a451f52058
o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
363 lines
9.5 KiB
C
363 lines
9.5 KiB
C
/*
|
|
* Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by John Birrell.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include <signal.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#ifdef _THREAD_SAFE
|
|
#include <pthread.h>
|
|
#include "pthread_private.h"
|
|
|
|
/*
|
|
* State change macro for signal handler:
|
|
*/
|
|
#define PTHREAD_SIG_NEW_STATE(thrd, newstate) { \
|
|
if ((_thread_run->sched_defer_count == 0) && \
|
|
(_thread_kern_in_sched == 0)) { \
|
|
PTHREAD_NEW_STATE(thrd, newstate); \
|
|
} else { \
|
|
_waitingq_check_reqd = 1; \
|
|
PTHREAD_SET_STATE(thrd, newstate); \
|
|
} \
|
|
}
|
|
|
|
/* Static variables: */
|
|
static int volatile yield_on_unlock_thread = 0;
|
|
static spinlock_t thread_link_list_lock = _SPINLOCK_INITIALIZER;
|
|
|
|
/* Lock the thread list: */
|
|
void
|
|
_lock_thread_list()
|
|
{
|
|
/* Lock the thread list: */
|
|
_SPINLOCK(&thread_link_list_lock);
|
|
}
|
|
|
|
/* Lock the thread list: */
|
|
void
|
|
_unlock_thread_list()
|
|
{
|
|
/* Unlock the thread list: */
|
|
_SPINUNLOCK(&thread_link_list_lock);
|
|
|
|
/*
|
|
* Check if a scheduler interrupt occurred while the thread
|
|
* list was locked:
|
|
*/
|
|
if (yield_on_unlock_thread) {
|
|
/* Reset the interrupt flag: */
|
|
yield_on_unlock_thread = 0;
|
|
|
|
/* This thread has overstayed it's welcome: */
|
|
sched_yield();
|
|
}
|
|
}
|
|
|
|
void
|
|
_thread_sig_handler(int sig, int code, struct sigcontext * scp)
|
|
{
|
|
char c;
|
|
int i;
|
|
pthread_t pthread;
|
|
|
|
/*
|
|
* Check if the pthread kernel has unblocked signals (or is about to)
|
|
* and was on its way into a _select when the current
|
|
* signal interrupted it:
|
|
*/
|
|
if (_thread_kern_in_select) {
|
|
/* Cast the signal number to a character variable: */
|
|
c = sig;
|
|
|
|
/*
|
|
* Write the signal number to the kernel pipe so that it will
|
|
* be ready to read when this signal handler returns. This
|
|
* means that the _select call will complete
|
|
* immediately.
|
|
*/
|
|
_thread_sys_write(_thread_kern_pipe[1], &c, 1);
|
|
}
|
|
/* Check if the signal requires a dump of thread information: */
|
|
if (sig == SIGINFO)
|
|
/* Dump thread information to file: */
|
|
_thread_dump_info();
|
|
|
|
/* Check if an interval timer signal: */
|
|
else if (sig == _SCHED_SIGNAL) {
|
|
/* Check if the scheduler interrupt has come at an
|
|
* unfortunate time which one of the threads is
|
|
* modifying the thread list:
|
|
*/
|
|
if (thread_link_list_lock.access_lock)
|
|
/*
|
|
* Set a flag so that the thread that has
|
|
* the lock yields when it unlocks the
|
|
* thread list:
|
|
*/
|
|
yield_on_unlock_thread = 1;
|
|
|
|
/*
|
|
* Check if the scheduler interrupt has come when
|
|
* the currently running thread has deferred thread
|
|
* scheduling.
|
|
*/
|
|
else if (_thread_run->sched_defer_count)
|
|
_thread_run->yield_on_sched_undefer = 1;
|
|
|
|
/*
|
|
* Check if the kernel has not been interrupted while
|
|
* executing scheduler code:
|
|
*/
|
|
else if (!_thread_kern_in_sched) {
|
|
/*
|
|
* Schedule the next thread. This function is not
|
|
* expected to return because it will do a longjmp
|
|
* instead.
