freebsd-skq/sys/dev/my/if_my.c
Maxim Sobolev e50d35e6c6 Add new tunable 'net.link.ifqmaxlen' to set default send interface
queue length. The default value for this parameter is 50, which is
quite low for many of today's uses and the only way to modify this
parameter right now is to edit if_var.h file. Also add read-only
sysctl with the same name, so that it's possible to retrieve the
current value.

MFC after:	1 month
2010-05-03 07:32:50 +00:00

1785 lines
44 KiB
C

/*-
* Written by: yen_cw@myson.com.tw
* Copyright (c) 2002 Myson Technology Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#define NBPFILTER 1
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
/*
* #define MY_USEIOSPACE
*/
static int MY_USEIOSPACE = 1;
#ifdef MY_USEIOSPACE
#define MY_RES SYS_RES_IOPORT
#define MY_RID MY_PCI_LOIO
#else
#define MY_RES SYS_RES_MEMORY
#define MY_RID MY_PCI_LOMEM
#endif
#include <dev/my/if_myreg.h>
#ifndef lint
static const char rcsid[] =
"$Id: if_my.c,v 1.16 2003/04/15 06:37:25 mdodd Exp $";
#endif
/*
* Various supported device vendors/types and their names.
*/
struct my_type *my_info_tmp;
static struct my_type my_devs[] = {
{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
{0, 0, NULL}
};
/*
* Various supported PHY vendors/types and their names. Note that this driver
* will work with pretty much any MII-compliant PHY, so failure to positively
* identify the chip is not a fatal error.
*/
static struct my_type my_phys[] = {
{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
{0, 0, "<MII-compliant physical interface>"}
};
static int my_probe(device_t);
static int my_attach(device_t);
static int my_detach(device_t);
static int my_newbuf(struct my_softc *, struct my_chain_onefrag *);
static int my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
static void my_rxeof(struct my_softc *);
static void my_txeof(struct my_softc *);
static void my_txeoc(struct my_softc *);
static void my_intr(void *);
static void my_start(struct ifnet *);
static void my_start_locked(struct ifnet *);
static int my_ioctl(struct ifnet *, u_long, caddr_t);
static void my_init(void *);
static void my_init_locked(struct my_softc *);
static void my_stop(struct my_softc *);
static void my_autoneg_timeout(void *);
static void my_watchdog(void *);
static int my_shutdown(device_t);
static int my_ifmedia_upd(struct ifnet *);
static void my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static u_int16_t my_phy_readreg(struct my_softc *, int);
static void my_phy_writereg(struct my_softc *, int, int);
static void my_autoneg_xmit(struct my_softc *);
static void my_autoneg_mii(struct my_softc *, int, int);
static void my_setmode_mii(struct my_softc *, int);
static void my_getmode_mii(struct my_softc *);
static void my_setcfg(struct my_softc *, int);
static void my_setmulti(struct my_softc *);
static void my_reset(struct my_softc *);
static int my_list_rx_init(struct my_softc *);
static int my_list_tx_init(struct my_softc *);
static long my_send_cmd_to_phy(struct my_softc *, int, int);
#define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
#define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
static device_method_t my_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, my_probe),
DEVMETHOD(device_attach, my_attach),
DEVMETHOD(device_detach, my_detach),
DEVMETHOD(device_shutdown, my_shutdown),
{0, 0}
};
static driver_t my_driver = {
"my",
my_methods,
sizeof(struct my_softc)
};
static devclass_t my_devclass;
DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
MODULE_DEPEND(my, pci, 1, 1, 1);
MODULE_DEPEND(my, ether, 1, 1, 1);
static long
my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
{
long miir;
int i;
int mask, data;
MY_LOCK_ASSERT(sc);
/* enable MII output */
miir = CSR_READ_4(sc, MY_MANAGEMENT);
miir &= 0xfffffff0;
miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
/* send 32 1's preamble */
for (i = 0; i < 32; i++) {
/* low MDC; MDO is already high (miir) */
miir &= ~MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
/* high MDC */
miir |= MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
}
/* calculate ST+OP+PHYAD+REGAD+TA */
data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
