4edd8523d4
drivers. These add new hardware support, most importantly the pch (i5 chipset) in the em driver. Also, both drivers now have the simplified (and I hope improved) watchdog code. The igb driver uses the new RX cleanup that I first implemented in ixgbe. em - version 6.9.24 igb - version 1.8.4
1842 lines
54 KiB
C
1842 lines
54 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2001-2009, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
/*
|
|
* 82575EB Gigabit Network Connection
|
|
* 82575EB Gigabit Backplane Connection
|
|
* 82575GB Gigabit Network Connection
|
|
* 82575GB Gigabit Network Connection
|
|
* 82576 Gigabit Network Connection
|
|
* 82576 Quad Port Gigabit Mezzanine Adapter
|
|
*/
|
|
|
|
#include "e1000_api.h"
|
|
|
|
static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
|
|
static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
|
|
static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
|
|
static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
|
|
static void e1000_release_phy_82575(struct e1000_hw *hw);
|
|
static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
|
|
static void e1000_release_nvm_82575(struct e1000_hw *hw);
|
|
static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
|
|
static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
|
|
static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex);
|
|
static s32 e1000_init_hw_82575(struct e1000_hw *hw);
|
|
static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
|
|
static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
|
|
u16 *data);
|
|
static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
|
|
static s32 e1000_reset_hw_82580(struct e1000_hw *hw);
|
|
static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw,
|
|
u32 offset, u16 *data);
|
|
static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw,
|
|
u32 offset, u16 data);
|
|
static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
|
|
bool active);
|
|
static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
|
|
static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
|
|
static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
|
|
static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
|
|
u32 offset, u16 data);
|
|
static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
|
|
static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
|
|
static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
|
|
u16 *speed, u16 *duplex);
|
|
static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
|
|
static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
|
|
static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
|
|
static s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
|
|
static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
|
|
static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
|
|
static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
|
|
static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
|
|
|
|
static const u16 e1000_82580_rxpbs_table[] =
|
|
{ 36, 72, 144, 1, 2, 4, 8, 16,
|
|
35, 70, 140 };
|
|
#define E1000_82580_RXPBS_TABLE_SIZE \
|
|
(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
|
|
|
|
/**
|
|
* e1000_init_phy_params_82575 - Init PHY func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
DEBUGFUNC("e1000_init_phy_params_82575");
|
|
|
|
if (hw->phy.media_type != e1000_media_type_copper) {
|
|
phy->type = e1000_phy_none;
|
|
goto out;
|
|
}
|
|
|
|
phy->ops.power_up = e1000_power_up_phy_copper;
|
|
phy->ops.power_down = e1000_power_down_phy_copper_82575;
|
|
|
|
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
phy->reset_delay_us = 100;
|
|
|
|
phy->ops.acquire = e1000_acquire_phy_82575;
|
|
phy->ops.check_reset_block = e1000_check_reset_block_generic;
|
|
phy->ops.commit = e1000_phy_sw_reset_generic;
|
|
phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
|
|
phy->ops.release = e1000_release_phy_82575;
|
|
|
|
if (e1000_sgmii_active_82575(hw)) {
|
|
phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
|
|
phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
|
|
phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
|
|
} else if ((hw->mac.type == e1000_82580) ||
|
|
(hw->mac.type == e1000_82580er)) {
|
|
phy->ops.reset = e1000_phy_hw_reset_generic;
|
|
phy->ops.read_reg = e1000_read_phy_reg_82580;
|
|
phy->ops.write_reg = e1000_write_phy_reg_82580;
|
|
} else {
|
|
phy->ops.reset = e1000_phy_hw_reset_generic;
|
|
phy->ops.read_reg = e1000_read_phy_reg_igp;
|
|
phy->ops.write_reg = e1000_write_phy_reg_igp;
|
|
}
|
|
|
|
/* Set phy->phy_addr and phy->id. */
|
|
ret_val = e1000_get_phy_id_82575(hw);
|
|
|
|
/* Verify phy id and set remaining function pointers */
|
|
switch (phy->id) {
|
|
case M88E1111_I_PHY_ID:
|
|
phy->type = e1000_phy_m88;
|
|
phy->ops.check_polarity = e1000_check_polarity_m88;
|
|
phy->ops.get_info = e1000_get_phy_info_m88;
|
|
phy->ops.get_cable_length = e1000_get_cable_length_m88;
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
|
|
break;
|
|
case IGP03E1000_E_PHY_ID:
|
|
case IGP04E1000_E_PHY_ID:
|
|
phy->type = e1000_phy_igp_3;
|
|
phy->ops.check_polarity = e1000_check_polarity_igp;
|
|
phy->ops.get_info = e1000_get_phy_info_igp;
|
|
phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
|
|
phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
|
|
phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
|
|
break;
|
|
case I82580_I_PHY_ID:
|
|
phy->type = e1000_phy_82580;
|
|
phy->ops.check_polarity = e1000_check_polarity_82577;
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82577;
|
|
phy->ops.get_cable_length = e1000_get_cable_length_82577;
|
|
phy->ops.get_info = e1000_get_phy_info_82577;
|
|
break;
|
|
default:
|
|
ret_val = -E1000_ERR_PHY;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_nvm_params_82575 - Init NVM func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
u16 size;
|
|
|
|
DEBUGFUNC("e1000_init_nvm_params_82575");
|
|
|
|
nvm->opcode_bits = 8;
|
|
nvm->delay_usec = 1;
|
|
switch (nvm->override) {
|
|
case e1000_nvm_override_spi_large:
|
|
nvm->page_size = 32;
|
|
nvm->address_bits = 16;
|
|
break;
|
|
case e1000_nvm_override_spi_small:
|
|
nvm->page_size = 8;
|
|
nvm->address_bits = 8;
|
|
break;
|
|
default:
|
|
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
|
|
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
|
|
break;
|
|
}
|
|
|
|
nvm->type = e1000_nvm_eeprom_spi;
|
|
|
|
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
|
|
E1000_EECD_SIZE_EX_SHIFT);
|
|
|
|
/*
|
|
* Added to a constant, "size" becomes the left-shift value
|
|
* for setting word_size.
