo;
|
|
|
|
pvo = alloc_pvo_entry(0, M_WAITOK);
|
|
pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
|
|
pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
oldpvo = moea64_pvo_find_va(kernel_pmap, va);
|
|
if (oldpvo != NULL)
|
|
moea64_pvo_remove_from_pmap(mmu, oldpvo);
|
|
init_pvo_entry(pvo, kernel_pmap, va);
|
|
error = moea64_pvo_enter(mmu, pvo, NULL, NULL);
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
|
|
/* Free any dead pages */
|
|
if (oldpvo != NULL) {
|
|
moea64_pvo_remove_from_page(mmu, oldpvo);
|
|
free_pvo_entry(oldpvo);
|
|
}
|
|
|
|
if (error != 0 && error != ENOENT)
|
|
panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
|
|
(uintmax_t)pa, error);
|
|
}
|
|
|
|
void
|
|
moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
|
|
{
|
|
|
|
moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
|
|
}
|
|
|
|
/*
|
|
* Extract the physical page address associated with the given kernel virtual
|
|
* address.
|
|
*/
|
|
vm_paddr_t
|
|
moea64_kextract(mmu_t mmu, vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa;
|
|
|
|
/*
|
|
* Shortcut the direct-mapped case when applicable. We never put
|
|
* anything but 1:1 (or 62-bit aliased) mappings below
|
|
* VM_MIN_KERNEL_ADDRESS.
|
|
*/
|
|
if (va < VM_MIN_KERNEL_ADDRESS)
|
|
return (va & ~DMAP_BASE_ADDRESS);
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
pvo = moea64_pvo_find_va(kernel_pmap, va);
|
|
KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
|
|
va));
|
|
pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
return (pa);
|
|
}
|
|
|
|
/*
|
|
* Remove a wired page from kernel virtual address space.
|
|
*/
|
|
void
|
|
moea64_kremove(mmu_t mmu, vm_offset_t va)
|
|
{
|
|
moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Provide a kernel pointer corresponding to a given userland pointer.
|
|
* The returned pointer is valid until the next time this function is
|
|
* called in this thread. This is used internally in copyin/copyout.
|
|
*/
|
|
static int
|
|
moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
|
|
void **kaddr, size_t ulen, size_t *klen)
|
|
{
|
|
size_t l;
|
|
#ifdef __powerpc64__
|
|
struct slb *slb;
|
|
#endif
|
|
register_t slbv;
|
|
|
|
*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
|
|
l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
|
|
if (l > ulen)
|
|
l = ulen;
|
|
if (klen)
|
|
*klen = l;
|
|
else if (l != ulen)
|
|
return (EFAULT);
|
|
|
|
#ifdef __powerpc64__
|
|
/* Try lockless look-up first */
|
|
slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
|
|
|
|
if (slb == NULL) {
|
|
/* If it isn't there, we need to pre-fault the VSID */
|
|
PMAP_LOCK(pm);
|
|
slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
|
|
PMAP_UNLOCK(pm);
|
|
} else {
|
|
slbv = slb->slbv;
|
|
}
|
|
|
|
/* Mark segment no-execute */
|
|
slbv |= SLBV_N;
|
|
#else
|
|
slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
|
|
|
|
/* Mark segment no-execute */
|
|
slbv |= SR_N;
|
|
#endif
|
|
|
|
/* If we have already set this VSID, we can just return */
|
|
if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
|
|
return (0);
|
|
|
|
__asm __volatile("isync");
|
|
curthread->td_pcb->pcb_cpu.aim.usr_segm =
|
|
(uintptr_t)uaddr >> ADDR_SR_SHFT;
|
|
curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
|
|
#ifdef __powerpc64__
|
|
__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
|
|
"r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
|
|
#else
|
|
__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Figure out where a given kernel pointer (usually in a fault) points
|
|
* to from the VM's perspective, potentially remapping into userland's
|
|
* address space.