/* sent out */
mask = 0x8000;
while (mask) {
/* low MDC, prepare MDO */
miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
if (mask & data)
miir |= MY_MASK_MIIR_MII_MDO;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
/* high MDC */
miir |= MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
DELAY(30);
/* next */
mask >>= 1;
if (mask == 0x2 && opcode == MY_OP_READ)
miir &= ~MY_MASK_MIIR_MII_WRITE;
}
return miir;
}
static u_int16_t
my_phy_readreg(struct my_softc * sc, int reg)
{
long miir;
int mask, data;
MY_LOCK_ASSERT(sc);
if (sc->my_info->my_did == MTD803ID)
data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
else {
miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
/* read data */
mask = 0x8000;
data = 0;
while (mask) {
/* low MDC */
miir &= ~MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
/* read MDI */
miir = CSR_READ_4(sc, MY_MANAGEMENT);
if (miir & MY_MASK_MIIR_MII_MDI)
data |= mask;
/* high MDC, and wait */
miir |= MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
DELAY(30);
/* next */
mask >>= 1;
}
/* low MDC */
miir &= ~MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
}
return (u_int16_t) data;
}
static void
my_phy_writereg(struct my_softc * sc, int reg, int data)
{
long miir;
int mask;
MY_LOCK_ASSERT(sc);
if (sc->my_info->my_did == MTD803ID)
CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
else {
miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
/* write data */
mask = 0x8000;
while (mask) {
/* low MDC, prepare MDO */
miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
if (mask & data)
miir |= MY_MASK_MIIR_MII_MDO;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
DELAY(1);
/* high MDC */
miir |= MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
DELAY(1);
/* next */
mask >>= 1;
}
/* low MDC */
miir &= ~MY_MASK_MIIR_MII_MDC;
CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
}
return;
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
my_setmulti(struct my_softc * sc)
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = {0, 0};
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
int mcnt = 0;
MY_LOCK_ASSERT(sc);
ifp = sc->my_ifp;
rxfilt = CSR_READ_4(sc, MY_TCRRCR);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= MY_AM;
CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, MY_MAR0, 0);
CSR_WRITE_4(sc, MY_MAR1, 0);
/* now program new ones */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
if_maddr_runlock(ifp);
if (mcnt)
rxfilt |= MY_AM;
else
rxfilt &= ~MY_AM;
CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
return;
}
/*
* Initiate an autonegotiation session.
*/
static void
my_autoneg_xmit(struct my_softc * sc)
{
u_int16_t phy_sts = 0;
MY_LOCK_ASSERT(sc);
my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
phy_sts = my_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
my_phy_writereg(sc, PHY_BMCR, phy_sts);
return;
}
static void
my_autoneg_timeout(void *arg)
{
struct my_softc *sc;
sc = arg;
MY_LOCK_ASSERT(sc);
my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
}
/*
* Invoke autonegotiation on a PHY.
*/
static void
my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
{
u_int16_t phy_sts = 0, media, advert, ability;
u_int16_t ability2 = 0;
struct ifnet *ifp;
struct ifmedia *ifm;
MY_LOCK_ASSERT(sc);
ifm = &sc->ifmedia;
ifp = sc->my_ifp;
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
#ifndef FORCE_AUTONEG_TFOUR
/*
* First, see if autoneg is supported. If not, there's no point in
* continuing.
*/
phy_sts = my_phy_readreg(sc, PHY_BMSR);
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
if (verbose)
device_printf(sc->my_dev,
"autonegotiation not supported\n");
ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
return;
}
#endif
switch (flag) {
case MY_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks for
* three whole seconds after we've gone multi-user is really
* bad manners.
*/
my_autoneg_xmit(sc);
DELAY(5000000);
break;
case MY_FLAG_SCHEDDELAY:
/*
* Wait for the transmitter to go idle before starting an
* autoneg session, otherwise my_start() may clobber our
* timeout, and we don't want to allow transmission during an
* autoneg session since that can screw it up.