|
|
*/
|
|
size += NVM_WORD_SIZE_BASE_SHIFT;
|
|
|
|
/* EEPROM access above 16k is unsupported */
|
|
if (size > 14)
|
|
size = 14;
|
|
nvm->word_size = 1 << size;
|
|
|
|
/* Function Pointers */
|
|
nvm->ops.acquire = e1000_acquire_nvm_82575;
|
|
nvm->ops.read = e1000_read_nvm_eerd;
|
|
nvm->ops.release = e1000_release_nvm_82575;
|
|
nvm->ops.update = e1000_update_nvm_checksum_generic;
|
|
nvm->ops.valid_led_default = e1000_valid_led_default_82575;
|
|
nvm->ops.validate = e1000_validate_nvm_checksum_generic;
|
|
nvm->ops.write = e1000_write_nvm_spi;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_mac_params_82575 - Init MAC func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
|
|
u32 ctrl_ext = 0;
|
|
|
|
DEBUGFUNC("e1000_init_mac_params_82575");
|
|
|
|
/* Set media type */
|
|
/*
|
|
* The 82575 uses bits 22:23 for link mode. The mode can be changed
|
|
* based on the EEPROM. We cannot rely upon device ID. There
|
|
* is no distinguishable difference between fiber and internal
|
|
* SerDes mode on the 82575. There can be an external PHY attached
|
|
* on the SGMII interface. For this, we'll set sgmii_active to TRUE.
|
|
*/
|
|
hw->phy.media_type = e1000_media_type_copper;
|
|
dev_spec->sgmii_active = FALSE;
|
|
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
|
|
case E1000_CTRL_EXT_LINK_MODE_SGMII:
|
|
dev_spec->sgmii_active = TRUE;
|
|
ctrl_ext |= E1000_CTRL_I2C_ENA;
|
|
break;
|
|
case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
|
|
case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
|
|
hw->phy.media_type = e1000_media_type_internal_serdes;
|
|
ctrl_ext |= E1000_CTRL_I2C_ENA;
|
|
break;
|
|
default:
|
|
ctrl_ext &= ~E1000_CTRL_I2C_ENA;
|
|
break;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
|
|
/*
|
|
* if using i2c make certain the MDICNFG register is cleared to prevent
|
|
* communications from being misrouted to the mdic registers
|
|
*/
|
|
if ((ctrl_ext & E1000_CTRL_I2C_ENA) &&
|
|
((hw->mac.type == e1000_82580) || (hw->mac.type == e1000_82580er)))
|
|
E1000_WRITE_REG(hw, E1000_MDICNFG, 0);
|
|
|
|
/* Set mta register count */
|
|
mac->mta_reg_count = 128;
|
|
/* Set uta register count */
|
|
mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
|
|
/* Set rar entry count */
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
|
|
if (mac->type == e1000_82576)
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
|
|
if ((mac->type == e1000_82580) || (mac->type == e1000_82580er))
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
|
|
/* Set if part includes ASF firmware */
|
|
mac->asf_firmware_present = TRUE;
|
|
/* Set if manageability features are enabled. */
|
|
mac->arc_subsystem_valid =
|
|
(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
|
|
? TRUE : FALSE;
|
|
|
|
/* Function pointers */
|
|
|
|
/* bus type/speed/width */
|
|
mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
|
|
/* reset */
|
|
if ((mac->type == e1000_82580) || (mac->type == e1000_82580er))
|
|
mac->ops.reset_hw = e1000_reset_hw_82580;
|
|
else
|
|
mac->ops.reset_hw = e1000_reset_hw_82575;
|
|
/* hw initialization */
|
|
mac->ops.init_hw = e1000_init_hw_82575;
|
|
/* link setup */
|
|
mac->ops.setup_link = e1000_setup_link_generic;
|
|
/* physical interface link setup */
|
|
mac->ops.setup_physical_interface =
|
|
(hw->phy.media_type == e1000_media_type_copper)
|
|
? e1000_setup_copper_link_82575
|
|
: e1000_setup_serdes_link_82575;
|
|
/* physical interface shutdown */
|
|
mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
|
|
/* check for link */
|
|
mac->ops.check_for_link = e1000_check_for_link_82575;
|
|
/* receive address register setting */
|
|
mac->ops.rar_set = e1000_rar_set_generic;
|
|
/* read mac address */
|
|
mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
|
|
/* multicast address update */
|
|
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
|
|
/* writing VFTA */
|
|
mac->ops.write_vfta = e1000_write_vfta_generic;
|
|
/* clearing VFTA */
|
|
mac->ops.clear_vfta = e1000_clear_vfta_generic;
|
|
/* setting MTA */
|
|
mac->ops.mta_set = e1000_mta_set_generic;
|
|
/* ID LED init */
|
|
mac->ops.id_led_init = e1000_id_led_init_generic;
|
|
/* blink LED */
|
|
mac->ops.blink_led = e1000_blink_led_generic;
|
|
/* setup LED */
|
|
mac->ops.setup_led = e1000_setup_led_generic;
|
|
/* cleanup LED */
|
|
mac->ops.cleanup_led = e1000_cleanup_led_generic;
|
|
/* turn on/off LED */
|
|
mac->ops.led_on = e1000_led_on_generic;
|
|
mac->ops.led_off = e1000_led_off_generic;
|
|
/* clear hardware counters */
|
|
mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
|
|
/* link info */
|
|
mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
|
|
|
|
/* set lan id for port to determine which phy lock to use */
|
|
hw->mac.ops.set_lan_id(hw);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_function_pointers_82575 - Init func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Called to initialize all function pointers and parameters.
|
|
**/
|
|
void e1000_init_function_pointers_82575(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_init_function_pointers_82575");
|
|
|
|
hw->mac.ops.init_params = e1000_init_mac_params_82575;
|
|
hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
|
|
hw->phy.ops.init_params = e1000_init_phy_params_82575;
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_phy_82575 - Acquire rights to access PHY
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquire access rights to the correct PHY.
|
|
**/
|
|
static s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
|
|
{
|
|
u16 mask = E1000_SWFW_PHY0_SM;
|
|
|
|
DEBUGFUNC("e1000_acquire_phy_82575");
|
|
|
|
if (hw->bus.func == E1000_FUNC_1)
|
|
mask = E1000_SWFW_PHY1_SM;
|
|
else if (hw->bus.func == E1000_FUNC_2)
|
|
mask = E1000_SWFW_PHY2_SM;
|
|
else if (hw->bus.func == E1000_FUNC_3)
|
|
mask = E1000_SWFW_PHY3_SM;
|
|
|
|
return e1000_acquire_swfw_sync_82575(hw, mask);
|
|
}
|
|
|
|
/**
|
|
* e1000_release_phy_82575 - Release rights to access PHY
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* A wrapper to release access rights to the correct PHY.