|
|
*/
|
|
static int
|
|
moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
|
|
vm_offset_t *decoded_addr)
|
|
{
|
|
vm_offset_t user_sr;
|
|
|
|
if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
|
|
user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
|
|
addr &= ADDR_PIDX | ADDR_POFF;
|
|
addr |= user_sr << ADDR_SR_SHFT;
|
|
*decoded_addr = addr;
|
|
*is_user = 1;
|
|
} else {
|
|
*decoded_addr = addr;
|
|
*is_user = 0;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Map a range of physical addresses into kernel virtual address space.
|
|
*
|
|
* The value passed in *virt is a suggested virtual address for the mapping.
|
|
* Architectures which can support a direct-mapped physical to virtual region
|
|
* can return the appropriate address within that region, leaving '*virt'
|
|
* unchanged. Other architectures should map the pages starting at '*virt' and
|
|
* update '*virt' with the first usable address after the mapped region.
|
|
*/
|
|
vm_offset_t
|
|
moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
|
|
vm_paddr_t pa_end, int prot)
|
|
{
|
|
vm_offset_t sva, va;
|
|
|
|
if (hw_direct_map) {
|
|
/*
|
|
* Check if every page in the region is covered by the direct
|
|
* map. The direct map covers all of physical memory. Use
|
|
* moea64_calc_wimg() as a shortcut to see if the page is in
|
|
* physical memory as a way to see if the direct map covers it.
|
|
*/
|
|
for (va = pa_start; va < pa_end; va += PAGE_SIZE)
|
|
if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
|
|
break;
|
|
if (va == pa_end)
|
|
return (PHYS_TO_DMAP(pa_start));
|
|
}
|
|
sva = *virt;
|
|
va = sva;
|
|
/* XXX respect prot argument */
|
|
for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
|
|
moea64_kenter(mmu, va, pa_start);
|
|
*virt = va;
|
|
|
|
return (sva);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the pmap's pv is one of the first
|
|
* 16 pvs linked to from this page. This count may
|
|
* be changed upwards or downwards in the future; it
|
|
* is only necessary that true be returned for a small
|
|
* subset of pmaps for proper page aging.
|
|
*/
|
|
boolean_t
|
|
moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
|
|
{
|
|
int loops;
|
|
struct pvo_entry *pvo;
|
|
boolean_t rv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_page_exists_quick: page %p is not managed", m));
|
|
loops = 0;
|
|
rv = FALSE;
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
|
|
rv = TRUE;
|
|
break;
|
|
}
|
|
if (++loops >= 16)
|
|
break;
|
|
}
|
|
PV_PAGE_UNLOCK(m);
|
|
return (rv);
|
|
}
|
|
|
|
void
|
|
moea64_page_init(mmu_t mmu __unused, vm_page_t m)
|
|
{
|
|
|
|
m->md.mdpg_attrs = 0;
|
|
m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
|
|
LIST_INIT(&m->md.mdpg_pvoh);
|
|
}
|
|
|
|
/*
|
|
* Return the number of managed mappings to the given physical page
|
|
* that are wired.
|
|
*/
|
|
int
|
|
moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int count;
|
|
|
|
count = 0;
|
|
if ((m->oflags & VPO_UNMANAGED) != 0)
|
|
return (count);
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
|
|
if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
|
|
count++;
|
|
PV_PAGE_UNLOCK(m);
|
|
return (count);
|
|
}
|
|
|
|
static uintptr_t moea64_vsidcontext;
|
|
|
|
uintptr_t
|
|
moea64_get_unique_vsid(void) {
|
|
u_int entropy;
|
|
register_t hash;
|
|
uint32_t mask;
|
|
int i;
|
|
|
|
entropy = 0;
|
|
__asm __volatile("mftb %0" : "=r"(entropy));
|
|
|
|
mtx_lock(&moea64_slb_mutex);
|
|
for (i = 0; i < NVSIDS; i += VSID_NBPW) {
|
|
u_int n;
|
|
|
|
/*
|
|
* Create a new value by mutiplying by a prime and adding in
|
|
* entropy from the timebase register. This is to make the
|
|
* VSID more random so that the PT hash function collides
|
|
* less often. (Note that the prime casues gcc to do shifts
|
|
* instead of a multiply.)