*/
if (sc->my_cdata.my_tx_head != NULL) {
sc->my_want_auto = 1;
MY_UNLOCK(sc);
return;
}
my_autoneg_xmit(sc);
callout_reset(&sc->my_autoneg_timer, hz * 5, my_autoneg_timeout,
sc);
sc->my_autoneg = 1;
sc->my_want_auto = 0;
return;
case MY_FLAG_DELAYTIMEO:
callout_stop(&sc->my_autoneg_timer);
sc->my_autoneg = 0;
break;
default:
device_printf(sc->my_dev, "invalid autoneg flag: %d\n", flag);
return;
}
if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
if (verbose)
device_printf(sc->my_dev, "autoneg complete, ");
phy_sts = my_phy_readreg(sc, PHY_BMSR);
} else {
if (verbose)
device_printf(sc->my_dev, "autoneg not complete, ");
}
media = my_phy_readreg(sc, PHY_BMCR);
/* Link is good. Report modes and set duplex mode. */
if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
if (verbose)
device_printf(sc->my_dev, "link status good. ");
advert = my_phy_readreg(sc, PHY_ANAR);
ability = my_phy_readreg(sc, PHY_LPAR);
if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
(sc->my_pinfo->my_vid == LevelOnePHYID0)) {
ability2 = my_phy_readreg(sc, PHY_1000SR);
if (ability2 & PHY_1000SR_1000BTXFULL) {
advert = 0;
ability = 0;
/*
* this version did not support 1000M,
* ifm->ifm_media =
* IFM_ETHER|IFM_1000_T|IFM_FDX;
*/
ifm->ifm_media =
IFM_ETHER | IFM_100_TX | IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_1000;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 1000Mbps)\n");
} else if (ability2 & PHY_1000SR_1000BTXHALF) {
advert = 0;
ability = 0;
/*
* this version did not support 1000M,
* ifm->ifm_media = IFM_ETHER|IFM_1000_T;
*/
ifm->ifm_media = IFM_ETHER | IFM_100_TX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
media |= PHY_BMCR_1000;
printf("(half-duplex, 1000Mbps)\n");
}
}
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
ifm->ifm_media = IFM_ETHER | IFM_100_T4;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(100baseT4)\n");
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
media |= PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 10Mbps)\n");
} else if (advert) {
ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 10Mbps)\n");
}
media &= ~PHY_BMCR_AUTONEGENBL;
/* Set ASIC's duplex mode to match the PHY. */
my_phy_writereg(sc, PHY_BMCR, media);
my_setcfg(sc, media);
} else {
if (verbose)
device_printf(sc->my_dev, "no carrier\n");
}
my_init_locked(sc);
if (sc->my_tx_pend) {
sc->my_autoneg = 0;
sc->my_tx_pend = 0;
my_start_locked(ifp);
}
return;
}
/*
* To get PHY ability.
*/
static void
my_getmode_mii(struct my_softc * sc)
{
u_int16_t bmsr;
struct ifnet *ifp;
MY_LOCK_ASSERT(sc);
ifp = sc->my_ifp;
bmsr = my_phy_readreg(sc, PHY_BMSR);
if (bootverbose)
device_printf(sc->my_dev, "PHY status word: %x\n", bmsr);
/* fallback */
sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
if (bmsr & PHY_BMSR_10BTHALF) {
if (bootverbose)
device_printf(sc->my_dev,
"10Mbps half-duplex mode supported\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
}
if (bmsr & PHY_BMSR_10BTFULL) {
if (bootverbose)
device_printf(sc->my_dev,
"10Mbps full-duplex mode supported\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
}
if (bmsr & PHY_BMSR_100BTXHALF) {
if (bootverbose)
device_printf(sc->my_dev,
"100Mbps half-duplex mode supported\n");
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
}
if (bmsr & PHY_BMSR_100BTXFULL) {
if (bootverbose)
device_printf(sc->my_dev,
"100Mbps full-duplex mode supported\n");
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
}
/* Some also support 100BaseT4. */
if (bmsr & PHY_BMSR_100BT4) {
if (bootverbose)
device_printf(sc->my_dev, "100baseT4 mode supported\n");
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
#ifdef FORCE_AUTONEG_TFOUR
if (bootverbose)
device_printf(sc->my_dev,
"forcing on autoneg support for BT4\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
#endif
}
#if 0 /* this version did not support 1000M, */
if (sc->my_pinfo->my_vid == MarvellPHYID0) {
if (bootverbose)
device_printf(sc->my_dev,
"1000Mbps half-duplex mode supported\n");
ifp->if_baudrate = 1000000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
0, NULL);
if (bootverbose)
device_printf(sc->my_dev,
"1000Mbps full-duplex mode supported\n");
ifp->if_baudrate = 1000000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
}
#endif
if (bmsr & PHY_BMSR_CANAUTONEG) {
if (bootverbose)
device_printf(sc->my_dev, "autoneg supported\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
}
return;
}
/*
* Set speed and duplex mode.