|
|
**/
|
|
static void e1000_release_phy_82575(struct e1000_hw *hw)
|
|
{
|
|
u16 mask = E1000_SWFW_PHY0_SM;
|
|
|
|
DEBUGFUNC("e1000_release_phy_82575");
|
|
|
|
if (hw->bus.func == E1000_FUNC_1)
|
|
mask = E1000_SWFW_PHY1_SM;
|
|
else if (hw->bus.func == E1000_FUNC_2)
|
|
mask = E1000_SWFW_PHY2_SM;
|
|
else if (hw->bus.func == E1000_FUNC_3)
|
|
mask = E1000_SWFW_PHY3_SM;
|
|
|
|
e1000_release_swfw_sync_82575(hw, mask);
|
|
}
|
|
|
|
/**
|
|
* e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset to be read
|
|
* @data: pointer to the read data
|
|
*
|
|
* Reads the PHY register at offset using the serial gigabit media independent
|
|
* interface and stores the retrieved information in data.
|
|
**/
|
|
static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
|
|
u16 *data)
|
|
{
|
|
s32 ret_val = -E1000_ERR_PARAM;
|
|
|
|
DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
|
|
|
|
if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
|
|
DEBUGOUT1("PHY Address %u is out of range\n", offset);
|
|
goto out;
|
|
}
|
|
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
|
|
|
|
hw->phy.ops.release(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset to write to
|
|
* @data: data to write at register offset
|
|
*
|
|
* Writes the data to PHY register at the offset using the serial gigabit
|
|
* media independent interface.
|
|
**/
|
|
static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
|
|
u16 data)
|
|
{
|
|
s32 ret_val = -E1000_ERR_PARAM;
|
|
|
|
DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
|
|
|
|
if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
|
|
DEBUGOUT1("PHY Address %d is out of range\n", offset);
|
|
goto out;
|
|
}
|
|
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
|
|
|
|
hw->phy.ops.release(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_phy_id_82575 - Retrieve PHY addr and id
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Retrieves the PHY address and ID for both PHY's which do and do not use
|
|
* sgmi interface.
|
|
**/
|
|
static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 phy_id;
|
|
u32 ctrl_ext;
|
|
|
|
DEBUGFUNC("e1000_get_phy_id_82575");
|
|
|
|
/*
|
|
* For SGMII PHYs, we try the list of possible addresses until
|
|
* we find one that works. For non-SGMII PHYs
|
|
* (e.g. integrated copper PHYs), an address of 1 should
|
|
* work. The result of this function should mean phy->phy_addr
|
|
* and phy->id are set correctly.
|
|
*/
|
|
if (!e1000_sgmii_active_82575(hw)) {
|
|
phy->addr = 1;
|
|
ret_val = e1000_get_phy_id(hw);
|
|
goto out;
|
|
}
|
|
|
|
/* Power on sgmii phy if it is disabled */
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
|
|
E1000_WRITE_FLUSH(hw);
|
|
msec_delay(300);
|
|
|
|
/*
|
|
* The address field in the I2CCMD register is 3 bits and 0 is invalid.
|
|
* Therefore, we need to test 1-7
|
|
*/
|
|
for (phy->addr = 1; phy->addr < 8; phy->addr++) {
|
|
ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
|
|
if (ret_val == E1000_SUCCESS) {
|
|
DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
|
|
phy_id,
|
|
phy->addr);
|
|
/*
|
|
* At the time of this writing, The M88 part is
|
|
* the only supported SGMII PHY product.
|
|
*/
|
|
if (phy_id == M88_VENDOR)
|
|
break;
|
|
} else {
|
|
DEBUGOUT1("PHY address %u was unreadable\n",
|
|
phy->addr);
|
|
}
|
|
}
|
|
|
|
/* A valid PHY type couldn't be found. */
|
|
if (phy->addr == 8) {
|
|
phy->addr = 0;
|
|
ret_val = -E1000_ERR_PHY;
|
|
} else {
|
|
ret_val = e1000_get_phy_id(hw);
|
|
}
|
|
|
|
/* restore previous sfp cage power state */
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Resets the PHY using the serial gigabit media independent interface.
|
|
**/
|
|
static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
|
|
|
|
/*
|
|
* This isn't a TRUE "hard" reset, but is the only reset
|
|
* available to us at this time.
|
|
*/
|
|
|
|
DEBUGOUT("Soft resetting SGMII attached PHY...\n");
|
|
|
|
if (!(hw->phy.ops.write_reg))
|
|
goto out;
|
|
|
|
/*
|
|
* SFP documentation requires the following to configure the SPF module
|
|
* to work on SGMII. No further documentation is given.
|
|
*/
|
|
ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = hw->phy.ops.commit(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
|
|
* @hw: pointer to the HW structure
|
|
* @active: TRUE to enable LPLU, FALSE to disable
|
|
*
|
|
* Sets the LPLU D0 state according to the active flag. When
|
|
* activating LPLU this function also disables smart speed
|
|
* and vice versa. LPLU will not be activated unless the
|
|
* device autonegotiation advertisement meets standards of
|
|
* either 10 or 10/100 or 10/100/1000 at all duplexes.
|
|
* This is a function pointer entry point only called by
|
|
* PHY setup routines.
|
|
**/
|
|
static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 data;
|
|
|
|
DEBUGFUNC("e1000_set_d0_lplu_state_82575");
|
|
|
|
if (!(hw->phy.ops.read_reg))
|
|
goto out;
|
|
|
|
ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (active) {
|
|
data |= IGP02E1000_PM_D0_LPLU;
|
|
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
|
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
} else {
|
|
data &= ~IGP02E1000_PM_D0_LPLU;
|
|
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
data);
|
|
/*
|
|
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
|
* during Dx states where the power conservation is most
|
|
* important. During driver activity we should enable
|
|
* SmartSpeed, so performance is maintained.
|
|
*/
|
|
if (phy->smart_speed == e1000_smart_speed_on) {
|
|
ret_val = phy->ops.read_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = phy->ops.write_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
|
ret_val = phy->ops.read_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = phy->ops.write_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_nvm_82575 - Request for access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquire the necessary semaphores for exclusive access to the EEPROM.
|
|
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
|
|
* Return successful if access grant bit set, else clear the request for
|
|
* EEPROM access and return -E1000_ERR_NVM (-1).
|
|
**/
|
|
static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_acquire_nvm_82575");
|
|
|
|
ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_acquire_nvm_generic(hw);
|
|
|
|
if (ret_val)
|
|
e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_release_nvm_82575 - Release exclusive access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Stop any current commands to the EEPROM and clear the EEPROM request bit,
|
|
* then release the semaphores acquired.