|
|
*/
|
|
moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
|
|
hash = moea64_vsidcontext & (NVSIDS - 1);
|
|
if (hash == 0) /* 0 is special, avoid it */
|
|
continue;
|
|
n = hash >> 5;
|
|
mask = 1 << (hash & (VSID_NBPW - 1));
|
|
hash = (moea64_vsidcontext & VSID_HASHMASK);
|
|
if (moea64_vsid_bitmap[n] & mask) { /* collision? */
|
|
/* anything free in this bucket? */
|
|
if (moea64_vsid_bitmap[n] == 0xffffffff) {
|
|
entropy = (moea64_vsidcontext >> 20);
|
|
continue;
|
|
}
|
|
i = ffs(~moea64_vsid_bitmap[n]) - 1;
|
|
mask = 1 << i;
|
|
hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
|
|
hash |= i;
|
|
}
|
|
if (hash == VSID_VRMA) /* also special, avoid this too */
|
|
continue;
|
|
KASSERT(!(moea64_vsid_bitmap[n] & mask),
|
|
("Allocating in-use VSID %#zx\n", hash));
|
|
moea64_vsid_bitmap[n] |= mask;
|
|
mtx_unlock(&moea64_slb_mutex);
|
|
return (hash);
|
|
}
|
|
|
|
mtx_unlock(&moea64_slb_mutex);
|
|
panic("%s: out of segments",__func__);
|
|
}
|
|
|
|
#ifdef __powerpc64__
|
|
void
|
|
moea64_pinit(mmu_t mmu, pmap_t pmap)
|
|
{
|
|
|
|
RB_INIT(&pmap->pmap_pvo);
|
|
|
|
pmap->pm_slb_tree_root = slb_alloc_tree();
|
|
pmap->pm_slb = slb_alloc_user_cache();
|
|
pmap->pm_slb_len = 0;
|
|
}
|
|
#else
|
|
void
|
|
moea64_pinit(mmu_t mmu, pmap_t pmap)
|
|
{
|
|
int i;
|
|
uint32_t hash;
|
|
|
|
RB_INIT(&pmap->pmap_pvo);
|
|
|
|
if (pmap_bootstrapped)
|
|
pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
|
|
(vm_offset_t)pmap);
|
|
else
|
|
pmap->pmap_phys = pmap;
|
|
|
|
/*
|
|
* Allocate some segment registers for this pmap.
|
|
*/
|
|
hash = moea64_get_unique_vsid();
|
|
|
|
for (i = 0; i < 16; i++)
|
|
pmap->pm_sr[i] = VSID_MAKE(i, hash);
|
|
|
|
KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the pmap associated with process 0.
|
|
*/
|
|
void
|
|
moea64_pinit0(mmu_t mmu, pmap_t pm)
|
|
{
|
|
|
|
PMAP_LOCK_INIT(pm);
|
|
moea64_pinit(mmu, pm);
|
|
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
|
|
}
|
|
|
|
/*
|
|
* Set the physical protection on the specified range of this map as requested.
|
|
*/
|
|
static void
|
|
moea64_pvo_protect(mmu_t mmu, pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
|
|
{
|
|
struct vm_page *pg;
|
|
vm_prot_t oldprot;
|
|
int32_t refchg;
|
|
|
|
PMAP_LOCK_ASSERT(pm, MA_OWNED);
|
|
|
|
/*
|
|
* Change the protection of the page.
|
|
*/
|
|
oldprot = pvo->pvo_pte.prot;
|
|
pvo->pvo_pte.prot = prot;
|
|
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
|
|
|
|
/*
|
|
* If the PVO is in the page table, update mapping
|
|
*/
|
|
refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
|
|
if (refchg < 0)
|
|
refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
|
|
|
|
if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
|
|
(pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
|
|
if ((pg->oflags & VPO_UNMANAGED) == 0)
|
|
vm_page_aflag_set(pg, PGA_EXECUTABLE);
|
|
moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
|
|
pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Update vm about the REF/CHG bits if the page is managed and we have
|
|
* removed write access.