*/
static void
my_setmode_mii(struct my_softc * sc, int media)
{
u_int16_t bmcr;
struct ifnet *ifp;
MY_LOCK_ASSERT(sc);
ifp = sc->my_ifp;
/*
* If an autoneg session is in progress, stop it.
*/
if (sc->my_autoneg) {
device_printf(sc->my_dev, "canceling autoneg session\n");
callout_stop(&sc->my_autoneg_timer);
sc->my_autoneg = sc->my_want_auto = 0;
bmcr = my_phy_readreg(sc, PHY_BMCR);
bmcr &= ~PHY_BMCR_AUTONEGENBL;
my_phy_writereg(sc, PHY_BMCR, bmcr);
}
device_printf(sc->my_dev, "selecting MII, ");
bmcr = my_phy_readreg(sc, PHY_BMCR);
bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
#if 0 /* this version did not support 1000M, */
if (IFM_SUBTYPE(media) == IFM_1000_T) {
printf("1000Mbps/T4, half-duplex\n");
bmcr &= ~PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
bmcr |= PHY_BMCR_1000;
}
#endif
if (IFM_SUBTYPE(media) == IFM_100_T4) {
printf("100Mbps/T4, half-duplex\n");
bmcr |= PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
printf("100Mbps, ");
bmcr |= PHY_BMCR_SPEEDSEL;
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10Mbps, ");
bmcr &= ~PHY_BMCR_SPEEDSEL;
}
if ((media & IFM_GMASK) == IFM_FDX) {
printf("full duplex\n");
bmcr |= PHY_BMCR_DUPLEX;
} else {
printf("half duplex\n");
bmcr &= ~PHY_BMCR_DUPLEX;
}
my_phy_writereg(sc, PHY_BMCR, bmcr);
my_setcfg(sc, bmcr);
return;
}
/*
* The Myson manual states that in order to fiddle with the 'full-duplex' and
* '100Mbps' bits in the netconfig register, we first have to put the
* transmit and/or receive logic in the idle state.
*/
static void
my_setcfg(struct my_softc * sc, int bmcr)
{
int i, restart = 0;
MY_LOCK_ASSERT(sc);
if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
restart = 1;
MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
for (i = 0; i < MY_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, MY_TCRRCR) &
(MY_TXRUN | MY_RXRUN)))
break;
}
if (i == MY_TIMEOUT)
device_printf(sc->my_dev,
"failed to force tx and rx to idle \n");
}
MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
if (bmcr & PHY_BMCR_1000)
MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
else if (!(bmcr & PHY_BMCR_SPEEDSEL))
MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
if (bmcr & PHY_BMCR_DUPLEX)
MY_SETBIT(sc, MY_TCRRCR, MY_FD);
else
MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
if (restart)
MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
return;
}
static void
my_reset(struct my_softc * sc)
{
register int i;
MY_LOCK_ASSERT(sc);
MY_SETBIT(sc, MY_BCR, MY_SWR);
for (i = 0; i < MY_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
break;
}
if (i == MY_TIMEOUT)
device_printf(sc->my_dev, "reset never completed!\n");
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for a Myson chip. Check the PCI vendor and device IDs against our
* list and return a device name if we find a match.
*/
static int
my_probe(device_t dev)
{
struct my_type *t;
t = my_devs;
while (t->my_name != NULL) {
if ((pci_get_vendor(dev) == t->my_vid) &&
(pci_get_device(dev) == t->my_did)) {
device_set_desc(dev, t->my_name);
my_info_tmp = t;
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia setup and
* ethernet/BPF attach.