|
|
**/
|
|
static void e1000_release_nvm_82575(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_release_nvm_82575");
|
|
|
|
e1000_release_nvm_generic(hw);
|
|
e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
|
|
* @hw: pointer to the HW structure
|
|
* @mask: specifies which semaphore to acquire
|
|
*
|
|
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
|
|
* will also specify which port we're acquiring the lock for.
|
|
**/
|
|
static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
|
|
{
|
|
u32 swfw_sync;
|
|
u32 swmask = mask;
|
|
u32 fwmask = mask << 16;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
|
|
|
|
DEBUGFUNC("e1000_acquire_swfw_sync_82575");
|
|
|
|
while (i < timeout) {
|
|
if (e1000_get_hw_semaphore_generic(hw)) {
|
|
ret_val = -E1000_ERR_SWFW_SYNC;
|
|
goto out;
|
|
}
|
|
|
|
swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
|
|
if (!(swfw_sync & (fwmask | swmask)))
|
|
break;
|
|
|
|
/*
|
|
* Firmware currently using resource (fwmask)
|
|
* or other software thread using resource (swmask)
|
|
*/
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
msec_delay_irq(5);
|
|
i++;
|
|
}
|
|
|
|
if (i == timeout) {
|
|
DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
|
|
ret_val = -E1000_ERR_SWFW_SYNC;
|
|
goto out;
|
|
}
|
|
|
|
swfw_sync |= swmask;
|
|
E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
|
|
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_release_swfw_sync_82575 - Release SW/FW semaphore
|
|
* @hw: pointer to the HW structure
|
|
* @mask: specifies which semaphore to acquire
|
|
*
|
|
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
|
|
* will also specify which port we're releasing the lock for.
|
|
**/
|
|
static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
|
|
{
|
|
u32 swfw_sync;
|
|
|
|
DEBUGFUNC("e1000_release_swfw_sync_82575");
|
|
|
|
while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS);
|
|
/* Empty */
|
|
|
|
swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
|
|
swfw_sync &= ~mask;
|
|
E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
|
|
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_get_cfg_done_82575 - Read config done bit
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Read the management control register for the config done bit for
|
|
* completion status. NOTE: silicon which is EEPROM-less will fail trying
|
|
* to read the config done bit, so an error is *ONLY* logged and returns
|
|
* E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
|
|
* would not be able to be reset or change link.
|
|
**/
|
|
static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
|
|
{
|
|
s32 timeout = PHY_CFG_TIMEOUT;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u32 mask = E1000_NVM_CFG_DONE_PORT_0;
|
|
|
|
DEBUGFUNC("e1000_get_cfg_done_82575");
|
|
|
|
if (hw->bus.func == E1000_FUNC_1)
|
|
mask = E1000_NVM_CFG_DONE_PORT_1;
|
|
else if (hw->bus.func == E1000_FUNC_2)
|
|
mask = E1000_NVM_CFG_DONE_PORT_2;
|
|
else if (hw->bus.func == E1000_FUNC_3)
|
|
mask = E1000_NVM_CFG_DONE_PORT_3;
|
|
while (timeout) {
|
|
if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
|
|
break;
|
|
msec_delay(1);
|
|
timeout--;
|
|
}
|
|
if (!timeout)
|
|
DEBUGOUT("MNG configuration cycle has not completed.\n");
|
|
|
|
/* If EEPROM is not marked present, init the PHY manually */
|
|
if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
|
|
(hw->phy.type == e1000_phy_igp_3))
|
|
e1000_phy_init_script_igp3(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_link_up_info_82575 - Get link speed/duplex info
|
|
* @hw: pointer to the HW structure
|
|
* @speed: stores the current speed
|
|
* @duplex: stores the current duplex
|
|
*
|
|
* This is a wrapper function, if using the serial gigabit media independent
|
|
* interface, use PCS to retrieve the link speed and duplex information.
|
|
* Otherwise, use the generic function to get the link speed and duplex info.
|
|
**/
|
|
static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_get_link_up_info_82575");
|
|
|
|
if (hw->phy.media_type != e1000_media_type_copper)
|
|
ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
|
|
duplex);
|
|
else
|
|
ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
|
|
duplex);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_check_for_link_82575 - Check for link
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* If sgmii is enabled, then use the pcs register to determine link, otherwise
|
|
* use the generic interface for determining link.
|
|
**/
|
|
static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 speed, duplex;
|
|
|
|
DEBUGFUNC("e1000_check_for_link_82575");
|
|
|
|
if (hw->phy.media_type != e1000_media_type_copper) {
|
|
ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
|
|
&duplex);
|
|
/*
|
|
* Use this flag to determine if link needs to be checked or
|
|
* not. If we have link clear the flag so that we do not
|
|
* continue to check for link.
|
|
*/
|
|
hw->mac.get_link_status = !hw->mac.serdes_has_link;
|
|
} else {
|
|
ret_val = e1000_check_for_copper_link_generic(hw);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
|
|
* @hw: pointer to the HW structure
|
|
* @speed: stores the current speed
|
|
* @duplex: stores the current duplex
|
|
*
|
|
* Using the physical coding sub-layer (PCS), retrieve the current speed and
|
|
* duplex, then store the values in the pointers provided.
|
|
**/
|
|
static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
|
|
u16 *speed, u16 *duplex)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
u32 pcs;
|
|
|
|
DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
|
|
|
|
/* Set up defaults for the return values of this function */
|
|
mac->serdes_has_link = FALSE;
|
|
*speed = 0;
|
|
*duplex = 0;
|
|
|
|
/*
|
|
* Read the PCS Status register for link state. For non-copper mode,
|
|
* the status register is not accurate. The PCS status register is
|
|
* used instead.
|
|
*/
|
|
pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
|
|
|
|
/*
|
|
* The link up bit determines when link is up on autoneg. The sync ok
|
|
* gets set once both sides sync up and agree upon link. Stable link
|
|
* can be determined by checking for both link up and link sync ok
|
|
*/
|
|
if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
|
|
mac->serdes_has_link = TRUE;
|
|
|
|
/* Detect and store PCS speed */
|
|
if (pcs & E1000_PCS_LSTS_SPEED_1000) {
|
|
*speed = SPEED_1000;
|
|
} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
|
|
*speed = SPEED_100;
|
|
} else {
|
|
*speed = SPEED_10;
|
|
}
|
|
|
|
/* Detect and store PCS duplex */
|
|
if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
|
|
*duplex = FULL_DUPLEX;
|
|
} else {
|
|
*duplex = HALF_DUPLEX;
|
|
}
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_shutdown_serdes_link_82575 - Remove link during power down
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* In the case of serdes shut down sfp and PCS on driver unload
|
|
* when management pass thru is not enabled.