|
|
*/
|
|
if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
|
|
(oldprot & VM_PROT_WRITE)) {
|
|
refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
|
|
if (refchg & LPTE_CHG)
|
|
vm_page_dirty(pg);
|
|
if (refchg & LPTE_REF)
|
|
vm_page_aflag_set(pg, PGA_REFERENCED);
|
|
}
|
|
}
|
|
|
|
void
|
|
moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
|
|
vm_prot_t prot)
|
|
{
|
|
struct pvo_entry *pvo, *tpvo, key;
|
|
|
|
CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
|
|
sva, eva, prot);
|
|
|
|
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
|
|
("moea64_protect: non current pmap"));
|
|
|
|
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
|
|
moea64_remove(mmu, pm, sva, eva);
|
|
return;
|
|
}
|
|
|
|
PMAP_LOCK(pm);
|
|
key.pvo_vaddr = sva;
|
|
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
|
|
pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
|
|
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
|
|
moea64_pvo_protect(mmu, pm, pvo, prot);
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
/*
|
|
* Map a list of wired pages into kernel virtual address space. This is
|
|
* intended for temporary mappings which do not need page modification or
|
|
* references recorded. Existing mappings in the region are overwritten.
|
|
*/
|
|
void
|
|
moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
|
|
{
|
|
while (count-- > 0) {
|
|
moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
|
|
va += PAGE_SIZE;
|
|
m++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove page mappings from kernel virtual address space. Intended for
|
|
* temporary mappings entered by moea64_qenter.
|
|
*/
|
|
void
|
|
moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
|
|
{
|
|
while (count-- > 0) {
|
|
moea64_kremove(mmu, va);
|
|
va += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
void
|
|
moea64_release_vsid(uint64_t vsid)
|
|
{
|
|
int idx, mask;
|
|
|
|
mtx_lock(&moea64_slb_mutex);
|
|
idx = vsid & (NVSIDS-1);
|
|
mask = 1 << (idx % VSID_NBPW);
|
|
idx /= VSID_NBPW;
|
|
KASSERT(moea64_vsid_bitmap[idx] & mask,
|
|
("Freeing unallocated VSID %#jx", vsid));
|
|
moea64_vsid_bitmap[idx] &= ~mask;
|
|
mtx_unlock(&moea64_slb_mutex);
|
|
}
|
|
|
|
|
|
void
|
|
moea64_release(mmu_t mmu, pmap_t pmap)
|
|
{
|
|
|
|
/*
|
|
* Free segment registers' VSIDs
|
|
*/
|
|
#ifdef __powerpc64__
|
|
slb_free_tree(pmap);
|
|
slb_free_user_cache(pmap->pm_slb);
|
|
#else
|
|
KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
|
|
|
|
moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Remove all pages mapped by the specified pmap
|
|
*/
|
|
void
|
|
moea64_remove_pages(mmu_t mmu, pmap_t pm)
|
|
{
|
|
struct pvo_entry *pvo, *tpvo;
|
|
struct pvo_dlist tofree;
|
|
|
|
SLIST_INIT(&tofree);
|
|
|
|
PMAP_LOCK(pm);
|
|
RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
|
|
if (pvo->pvo_vaddr & PVO_WIRED)
|
|
continue;
|
|
|
|
/*
|
|
* For locking reasons, remove this from the page table and
|
|
* pmap, but save delinking from the vm_page for a second
|
|
* pass
|
|
*/
|
|
moea64_pvo_remove_from_pmap(mmu, pvo);
|
|
SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
|
|
while (!SLIST_EMPTY(&tofree)) {
|
|
pvo = SLIST_FIRST(&tofree);
|
|
SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
|
|
moea64_pvo_remove_from_page(mmu, pvo);
|
|
free_pvo_entry(pvo);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove the given range of addresses from the specified map.