*/
static int
my_attach(device_t dev)
{
int i;
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t iobase;
struct my_softc *sc;
struct ifnet *ifp;
int media = IFM_ETHER | IFM_100_TX | IFM_FDX;
unsigned int round;
caddr_t roundptr;
struct my_type *p;
u_int16_t phy_vid, phy_did, phy_sts = 0;
int rid, error = 0;
sc = device_get_softc(dev);
sc->my_dev = dev;
mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->my_autoneg_timer, &sc->my_mtx, 0);
callout_init_mtx(&sc->my_watchdog, &sc->my_mtx, 0);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
if (my_info_tmp->my_did == MTD800ID) {
iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
if (iobase & 0x300)
MY_USEIOSPACE = 0;
}
rid = MY_RID;
sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
if (sc->my_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto destroy_mutex;
}
sc->my_btag = rman_get_bustag(sc->my_res);
sc->my_bhandle = rman_get_bushandle(sc->my_res);
rid = 0;
sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->my_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto release_io;
}
sc->my_info = my_info_tmp;
/* Reset the adapter. */
MY_LOCK(sc);
my_reset(sc);
MY_UNLOCK(sc);
/*
* Get station address
*/
for (i = 0; i < ETHER_ADDR_LEN; ++i)
eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
M_DEVBUF, M_NOWAIT);
if (sc->my_ldata_ptr == NULL) {
device_printf(dev, "no memory for list buffers!\n");
error = ENXIO;
goto release_irq;
}
sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
round = (uintptr_t)sc->my_ldata_ptr & 0xF;
roundptr = sc->my_ldata_ptr;
for (i = 0; i < 8; i++) {
if (round % 8) {
round++;
roundptr++;
} else
break;
}
sc->my_ldata = (struct my_list_data *) roundptr;
bzero(sc->my_ldata, sizeof(struct my_list_data));
ifp = sc->my_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto free_ldata;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = my_ioctl;
ifp->if_start = my_start;
ifp->if_init = my_init;
ifp->if_baudrate = 10000000;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
if (sc->my_info->my_did == MTD803ID)
sc->my_pinfo = my_phys;
else {
if (bootverbose)
device_printf(dev, "probing for a PHY\n");
MY_LOCK(sc);
for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
if (bootverbose)
device_printf(dev, "checking address: %d\n", i);
sc->my_phy_addr = i;
phy_sts = my_phy_readreg(sc, PHY_BMSR);
if ((phy_sts != 0) && (phy_sts != 0xffff))
break;
else
phy_sts = 0;
}
if (phy_sts) {
phy_vid = my_phy_readreg(sc, PHY_VENID);
phy_did = my_phy_readreg(sc, PHY_DEVID);
if (bootverbose) {
device_printf(dev, "found PHY at address %d, ",
sc->my_phy_addr);
printf("vendor id: %x device id: %x\n",
phy_vid, phy_did);
}
p = my_phys;
while (p->my_vid) {
if (phy_vid == p->my_vid) {
sc->my_pinfo = p;
break;
}
p++;
}
if (sc->my_pinfo == NULL)
sc->my_pinfo = &my_phys[PHY_UNKNOWN];
if (bootverbose)
device_printf(dev, "PHY type: %s\n",
sc->my_pinfo->my_name);
} else {
MY_UNLOCK(sc);
device_printf(dev, "MII without any phy!\n");
error = ENXIO;
goto free_if;
}
MY_UNLOCK(sc);
}
/* Do ifmedia setup. */
ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
MY_LOCK(sc);
my_getmode_mii(sc);
my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
media = sc->ifmedia.ifm_media;
my_stop(sc);
MY_UNLOCK(sc);
ifmedia_set(&sc->ifmedia, media);
ether_ifattach(ifp, eaddr);
error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, my_intr, sc, &sc->my_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
goto detach_if;
}
return (0);
detach_if:
ether_ifdetach(ifp);
free_if:
if_free(ifp);
free_ldata:
free(sc->my_ldata_ptr, M_DEVBUF);
release_irq:
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
release_io:
bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
destroy_mutex:
mtx_destroy(&sc->my_mtx);
return (error);
}
static int
my_detach(device_t dev)
{
struct my_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->my_ifp;
ether_ifdetach(ifp);
MY_LOCK(sc);
my_stop(sc);
MY_UNLOCK(sc);
bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
callout_drain(&sc->my_watchdog);
callout_drain(&sc->my_autoneg_timer);
if_free(ifp);
free(sc->my_ldata_ptr, M_DEVBUF);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
mtx_destroy(&sc->my_mtx);
return (0);
}
/*
* Initialize the transmit descriptors.