|
|
**/
|
|
void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 reg;
|
|
u16 eeprom_data = 0;
|
|
|
|
if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
|
|
!e1000_sgmii_active_82575(hw))
|
|
return;
|
|
|
|
if (hw->bus.func == E1000_FUNC_0)
|
|
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
|
|
else if ((hw->mac.type == e1000_82580) ||
|
|
(hw->mac.type == e1000_82580er))
|
|
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
|
|
NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
|
|
&eeprom_data);
|
|
else if (hw->bus.func == E1000_FUNC_1)
|
|
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
|
|
|
|
/*
|
|
* If APM is not enabled in the EEPROM and management interface is
|
|
* not enabled, then power down.
|
|
*/
|
|
if (!(eeprom_data & E1000_NVM_APME_82575) &&
|
|
!e1000_enable_mng_pass_thru(hw)) {
|
|
/* Disable PCS to turn off link */
|
|
reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
|
|
reg &= ~E1000_PCS_CFG_PCS_EN;
|
|
E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
|
|
|
|
/* shutdown the laser */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
reg |= E1000_CTRL_EXT_SDP3_DATA;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
|
|
|
|
/* flush the write to verify completion */
|
|
E1000_WRITE_FLUSH(hw);
|
|
msec_delay(1);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_hw_82575 - Reset hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This resets the hardware into a known state.
|
|
**/
|
|
static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl, icr;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_reset_hw_82575");
|
|
|
|
/*
|
|
* Prevent the PCI-E bus from sticking if there is no TLP connection
|
|
* on the last TLP read/write transaction when MAC is reset.
|
|
*/
|
|
ret_val = e1000_disable_pcie_master_generic(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("PCI-E Master disable polling has failed.\n");
|
|
}
|
|
|
|
/* set the completion timeout for interface */
|
|
ret_val = e1000_set_pcie_completion_timeout(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("PCI-E Set completion timeout has failed.\n");
|
|
}
|
|
|
|
DEBUGOUT("Masking off all interrupts\n");
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
|
|
E1000_WRITE_REG(hw, E1000_RCTL, 0);
|
|
E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
msec_delay(10);
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
DEBUGOUT("Issuing a global reset to MAC\n");
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
|
|
|
|
ret_val = e1000_get_auto_rd_done_generic(hw);
|
|
if (ret_val) {
|
|
/*
|
|
* When auto config read does not complete, do not
|
|
* return with an error. This can happen in situations
|
|
* where there is no eeprom and prevents getting link.
|
|
*/
|
|
DEBUGOUT("Auto Read Done did not complete\n");
|
|
}
|
|
|
|
/* If EEPROM is not present, run manual init scripts */
|
|
if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
|
|
e1000_reset_init_script_82575(hw);
|
|
|
|
/* Clear any pending interrupt events. */
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
icr = E1000_READ_REG(hw, E1000_ICR);
|
|
|
|
/* Install any alternate MAC address into RAR0 */
|
|
ret_val = e1000_check_alt_mac_addr_generic(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_hw_82575 - Initialize hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This inits the hardware readying it for operation.
|
|
**/
|
|
static s32 e1000_init_hw_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val;
|
|
u16 i, rar_count = mac->rar_entry_count;
|
|
|
|
DEBUGFUNC("e1000_init_hw_82575");
|
|
|
|
/* Initialize identification LED */
|
|
ret_val = mac->ops.id_led_init(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error initializing identification LED\n");
|
|
/* This is not fatal and we should not stop init due to this */
|
|
}
|
|
|
|
/* Disabling VLAN filtering */
|
|
DEBUGOUT("Initializing the IEEE VLAN\n");
|
|
mac->ops.clear_vfta(hw);
|
|
|
|
/* Setup the receive address */
|
|
e1000_init_rx_addrs_generic(hw, rar_count);
|
|
|
|
/* Zero out the Multicast HASH table */
|
|
DEBUGOUT("Zeroing the MTA\n");
|
|
for (i = 0; i < mac->mta_reg_count; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
|
|
|
|
/* Zero out the Unicast HASH table */
|
|
DEBUGOUT("Zeroing the UTA\n");
|
|
for (i = 0; i < mac->uta_reg_count; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
|
|
|
|
/* Setup link and flow control */
|
|
ret_val = mac->ops.setup_link(hw);
|
|
|
|
/*
|
|
* Clear all of the statistics registers (clear on read). It is
|
|
* important that we do this after we have tried to establish link
|
|
* because the symbol error count will increment wildly if there
|
|
* is no link.
|
|
*/
|
|
e1000_clear_hw_cntrs_82575(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_copper_link_82575 - Configure copper link settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configures the link for auto-neg or forced speed and duplex. Then we check
|
|
* for link, once link is established calls to configure collision distance
|
|
* and flow control are called.
|
|
**/
|
|
static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_setup_copper_link_82575");
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
ctrl |= E1000_CTRL_SLU;
|
|
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
ret_val = e1000_setup_serdes_link_82575(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
|
|
/* allow time for SFP cage time to power up phy */
|
|
msec_delay(300);
|
|
|
|
ret_val = hw->phy.ops.reset(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error resetting the PHY.\n");
|
|
goto out;
|
|
}
|
|
}
|
|
switch (hw->phy.type) {
|
|
case e1000_phy_m88:
|
|
ret_val = e1000_copper_link_setup_m88(hw);
|
|
break;
|
|
case e1000_phy_igp_3:
|
|
ret_val = e1000_copper_link_setup_igp(hw);
|
|
break;
|
|
case e1000_phy_82580:
|
|
ret_val = e1000_copper_link_setup_82577(hw);
|
|
break;
|
|
default:
|
|
ret_val = -E1000_ERR_PHY;
|
|
break;
|
|
}
|
|
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_setup_copper_link_generic(hw);
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_serdes_link_82575 - Setup link for serdes
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configure the physical coding sub-layer (PCS) link. The PCS link is
|
|
* used on copper connections where the serialized gigabit media independent
|
|
* interface (sgmii), or serdes fiber is being used. Configures the link
|
|
* for auto-negotiation or forces speed/duplex.