|
|
*/
|
|
void
|
|
moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
struct pvo_entry *pvo, *tpvo, key;
|
|
struct pvo_dlist tofree;
|
|
|
|
/*
|
|
* Perform an unsynchronized read. This is, however, safe.
|
|
*/
|
|
if (pm->pm_stats.resident_count == 0)
|
|
return;
|
|
|
|
key.pvo_vaddr = sva;
|
|
|
|
SLIST_INIT(&tofree);
|
|
|
|
PMAP_LOCK(pm);
|
|
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
|
|
pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
|
|
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
|
|
|
|
/*
|
|
* For locking reasons, remove this from the page table and
|
|
* pmap, but save delinking from the vm_page for a second
|
|
* pass
|
|
*/
|
|
moea64_pvo_remove_from_pmap(mmu, pvo);
|
|
SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
|
|
while (!SLIST_EMPTY(&tofree)) {
|
|
pvo = SLIST_FIRST(&tofree);
|
|
SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
|
|
moea64_pvo_remove_from_page(mmu, pvo);
|
|
free_pvo_entry(pvo);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
|
|
* will reflect changes in pte's back to the vm_page.
|
|
*/
|
|
void
|
|
moea64_remove_all(mmu_t mmu, vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo, *next_pvo;
|
|
struct pvo_head freequeue;
|
|
int wasdead;
|
|
pmap_t pmap;
|
|
|
|
LIST_INIT(&freequeue);
|
|
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
wasdead = (pvo->pvo_vaddr & PVO_DEAD);
|
|
if (!wasdead)
|
|
moea64_pvo_remove_from_pmap(mmu, pvo);
|
|
moea64_pvo_remove_from_page_locked(mmu, pvo, m);
|
|
if (!wasdead)
|
|
LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
|
|
PMAP_UNLOCK(pmap);
|
|
|
|
}
|
|
KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
|
|
KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable"));
|
|
PV_PAGE_UNLOCK(m);
|
|
|
|
/* Clean up UMA allocations */
|
|
LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
|
|
free_pvo_entry(pvo);
|
|
}
|
|
|
|
/*
|
|
* Allocate a physical page of memory directly from the phys_avail map.
|
|
* Can only be called from moea64_bootstrap before avail start and end are
|
|
* calculated.
|
|
*/
|
|
vm_offset_t
|
|
moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
|
|
{
|
|
vm_offset_t s, e;
|
|
int i, j;
|
|
|
|
size = round_page(size);
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
if (align != 0)
|
|
s = roundup2(phys_avail[i], align);
|
|
else
|
|
s = phys_avail[i];
|
|
e = s + size;
|
|
|
|
if (s < phys_avail[i] || e > phys_avail[i + 1])
|
|
continue;
|
|
|
|
if (s + size > platform_real_maxaddr())
|
|
continue;
|
|
|
|
if (s == phys_avail[i]) {
|
|
phys_avail[i] += size;
|
|
} else if (e == phys_avail[i + 1]) {
|
|
phys_avail[i + 1] -= size;
|
|
} else {
|
|
for (j = phys_avail_count * 2; j > i; j -= 2) {
|
|
phys_avail[j] = phys_avail[j - 2];
|
|
phys_avail[j + 1] = phys_avail[j - 1];
|
|
}
|
|
|
|
phys_avail[i + 3] = phys_avail[i + 1];
|
|
phys_avail[i + 1] = s;
|
|
phys_avail[i + 2] = e;
|
|
phys_avail_count++;
|
|
}
|
|
|
|
return (s);
|
|
}
|
|
panic("moea64_bootstrap_alloc: could not allocate memory");
|
|
}
|
|
|
|
static int
|
|
moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head,
|
|
struct pvo_entry **oldpvop)
|
|
{
|
|
int first, err;
|
|
struct pvo_entry *old_pvo;
|
|
|
|
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
|
|
|
|
STAT_MOEA64(moea64_pvo_enter_calls++);
|
|
|
|
/*
|
|
* Add to pmap list
|
|
*/
|
|
old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
|
|
|
|
if (old_pvo != NULL) {
|
|
if (oldpvop != NULL)
|
|
*oldpvop = old_pvo;
|
|
return (EEXIST);
|
|
}
|
|
|
|
/*
|
|
* Remember if the list was empty and therefore will be the first
|
|
* item.