*/
static int
my_list_tx_init(struct my_softc * sc)
{
struct my_chain_data *cd;
struct my_list_data *ld;
int i;
MY_LOCK_ASSERT(sc);
cd = &sc->my_cdata;
ld = sc->my_ldata;
for (i = 0; i < MY_TX_LIST_CNT; i++) {
cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
if (i == (MY_TX_LIST_CNT - 1))
cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
else
cd->my_tx_chain[i].my_nextdesc =
&cd->my_tx_chain[i + 1];
}
cd->my_tx_free = &cd->my_tx_chain[0];
cd->my_tx_tail = cd->my_tx_head = NULL;
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that we
* arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
my_list_rx_init(struct my_softc * sc)
{
struct my_chain_data *cd;
struct my_list_data *ld;
int i;
MY_LOCK_ASSERT(sc);
cd = &sc->my_cdata;
ld = sc->my_ldata;
for (i = 0; i < MY_RX_LIST_CNT; i++) {
cd->my_rx_chain[i].my_ptr =
(struct my_desc *) & ld->my_rx_list[i];
if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
MY_UNLOCK(sc);
return (ENOBUFS);
}
if (i == (MY_RX_LIST_CNT - 1)) {
cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
} else {
cd->my_rx_chain[i].my_nextdesc =
&cd->my_rx_chain[i + 1];
ld->my_rx_list[i].my_next =
vtophys(&ld->my_rx_list[i + 1]);
}
}
cd->my_rx_head = &cd->my_rx_chain[0];
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
{
struct mbuf *m_new = NULL;
MY_LOCK_ASSERT(sc);
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
device_printf(sc->my_dev,
"no memory for rx list -- packet dropped!\n");
return (ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
device_printf(sc->my_dev,
"no memory for rx list -- packet dropped!\n");
m_freem(m_new);
return (ENOBUFS);
}
c->my_mbuf = m_new;
c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
c->my_ptr->my_status = MY_OWNByNIC;
return (0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to the higher
* level protocols.
*/
static void
my_rxeof(struct my_softc * sc)
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct my_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
MY_LOCK_ASSERT(sc);
ifp = sc->my_ifp;
while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
& MY_OWNByNIC)) {
cur_rx = sc->my_cdata.my_rx_head;
sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
if (rxstat & MY_ES) { /* error summary: give up this rx pkt */
ifp->if_ierrors++;
cur_rx->my_ptr->my_status = MY_OWNByNIC;
continue;
}
/* No errors; receive the packet. */
total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
total_len -= ETHER_CRC_LEN;
if (total_len < MINCLSIZE) {
m = m_devget(mtod(cur_rx->my_mbuf, char *),
total_len, 0, ifp, NULL);
cur_rx->my_ptr->my_status = MY_OWNByNIC;
if (m == NULL) {
ifp->if_ierrors++;
continue;
}
} else {
m = cur_rx->my_mbuf;
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition
* and should leave the buffer in place and continue.
* This will result in a lost packet, but there's
* little else we can do in this situation.
*/
if (my_newbuf(sc, cur_rx) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->my_ptr->my_status = MY_OWNByNIC;
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
}
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's a
* broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (bpf_peers_present(ifp->if_bpf)) {
bpf_mtap(ifp->if_bpf, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp),
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
#endif
MY_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
MY_LOCK(sc);
}
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up the list
* buffers.
*/
static void
my_txeof(struct my_softc * sc)
{
struct my_chain *cur_tx;
struct ifnet *ifp;
MY_LOCK_ASSERT(sc);
ifp = sc->my_ifp;
/* Clear the timeout timer. */
sc->my_timer = 0;
if (sc->my_cdata.my_tx_head == NULL) {
return;
}
/*
* Go through our tx list and free mbufs for those frames that have
* been transmitted.