|
|
**/
|
|
static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl_ext, ctrl_reg, reg;
|
|
bool pcs_autoneg;
|
|
|
|
DEBUGFUNC("e1000_setup_serdes_link_82575");
|
|
|
|
if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
|
|
!e1000_sgmii_active_82575(hw))
|
|
return E1000_SUCCESS;
|
|
|
|
/*
|
|
* On the 82575, SerDes loopback mode persists until it is
|
|
* explicitly turned off or a power cycle is performed. A read to
|
|
* the register does not indicate its status. Therefore, we ensure
|
|
* loopback mode is disabled during initialization.
|
|
*/
|
|
E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
|
|
|
|
/* power on the sfp cage if present */
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
|
|
ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
ctrl_reg |= E1000_CTRL_SLU;
|
|
|
|
if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
|
|
/* set both sw defined pins */
|
|
ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
|
|
|
|
/* Set switch control to serdes energy detect */
|
|
reg = E1000_READ_REG(hw, E1000_CONNSW);
|
|
reg |= E1000_CONNSW_ENRGSRC;
|
|
E1000_WRITE_REG(hw, E1000_CONNSW, reg);
|
|
}
|
|
|
|
reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
|
|
|
|
/* default pcs_autoneg to the same setting as mac autoneg */
|
|
pcs_autoneg = hw->mac.autoneg;
|
|
|
|
switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
|
|
case E1000_CTRL_EXT_LINK_MODE_SGMII:
|
|
/* sgmii mode lets the phy handle forcing speed/duplex */
|
|
pcs_autoneg = TRUE;
|
|
/* autoneg time out should be disabled for SGMII mode */
|
|
reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
|
|
break;
|
|
case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
|
|
/* disable PCS autoneg and support parallel detect only */
|
|
pcs_autoneg = FALSE;
|
|
default:
|
|
/*
|
|
* non-SGMII modes only supports a speed of 1000/Full for the
|
|
* link so it is best to just force the MAC and let the pcs
|
|
* link either autoneg or be forced to 1000/Full
|
|
*/
|
|
ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
|
|
E1000_CTRL_FD | E1000_CTRL_FRCDPX;
|
|
|
|
/* set speed of 1000/Full if speed/duplex is forced */
|
|
reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
|
|
break;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
|
|
|
|
/*
|
|
* New SerDes mode allows for forcing speed or autonegotiating speed
|
|
* at 1gb. Autoneg should be default set by most drivers. This is the
|
|
* mode that will be compatible with older link partners and switches.
|
|
* However, both are supported by the hardware and some drivers/tools.
|
|
*/
|
|
reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
|
|
E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
|
|
|
|
/*
|
|
* We force flow control to prevent the CTRL register values from being
|
|
* overwritten by the autonegotiated flow control values
|
|
*/
|
|
reg |= E1000_PCS_LCTL_FORCE_FCTRL;
|
|
|
|
if (pcs_autoneg) {
|
|
/* Set PCS register for autoneg */
|
|
reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
|
|
E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
|
|
DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
|
|
} else {
|
|
/* Set PCS register for forced link */
|
|
reg |= E1000_PCS_LCTL_FSD | /* Force Speed */
|
|
E1000_PCS_LCTL_FORCE_LINK | /* Force Link */
|
|
E1000_PCS_LCTL_FLV_LINK_UP; /* Force link value up */
|
|
|
|
DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
|
|
|
|
if (!e1000_sgmii_active_82575(hw))
|
|
e1000_force_mac_fc_generic(hw);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_valid_led_default_82575 - Verify a valid default LED config
|
|
* @hw: pointer to the HW structure
|
|
* @data: pointer to the NVM (EEPROM)
|
|
*
|
|
* Read the EEPROM for the current default LED configuration. If the
|
|
* LED configuration is not valid, set to a valid LED configuration.
|
|
**/
|
|
static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_valid_led_default_82575");
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
|
|
switch(hw->phy.media_type) {
|
|
case e1000_media_type_internal_serdes:
|
|
*data = ID_LED_DEFAULT_82575_SERDES;
|
|
break;
|
|
case e1000_media_type_copper:
|
|
default:
|
|
*data = ID_LED_DEFAULT;
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_sgmii_active_82575 - Return sgmii state
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* 82575 silicon has a serialized gigabit media independent interface (sgmii)
|
|
* which can be enabled for use in the embedded applications. Simply
|
|
* return the current state of the sgmii interface.
|
|
**/
|
|
static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
|
|
return dev_spec->sgmii_active;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_init_script_82575 - Inits HW defaults after reset
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Inits recommended HW defaults after a reset when there is no EEPROM
|
|
* detected. This is only for the 82575.
|
|
**/
|
|
static s32 e1000_reset_init_script_82575(struct e1000_hw* hw)
|
|
{
|
|
DEBUGFUNC("e1000_reset_init_script_82575");
|
|
|
|
if (hw->mac.type == e1000_82575) {
|
|
DEBUGOUT("Running reset init script for 82575\n");
|
|
/* SerDes configuration via SERDESCTRL */
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
|
|
|
|
/* CCM configuration via CCMCTL register */
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
|
|
|
|
/* PCIe lanes configuration */
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
|
|
|
|
/* PCIe PLL Configuration */
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_mac_addr_82575 - Read device MAC address
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
DEBUGFUNC("e1000_read_mac_addr_82575");
|
|
|
|
/*
|
|
* If there's an alternate MAC address place it in RAR0
|
|
* so that it will override the Si installed default perm
|
|
* address.
|
|
*/
|
|
ret_val = e1000_check_alt_mac_addr_generic(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_read_mac_addr_generic(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_power_down_phy_copper_82575 - Remove link during PHY power down
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* In the case of a PHY power down to save power, or to turn off link during a
|
|
* driver unload, or wake on lan is not enabled, remove the link.
|
|
**/
|
|
static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
|
|
if (!(phy->ops.check_reset_block))
|
|
return;
|
|
|
|
/* If the management interface is not enabled, then power down */
|
|
if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
|
|
e1000_power_down_phy_copper(hw);
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears the hardware counters by reading the counter registers.