|
|
*/
|
|
_thread_kern_sched(scp);
|
|
|
|
/*
|
|
* This point should not be reached, so abort the
|
|
* process:
|
|
*/
|
|
PANIC("Returned to signal function from scheduler");
|
|
}
|
|
} else {
|
|
/* Check if a child has terminated: */
|
|
if (sig == SIGCHLD) {
|
|
/*
|
|
* Go through the file list and set all files
|
|
* to non-blocking again in case the child
|
|
* set some of them to block. Sigh.
|
|
*/
|
|
for (i = 0; i < _thread_dtablesize; i++) {
|
|
/* Check if this file is used: */
|
|
if (_thread_fd_table[i] != NULL) {
|
|
/*
|
|
* Set the file descriptor to
|
|
* non-blocking:
|
|
*/
|
|
_thread_sys_fcntl(i, F_SETFL,
|
|
_thread_fd_table[i]->flags |
|
|
O_NONBLOCK);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* POSIX says that pending SIGCONT signals are
|
|
* discarded when one of these signals occurs.
|
|
*/
|
|
if (sig == SIGTSTP || sig == SIGTTIN || sig == SIGTTOU) {
|
|
/*
|
|
* Enter a loop to discard pending SIGCONT
|
|
* signals:
|
|
*/
|
|
for (pthread = _thread_link_list;
|
|
pthread != NULL;
|
|
pthread = pthread->nxt)
|
|
sigdelset(&pthread->sigpend,SIGCONT);
|
|
}
|
|
|
|
/*
|
|
* Enter a loop to process each thread in the waiting
|
|
* list that is sigwait-ing on a signal. Since POSIX
|
|
* doesn't specify which thread will get the signal
|
|
* if there are multiple waiters, we'll give it to the
|
|
* first one we find.
|
|
*/
|
|
TAILQ_FOREACH(pthread, &_waitingq, pqe) {
|
|
if ((pthread->state == PS_SIGWAIT) &&
|
|
sigismember(pthread->data.sigwait, sig)) {
|
|
/* Change the state of the thread to run: */
|
|
PTHREAD_SIG_NEW_STATE(pthread,PS_RUNNING);
|
|
|
|
/* Return the signal number: */
|
|
pthread->signo = sig;
|
|
|
|
/*
|
|
* Do not attempt to deliver this signal
|
|
* to other threads.
|
|
*/
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Check if the signal is not being ignored: */
|
|
if (_thread_sigact[sig - 1].sa_handler != SIG_IGN)
|
|
/*
|
|
* Enter a loop to process each thread in the linked
|
|
* list:
|
|
*/
|
|
for (pthread = _thread_link_list; pthread != NULL;
|
|
pthread = pthread->nxt) {
|
|
pthread_t pthread_saved = _thread_run;
|
|
|
|
_thread_run = pthread;
|
|
_thread_signal(pthread,sig);
|
|
|
|
/*
|
|
* Dispatch pending signals to the
|
|
* running thread:
|
|
*/
|
|
_dispatch_signals();
|
|
_thread_run = pthread_saved;
|
|
}
|
|
}
|
|
|
|
/* Returns nothing. */
|
|
return;
|
|
}
|
|
|
|
/* Perform thread specific actions in response to a signal: */
|
|
void
|
|
_thread_signal(pthread_t pthread, int sig)
|
|
{
|
|
/*
|
|
* Flag the signal as pending. It will be dispatched later.