|
|
*/
|
|
if (pvo_head != NULL) {
|
|
if (LIST_FIRST(pvo_head) == NULL)
|
|
first = 1;
|
|
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
|
|
}
|
|
|
|
if (pvo->pvo_vaddr & PVO_WIRED)
|
|
pvo->pvo_pmap->pm_stats.wired_count++;
|
|
pvo->pvo_pmap->pm_stats.resident_count++;
|
|
|
|
/*
|
|
* Insert it into the hardware page table
|
|
*/
|
|
err = MOEA64_PTE_INSERT(mmu, pvo);
|
|
if (err != 0) {
|
|
panic("moea64_pvo_enter: overflow");
|
|
}
|
|
|
|
STAT_MOEA64(moea64_pvo_entries++);
|
|
|
|
if (pvo->pvo_pmap == kernel_pmap)
|
|
isync();
|
|
|
|
#ifdef __powerpc64__
|
|
/*
|
|
* Make sure all our bootstrap mappings are in the SLB as soon
|
|
* as virtual memory is switched on.
|
|
*/
|
|
if (!pmap_bootstrapped)
|
|
moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
|
|
pvo->pvo_vaddr & PVO_LARGE);
|
|
#endif
|
|
|
|
return (first ? ENOENT : 0);
|
|
}
|
|
|
|
static void
|
|
moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
|
|
{
|
|
struct vm_page *pg;
|
|
int32_t refchg;
|
|
|
|
KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
|
|
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
|
|
KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
|
|
|
|
/*
|
|
* If there is an active pte entry, we need to deactivate it
|
|
*/
|
|
refchg = MOEA64_PTE_UNSET(mmu, pvo);
|
|
if (refchg < 0) {
|
|
/*
|
|
* If it was evicted from the page table, be pessimistic and
|
|
* dirty the page.
|
|
*/
|
|
if (pvo->pvo_pte.prot & VM_PROT_WRITE)
|
|
refchg = LPTE_CHG;
|
|
else
|
|
refchg = 0;
|
|
}
|
|
|
|
/*
|
|
* Update our statistics.
|
|
*/
|
|
pvo->pvo_pmap->pm_stats.resident_count--;
|
|
if (pvo->pvo_vaddr & PVO_WIRED)
|
|
pvo->pvo_pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Remove this PVO from the pmap list.
|
|
*/
|
|
RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
|
|
|
|
/*
|
|
* Mark this for the next sweep
|
|
*/
|
|
pvo->pvo_vaddr |= PVO_DEAD;
|
|
|
|
/* Send RC bits to VM */
|
|
if ((pvo->pvo_vaddr & PVO_MANAGED) &&
|
|
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
|
|
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
|
|
if (pg != NULL) {
|
|
refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
|
|
if (refchg & LPTE_CHG)
|
|
vm_page_dirty(pg);
|
|
if (refchg & LPTE_REF)
|
|
vm_page_aflag_set(pg, PGA_REFERENCED);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
moea64_pvo_remove_from_page_locked(mmu_t mmu, struct pvo_entry *pvo,
|
|
vm_page_t m)
|
|
{
|
|
|
|
KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
|
|
|
|
/* Use NULL pmaps as a sentinel for races in page deletion */
|
|
if (pvo->pvo_pmap == NULL)
|
|
return;
|
|
pvo->pvo_pmap = NULL;
|
|
|
|
/*
|
|
* Update vm about page writeability/executability if managed
|
|
*/
|
|
PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
|
|
if (pvo->pvo_vaddr & PVO_MANAGED) {
|
|
if (m != NULL) {
|
|
LIST_REMOVE(pvo, pvo_vlink);
|
|
if (LIST_EMPTY(vm_page_to_pvoh(m)))
|
|
vm_page_aflag_clear(m,
|
|
PGA_WRITEABLE | PGA_EXECUTABLE);
|
|
}
|
|
}
|
|
|
|
STAT_MOEA64(moea64_pvo_entries--);
|
|
STAT_MOEA64(moea64_pvo_remove_calls++);
|
|
}
|
|
|
|
static void
|
|
moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
|
|
{
|
|
vm_page_t pg = NULL;
|
|
|
|
if (pvo->pvo_vaddr & PVO_MANAGED)
|
|
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
|
|
|
|
PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
|
|
moea64_pvo_remove_from_page_locked(mmu, pvo, pg);
|
|
PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
|
|
}
|
|
|
|
static struct pvo_entry *
|
|
moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
|
|
{
|
|
struct pvo_entry key;
|
|
|
|
PMAP_LOCK_ASSERT(pm, MA_OWNED);
|
|
|
|
key.pvo_vaddr = va & ~ADDR_POFF;
|
|
return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
|
|
}
|
|
|
|
static boolean_t
|
|
moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int64_t ret;
|
|
boolean_t rv;
|
|
|
|
/*
|
|
* See if this bit is stored in the page already.