|
|
**/
|
|
static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_clear_hw_cntrs_82575");
|
|
|
|
e1000_clear_hw_cntrs_base_generic(hw);
|
|
|
|
E1000_READ_REG(hw, E1000_PRC64);
|
|
E1000_READ_REG(hw, E1000_PRC127);
|
|
E1000_READ_REG(hw, E1000_PRC255);
|
|
E1000_READ_REG(hw, E1000_PRC511);
|
|
E1000_READ_REG(hw, E1000_PRC1023);
|
|
E1000_READ_REG(hw, E1000_PRC1522);
|
|
E1000_READ_REG(hw, E1000_PTC64);
|
|
E1000_READ_REG(hw, E1000_PTC127);
|
|
E1000_READ_REG(hw, E1000_PTC255);
|
|
E1000_READ_REG(hw, E1000_PTC511);
|
|
E1000_READ_REG(hw, E1000_PTC1023);
|
|
E1000_READ_REG(hw, E1000_PTC1522);
|
|
|
|
E1000_READ_REG(hw, E1000_ALGNERRC);
|
|
E1000_READ_REG(hw, E1000_RXERRC);
|
|
E1000_READ_REG(hw, E1000_TNCRS);
|
|
E1000_READ_REG(hw, E1000_CEXTERR);
|
|
E1000_READ_REG(hw, E1000_TSCTC);
|
|
E1000_READ_REG(hw, E1000_TSCTFC);
|
|
|
|
E1000_READ_REG(hw, E1000_MGTPRC);
|
|
E1000_READ_REG(hw, E1000_MGTPDC);
|
|
E1000_READ_REG(hw, E1000_MGTPTC);
|
|
|
|
E1000_READ_REG(hw, E1000_IAC);
|
|
E1000_READ_REG(hw, E1000_ICRXOC);
|
|
|
|
E1000_READ_REG(hw, E1000_ICRXPTC);
|
|
E1000_READ_REG(hw, E1000_ICRXATC);
|
|
E1000_READ_REG(hw, E1000_ICTXPTC);
|
|
E1000_READ_REG(hw, E1000_ICTXATC);
|
|
E1000_READ_REG(hw, E1000_ICTXQEC);
|
|
E1000_READ_REG(hw, E1000_ICTXQMTC);
|
|
E1000_READ_REG(hw, E1000_ICRXDMTC);
|
|
|
|
E1000_READ_REG(hw, E1000_CBTMPC);
|
|
E1000_READ_REG(hw, E1000_HTDPMC);
|
|
E1000_READ_REG(hw, E1000_CBRMPC);
|
|
E1000_READ_REG(hw, E1000_RPTHC);
|
|
E1000_READ_REG(hw, E1000_HGPTC);
|
|
E1000_READ_REG(hw, E1000_HTCBDPC);
|
|
E1000_READ_REG(hw, E1000_HGORCL);
|
|
E1000_READ_REG(hw, E1000_HGORCH);
|
|
E1000_READ_REG(hw, E1000_HGOTCL);
|
|
E1000_READ_REG(hw, E1000_HGOTCH);
|
|
E1000_READ_REG(hw, E1000_LENERRS);
|
|
|
|
/* This register should not be read in copper configurations */
|
|
if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
|
|
e1000_sgmii_active_82575(hw))
|
|
E1000_READ_REG(hw, E1000_SCVPC);
|
|
}
|
|
|
|
/**
|
|
* e1000_rx_fifo_flush_82575 - Clean rx fifo after RX enable
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* After rx enable if managability is enabled then there is likely some
|
|
* bad data at the start of the fifo and possibly in the DMA fifo. This
|
|
* function clears the fifos and flushes any packets that came in as rx was
|
|
* being enabled.
|
|
**/
|
|
void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
|
|
int i, ms_wait;
|
|
|
|
DEBUGFUNC("e1000_rx_fifo_workaround_82575");
|
|
if (hw->mac.type != e1000_82575 ||
|
|
!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
|
|
return;
|
|
|
|
/* Disable all RX queues */
|
|
for (i = 0; i < 4; i++) {
|
|
rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(i),
|
|
rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
|
|
}
|
|
/* Poll all queues to verify they have shut down */
|
|
for (ms_wait = 0; ms_wait < 10; ms_wait++) {
|
|
msec_delay(1);
|
|
rx_enabled = 0;
|
|
for (i = 0; i < 4; i++)
|
|
rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
|
|
if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
|
|
break;
|
|
}
|
|
|
|
if (ms_wait == 10)
|
|
DEBUGOUT("Queue disable timed out after 10ms\n");
|
|
|
|
/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
|
|
* incoming packets are rejected. Set enable and wait 2ms so that
|
|
* any packet that was coming in as RCTL.EN was set is flushed
|
|
*/
|
|
rfctl = E1000_READ_REG(hw, E1000_RFCTL);
|
|
E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
|
|
|
|
rlpml = E1000_READ_REG(hw, E1000_RLPML);
|
|
E1000_WRITE_REG(hw, E1000_RLPML, 0);
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
|
|
temp_rctl |= E1000_RCTL_LPE;
|
|
|
|
E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
|
|
E1000_WRITE_FLUSH(hw);
|
|
msec_delay(2);
|
|
|
|
/* Enable RX queues that were previously enabled and restore our
|
|
* previous state
|
|
*/
|
|
for (i = 0; i < 4; i++)
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
|
|
E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
|
|
|
|
/* Flush receive errors generated by workaround */
|
|
E1000_READ_REG(hw, E1000_ROC);
|
|
E1000_READ_REG(hw, E1000_RNBC);
|
|
E1000_READ_REG(hw, E1000_MPC);
|
|
}
|
|
|
|
/**
|
|
* e1000_set_pcie_completion_timeout - set pci-e completion timeout
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
|
|
* however the hardware default for these parts is 500us to 1ms which is less
|
|
* than the 10ms recommended by the pci-e spec. To address this we need to
|
|
* increase the value to either 10ms to 200ms for capability version 1 config,
|
|
* or 16ms to 55ms for version 2.
|
|
**/
|
|
static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
|
|
{
|
|
u32 gcr = E1000_READ_REG(hw, E1000_GCR);
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 pcie_devctl2;
|
|
|
|
/* only take action if timeout value is defaulted to 0 */
|
|
if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
|
|
goto out;
|
|
|
|
/*
|
|
* if capababilities version is type 1 we can write the
|
|
* timeout of 10ms to 200ms through the GCR register
|
|
*/
|
|
if (!(gcr & E1000_GCR_CAP_VER2)) {
|
|
gcr |= E1000_GCR_CMPL_TMOUT_10ms;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* for version 2 capabilities we need to write the config space
|
|
* directly in order to set the completion timeout value for
|
|
* 16ms to 55ms
|
|
*/
|
|
ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
|
|
&pcie_devctl2);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
|
|
|
|
ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
|
|
&pcie_devctl2);
|
|
out:
|
|
/* disable completion timeout resend */
|
|
gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
|
|
|
|
E1000_WRITE_REG(hw, E1000_GCR, gcr);
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
|
|
* @hw: pointer to the hardware struct
|
|
* @enable: state to enter, either enabled or disabled
|
|
*
|
|
* enables/disables L2 switch loopback functionality.