|
|
*/
|
|
sigaddset(&pthread->sigpend,sig);
|
|
|
|
/*
|
|
* Process according to thread state:
|
|
*/
|
|
switch (pthread->state) {
|
|
/*
|
|
* States which do not change when a signal is trapped:
|
|
*/
|
|
case PS_COND_WAIT:
|
|
case PS_DEAD:
|
|
case PS_FDLR_WAIT:
|
|
case PS_FDLW_WAIT:
|
|
case PS_FILE_WAIT:
|
|
case PS_JOIN:
|
|
case PS_MUTEX_WAIT:
|
|
case PS_RUNNING:
|
|
case PS_STATE_MAX:
|
|
case PS_SIGTHREAD:
|
|
case PS_SIGWAIT:
|
|
case PS_SUSPENDED:
|
|
/* Nothing to do here. */
|
|
break;
|
|
|
|
/*
|
|
* The wait state is a special case due to the handling of
|
|
* SIGCHLD signals.
|
|
*/
|
|
case PS_WAIT_WAIT:
|
|
/*
|
|
* Check for signals other than the death of a child
|
|
* process:
|
|
*/
|
|
if (sig != SIGCHLD)
|
|
/* Flag the operation as interrupted: */
|
|
pthread->interrupted = 1;
|
|
|
|
/* Change the state of the thread to run: */
|
|
PTHREAD_SIG_NEW_STATE(pthread,PS_RUNNING);
|
|
|
|
/* Return the signal number: */
|
|
pthread->signo = sig;
|
|
break;
|
|
|
|
/*
|
|
* States that are interrupted by the occurrence of a signal
|
|
* other than the scheduling alarm:
|
|
*/
|
|
case PS_FDR_WAIT:
|
|
case PS_FDW_WAIT:
|
|
case PS_SLEEP_WAIT:
|
|
case PS_SELECT_WAIT:
|
|
if (sig != SIGCHLD ||
|
|
_thread_sigact[sig - 1].sa_handler != SIG_DFL) {
|
|
/* Flag the operation as interrupted: */
|
|
pthread->interrupted = 1;
|
|
|
|
/* Change the state of the thread to run: */
|
|
PTHREAD_SIG_NEW_STATE(pthread,PS_RUNNING);
|
|
|
|
/* Return the signal number: */
|
|
pthread->signo = sig;
|
|
}
|
|
break;
|
|
|
|
case PS_SIGSUSPEND:
|
|
/*
|
|
* Only wake up the thread if the signal is unblocked
|
|
* and there is a handler installed for the signal.
|
|
*/
|
|
if (!sigismember(&pthread->sigmask, sig) &&
|
|
_thread_sigact[sig - 1].sa_handler != SIG_DFL) {
|
|
/* Change the state of the thread to run: */
|
|
PTHREAD_SIG_NEW_STATE(pthread,PS_RUNNING);
|
|
|
|
/* Return the signal number: */
|
|
pthread->signo = sig;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Dispatch pending signals to the running thread: */
|
|
void
|
|
_dispatch_signals()
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Check if there are pending signals for the running
|
|
* thread that aren't blocked:
|
|
*/
|
|
if ((_thread_run->sigpend & ~_thread_run->sigmask) != 0)
|
|
/* Look for all possible pending signals: */
|
|
for (i = 1; i < NSIG; i++)
|
|
/*
|
|
* Check that a custom handler is installed
|
|
* and if the signal is not blocked:
|
|
*/
|
|
if (_thread_sigact[i - 1].sa_handler != SIG_DFL &&
|
|
_thread_sigact[i - 1].sa_handler != SIG_IGN &&
|
|
sigismember(&_thread_run->sigpend,i) &&
|
|
!sigismember(&_thread_run->sigmask,i)) {
|
|
/* Clear the pending signal: */
|
|
sigdelset(&_thread_run->sigpend,i);
|
|
|
|
/*
|
|
* Dispatch the signal via the custom signal
|
|
* handler:
|
|
*/
|
|
(*(_thread_sigact[i - 1].sa_handler))(i);
|
|
}
|
|
}
|
|
#endif
|