|
|
*/
|
|
if (m->md.mdpg_attrs & ptebit)
|
|
return (TRUE);
|
|
|
|
/*
|
|
* Examine each PTE. Sync so that any pending REF/CHG bits are
|
|
* flushed to the PTEs.
|
|
*/
|
|
rv = FALSE;
|
|
powerpc_sync();
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
ret = 0;
|
|
|
|
/*
|
|
* See if this pvo has a valid PTE. if so, fetch the
|
|
* REF/CHG bits from the valid PTE. If the appropriate
|
|
* ptebit is set, return success.
|
|
*/
|
|
PMAP_LOCK(pvo->pvo_pmap);
|
|
if (!(pvo->pvo_vaddr & PVO_DEAD))
|
|
ret = MOEA64_PTE_SYNCH(mmu, pvo);
|
|
PMAP_UNLOCK(pvo->pvo_pmap);
|
|
|
|
if (ret > 0) {
|
|
atomic_set_32(&m->md.mdpg_attrs,
|
|
ret & (LPTE_CHG | LPTE_REF));
|
|
if (ret & ptebit) {
|
|
rv = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
PV_PAGE_UNLOCK(m);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
static u_int
|
|
moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
|
|
{
|
|
u_int count;
|
|
struct pvo_entry *pvo;
|
|
int64_t ret;
|
|
|
|
/*
|
|
* Sync so that any pending REF/CHG bits are flushed to the PTEs (so
|
|
* we can reset the right ones).
|
|
*/
|
|
powerpc_sync();
|
|
|
|
/*
|
|
* For each pvo entry, clear the pte's ptebit.
|
|
*/
|
|
count = 0;
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
ret = 0;
|
|
|
|
PMAP_LOCK(pvo->pvo_pmap);
|
|
if (!(pvo->pvo_vaddr & PVO_DEAD))
|
|
ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
|
|
PMAP_UNLOCK(pvo->pvo_pmap);
|
|
|
|
if (ret > 0 && (ret & ptebit))
|
|
count++;
|
|
}
|
|
atomic_clear_32(&m->md.mdpg_attrs, ptebit);
|
|
PV_PAGE_UNLOCK(m);
|
|
|
|
return (count);
|
|
}
|
|
|
|
boolean_t
|
|
moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
|
|
{
|
|
struct pvo_entry *pvo, key;
|
|
vm_offset_t ppa;
|
|
int error = 0;
|
|
|
|
if (hw_direct_map && mem_valid(pa, size) == 0)
|
|
return (0);
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
ppa = pa & ~ADDR_POFF;
|
|
key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
|
|
for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
|
|
ppa < pa + size; ppa += PAGE_SIZE,
|
|
pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
|
|
if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
}
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Map a set of physical memory pages into the kernel virtual
|
|
* address space. Return a pointer to where it is mapped. This
|
|
* routine is intended to be used for mapping device memory,
|
|
* NOT real memory.