|
|
**/
|
|
void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
|
|
{
|
|
u32 dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
|
|
|
|
if (enable)
|
|
dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
|
|
else
|
|
dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
|
|
|
|
E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
|
|
}
|
|
|
|
/**
|
|
* e1000_vmdq_set_replication_pf - enable or disable vmdq replication
|
|
* @hw: pointer to the hardware struct
|
|
* @enable: state to enter, either enabled or disabled
|
|
*
|
|
* enables/disables replication of packets across multiple pools.
|
|
**/
|
|
void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
|
|
{
|
|
u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
|
|
|
|
if (enable)
|
|
vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
|
|
else
|
|
vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
|
|
|
|
E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
|
|
}
|
|
|
|
/**
|
|
* e1000_read_phy_reg_82580 - Read 82580 MDI control register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset to be read
|
|
* @data: pointer to the read data
|
|
*
|
|
* Reads the MDI control register in the PHY at offset and stores the
|
|
* information read to data.
|
|
**/
|
|
static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
|
|
{
|
|
u32 mdicnfg = 0;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_read_phy_reg_82580");
|
|
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/*
|
|
* We config the phy address in MDICNFG register now. Same bits
|
|
* as before. The values in MDIC can be written but will be
|
|
* ignored. This allows us to call the old function after
|
|
* configuring the PHY address in the new register
|
|
*/
|
|
mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
|
|
E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
|
|
|
|
ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
|
|
|
|
hw->phy.ops.release(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_phy_reg_82580 - Write 82580 MDI control register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset to write to
|
|
* @data: data to write to register at offset
|
|
*
|
|
* Writes data to MDI control register in the PHY at offset.
|
|
**/
|
|
static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
|
|
{
|
|
u32 mdicnfg = 0;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_write_phy_reg_82580");
|
|
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/*
|
|
* We config the phy address in MDICNFG register now. Same bits
|
|
* as before. The values in MDIC can be written but will be
|
|
* ignored. This allows us to call the old function after
|
|
* configuring the PHY address in the new register
|
|
*/
|
|
mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
|
|
E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
|
|
|
|
ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
|
|
|
|
hw->phy.ops.release(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
/**
|
|
* e1000_reset_hw_82580 - Reset hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This resets function or entire device (all ports, etc.)
|
|
* to a known state.
|
|
**/
|
|
static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
/* BH SW mailbox bit in SW_FW_SYNC */
|
|
u16 swmbsw_mask = E1000_SW_SYNCH_MB;
|
|
u32 ctrl, icr;
|
|
bool global_device_reset = hw->dev_spec._82575.global_device_reset;
|
|
|
|
DEBUGFUNC("e1000_reset_hw_82580");
|
|
|
|
hw->dev_spec._82575.global_device_reset = FALSE;
|
|
|
|
/* Get current control state. */
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
/*
|
|
* Prevent the PCI-E bus from sticking if there is no TLP connection
|
|
* on the last TLP read/write transaction when MAC is reset.
|
|
*/
|
|
ret_val = e1000_disable_pcie_master_generic(hw);
|
|
if (ret_val)
|
|
DEBUGOUT("PCI-E Master disable polling has failed.\n");
|
|
|
|
DEBUGOUT("Masking off all interrupts\n");
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, 0);
|
|
E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
msec_delay(10);
|
|
|
|
/* Determine whether or not a global dev reset is requested */
|
|
if (global_device_reset &&
|
|
e1000_acquire_swfw_sync_82575(hw, swmbsw_mask))
|
|
global_device_reset = FALSE;
|
|
|
|
if (global_device_reset &&
|
|
!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STAT_DEV_RST_SET))
|
|
ctrl |= E1000_CTRL_DEV_RST;
|
|
else
|
|
ctrl |= E1000_CTRL_RST;
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
/* Add delay to insure DEV_RST has time to complete */
|
|
if (global_device_reset)
|
|
msec_delay(5);
|
|
|
|
ret_val = e1000_get_auto_rd_done_generic(hw);
|
|
if (ret_val) {
|
|
/*
|
|
* When auto config read does not complete, do not
|
|
* return with an error. This can happen in situations
|
|
* where there is no eeprom and prevents getting link.
|
|
*/
|
|
DEBUGOUT("Auto Read Done did not complete\n");
|
|
}
|
|
|
|
/* If EEPROM is not present, run manual init scripts */
|
|
if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
|
|
e1000_reset_init_script_82575(hw);
|
|
|
|
/* clear global device reset status bit */
|
|
E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
|
|
|
|
/* Clear any pending interrupt events. */
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
icr = E1000_READ_REG(hw, E1000_ICR);
|
|
|
|
/* Install any alternate MAC address into RAR0 */
|
|
ret_val = e1000_check_alt_mac_addr_generic(hw);
|
|
|
|
/* Release semaphore */
|
|
if (global_device_reset)
|
|
e1000_release_swfw_sync_82575(hw, swmbsw_mask);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
|
|
* @data: data received by reading RXPBS register
|
|
*
|
|
* The 82580 uses a table based approach for packet buffer allocation sizes.
|
|
* This function converts the retrieved value into the correct table value
|
|
* 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
|
|
* 0x0 36 72 144 1 2 4 8 16
|
|
* 0x8 35 70 140 rsv rsv rsv rsv rsv
|
|
*/
|
|
u16 e1000_rxpbs_adjust_82580(u32 data)
|
|
{
|
|
u16 ret_val = 0;
|
|
|
|
if (data < E1000_82580_RXPBS_TABLE_SIZE)
|
|
ret_val = e1000_82580_rxpbs_table[data];
|
|
|
|
return ret_val;
|
|
}
|
|
/**
|
|
* e1000_erfuse_check_82580 - ER Fuse check
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This function returns the status of the ER Fuse
|
|
**/
|
|
s32 e1000_erfuse_check_82580(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
s32 ufuse_reg;
|
|
|
|
ufuse_reg = E1000_READ_REG(hw, E1000_UFUSE);
|
|
if ((ufuse_reg & E1000_ERFUSE) == E1000_ERFUSE)
|
|
ret_val = E1000_ERFUSE_FAILURE;
|
|
|
|
return ret_val;
|
|
}
|