*/
while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->my_cdata.my_tx_head;
txstat = MY_TXSTATUS(cur_tx);
if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
break;
if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
if (txstat & MY_TXERR) {
ifp->if_oerrors++;
if (txstat & MY_EC) /* excessive collision */
ifp->if_collisions++;
if (txstat & MY_LC) /* late collision */
ifp->if_collisions++;
}
ifp->if_collisions += (txstat & MY_NCRMASK) >>
MY_NCRShift;
}
ifp->if_opackets++;
m_freem(cur_tx->my_mbuf);
cur_tx->my_mbuf = NULL;
if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
sc->my_cdata.my_tx_head = NULL;
sc->my_cdata.my_tx_tail = NULL;
break;
}
sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
}
if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
}
return;
}
/*
* TX 'end of channel' interrupt handler.
*/
static void
my_txeoc(struct my_softc * sc)
{
struct ifnet *ifp;
MY_LOCK_ASSERT(sc);
ifp = sc->my_ifp;
sc->my_timer = 0;
if (sc->my_cdata.my_tx_head == NULL) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->my_cdata.my_tx_tail = NULL;
if (sc->my_want_auto)
my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
} else {
if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
sc->my_timer = 5;
CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
}
}
return;
}
static void
my_intr(void *arg)
{
struct my_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
MY_LOCK(sc);
ifp = sc->my_ifp;
if (!(ifp->if_flags & IFF_UP)) {
MY_UNLOCK(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, MY_IMR, 0x00000000);
for (;;) {
status = CSR_READ_4(sc, MY_ISR);
status &= MY_INTRS;
if (status)
CSR_WRITE_4(sc, MY_ISR, status);
else
break;
if (status & MY_RI) /* receive interrupt */
my_rxeof(sc);
if ((status & MY_RBU) || (status & MY_RxErr)) {
/* rx buffer unavailable or rx error */
ifp->if_ierrors++;
#ifdef foo
my_stop(sc);
my_reset(sc);
my_init_locked(sc);
#endif
}
if (status & MY_TI) /* tx interrupt */
my_txeof(sc);
if (status & MY_ETI) /* tx early interrupt */
my_txeof(sc);
if (status & MY_TBU) /* tx buffer unavailable */
my_txeoc(sc);
#if 0 /* 90/1/18 delete */
if (status & MY_FBE) {
my_reset(sc);
my_init_locked(sc);
}
#endif
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
my_start_locked(ifp);
MY_UNLOCK(sc);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
{
struct my_desc *f = NULL;
int total_len;
struct mbuf *m, *m_new = NULL;
MY_LOCK_ASSERT(sc);
/* calculate the total tx pkt length */
total_len = 0;
for (m = m_head; m != NULL; m = m->m_next)
total_len += m->m_len;
/*
* Start packing the mbufs in this chain into the fragment pointers.
* Stop when we run out of fragments or hit the end of the mbuf
* chain.
*/
m = m_head;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
device_printf(sc->my_dev, "no memory for tx list");
return (1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
device_printf(sc->my_dev, "no memory for tx list");
return (1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->my_ptr->my_frag[0];
f->my_status = 0;
f->my_data = vtophys(mtod(m_new, caddr_t));
total_len = m_new->m_len;
f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
f->my_ctl |= total_len << MY_PKTShift; /* pkt size */
f->my_ctl |= total_len; /* buffer size */
/* 89/12/29 add, for mtd891 *//* [ 89? ] */
if (sc->my_info->my_did == MTD891ID)
f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
c->my_mbuf = m_head;
c->my_lastdesc = 0;
MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
return (0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
my_start(struct ifnet * ifp)
{
struct my_softc *sc;
sc = ifp->if_softc;
MY_LOCK(sc);
my_start_locked(ifp);
MY_UNLOCK(sc);
}
static void
my_start_locked(struct ifnet * ifp)
{
struct my_softc *sc;
struct mbuf *m_head = NULL;
struct my_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
MY_LOCK_ASSERT(sc);
if (sc->my_autoneg) {
sc->my_tx_pend = 1;
return;
}
/*
* Check for an available queue slot. If there are none, punt.