|
|
*/
|
|
void *
|
|
moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
|
|
{
|
|
vm_offset_t va, tmpva, ppa, offset;
|
|
|
|
ppa = trunc_page(pa);
|
|
offset = pa & PAGE_MASK;
|
|
size = roundup2(offset + size, PAGE_SIZE);
|
|
|
|
va = kva_alloc(size);
|
|
|
|
if (!va)
|
|
panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
|
|
|
|
for (tmpva = va; size > 0;) {
|
|
moea64_kenter_attr(mmu, tmpva, ppa, ma);
|
|
size -= PAGE_SIZE;
|
|
tmpva += PAGE_SIZE;
|
|
ppa += PAGE_SIZE;
|
|
}
|
|
|
|
return ((void *)(va + offset));
|
|
}
|
|
|
|
void *
|
|
moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
|
|
{
|
|
|
|
return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
|
|
}
|
|
|
|
void
|
|
moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
|
|
{
|
|
vm_offset_t base, offset;
|
|
|
|
base = trunc_page(va);
|
|
offset = va & PAGE_MASK;
|
|
size = roundup2(offset + size, PAGE_SIZE);
|
|
|
|
kva_free(base, size);
|
|
}
|
|
|
|
void
|
|
moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_offset_t lim;
|
|
vm_paddr_t pa;
|
|
vm_size_t len;
|
|
|
|
if (__predict_false(pm == NULL))
|
|
pm = &curthread->td_proc->p_vmspace->vm_pmap;
|
|
|
|
PMAP_LOCK(pm);
|
|
while (sz > 0) {
|
|
lim = round_page(va+1);
|
|
len = MIN(lim - va, sz);
|
|
pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
|
|
if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
|
|
pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
|
|
moea64_syncicache(mmu, pm, va, pa, len);
|
|
}
|
|
va += len;
|
|
sz -= len;
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
void
|
|
moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
|
|
{
|
|
|
|
*va = (void *)(uintptr_t)pa;
|
|
}
|
|
|
|
extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
|
|
|
|
void
|
|
moea64_scan_init(mmu_t mmu)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_offset_t va;
|
|
int i;
|
|
|
|
if (!do_minidump) {
|
|
/* Initialize phys. segments for dumpsys(). */
|
|
memset(&dump_map, 0, sizeof(dump_map));
|
|
mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz);
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
dump_map[i].pa_start = pregions[i].mr_start;
|
|
dump_map[i].pa_size = pregions[i].mr_size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Virtual segments for minidumps: */
|
|
memset(&dump_map, 0, sizeof(dump_map));
|
|
|
|
/* 1st: kernel .data and .bss. */
|
|
dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
|
|
dump_map[0].pa_size = round_page((uintptr_t)_end) -
|
|
dump_map[0].pa_start;
|
|
|
|
/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
|
|
dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
|
|
dump_map[1].pa_size = round_page(msgbufp->msg_size);
|
|
|
|
/* 3rd: kernel VM. */
|
|
va = dump_map[1].pa_start + dump_map[1].pa_size;
|
|
/* Find start of next chunk (from va). */
|
|
while (va < virtual_end) {
|
|
/* Don't dump the buffer cache. */
|
|
if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
|
|
va = kmi.buffer_eva;
|
|
continue;
|
|
}
|
|
pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
|
|
if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
|
|
break;
|
|
va += PAGE_SIZE;
|
|
}
|
|
if (va < virtual_end) {
|
|
dump_map[2].pa_start = va;
|
|
va += PAGE_SIZE;
|
|
/* Find last page in chunk. */
|
|
while (va < virtual_end) {
|
|
/* Don't run into the buffer cache. */
|
|
if (va == kmi.buffer_sva)
|
|
break;
|
|
pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
|
|
if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
|
|
break;
|
|
va += PAGE_SIZE;
|
|
}
|
|
dump_map[2].pa_size = va - dump_map[2].pa_start;
|
|
}
|
|
}
|
|
|