*/
if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return;
}
start_tx = sc->my_cdata.my_tx_free;
while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->my_cdata.my_tx_free;
sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
/* Pack the data into the descriptor. */
my_encap(sc, cur_tx, m_head);
if (cur_tx != start_tx)
MY_TXOWN(cur_tx) = MY_OWNByNIC;
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame to
* him.
*/
BPF_MTAP(ifp, cur_tx->my_mbuf);
#endif
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL) {
return;
}
/*
* Place the request for the upload interrupt in the last descriptor
* in the chain. This way, if we're chaining several packets at once,
* we'll only get an interrupt once for the whole chain rather than
* once for each packet.
*/
MY_TXCTL(cur_tx) |= MY_TXIC;
cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
sc->my_cdata.my_tx_tail = cur_tx;
if (sc->my_cdata.my_tx_head == NULL)
sc->my_cdata.my_tx_head = start_tx;
MY_TXOWN(start_tx) = MY_OWNByNIC;
CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF); /* tx polling demand */
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->my_timer = 5;
return;
}
static void
my_init(void *xsc)
{
struct my_softc *sc = xsc;
MY_LOCK(sc);
my_init_locked(sc);
MY_UNLOCK(sc);
}
static void
my_init_locked(struct my_softc *sc)
{
struct ifnet *ifp = sc->my_ifp;
u_int16_t phy_bmcr = 0;
MY_LOCK_ASSERT(sc);
if (sc->my_autoneg) {
return;
}
if (sc->my_pinfo != NULL)
phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
my_stop(sc);
my_reset(sc);
/*
* Set cache alignment and burst length.
*/
#if 0 /* 89/9/1 modify, */
CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
#endif
CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
/*
* 89/12/29 add, for mtd891,
*/
if (sc->my_info->my_did == MTD891ID) {
MY_SETBIT(sc, MY_BCR, MY_PROG);
MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
}
my_setcfg(sc, phy_bmcr);
/* Init circular RX list. */
if (my_list_rx_init(sc) == ENOBUFS) {
device_printf(sc->my_dev, "init failed: no memory for rx buffers\n");
my_stop(sc);
return;
}
/* Init TX descriptors. */
my_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
else
MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST)
MY_SETBIT(sc, MY_TCRRCR, MY_AB);
else
MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
/*
* Program the multicast filter, if necessary.
*/
my_setmulti(sc);
/*
* Load the address of the RX list.
*/
MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
/* Enable receiver and transmitter. */
MY_SETBIT(sc, MY_TCRRCR, MY_RE);
MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
MY_SETBIT(sc, MY_TCRRCR, MY_TE);
/* Restore state of BMCR */
if (sc->my_pinfo != NULL)
my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
return;
}
/*
* Set media options.
*/
static int
my_ifmedia_upd(struct ifnet * ifp)
{
struct my_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
MY_LOCK(sc);
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
MY_UNLOCK(sc);
return (EINVAL);
}
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
else
my_setmode_mii(sc, ifm->ifm_media);
MY_UNLOCK(sc);
return (0);
}
/*
* Report current media status.
*/
static void
my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
{
struct my_softc *sc;
u_int16_t advert = 0, ability = 0;
sc = ifp->if_softc;
MY_LOCK(sc);
ifmr->ifm_active = IFM_ETHER;
if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
#if 0 /* this version did not support 1000M, */
if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
#endif
if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
else
ifmr->ifm_active = IFM_ETHER | IFM_10_T;
if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
MY_UNLOCK(sc);
return;
}
ability = my_phy_readreg(sc, PHY_LPAR);
advert = my_phy_readreg(sc, PHY_ANAR);
#if 0 /* this version did not support 1000M, */
if (sc->my_pinfo->my_vid = MarvellPHYID0) {
ability2 = my_phy_readreg(sc, PHY_1000SR);
if (ability2 & PHY_1000SR_1000BTXFULL) {
advert = 0;
ability = 0;
ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
} else if (ability & PHY_1000SR_1000BTXHALF) {
advert = 0;
ability = 0;
ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
}
}
#endif
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
MY_UNLOCK(sc);
return;
}
static int
my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
{
struct my_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int error;
switch (command) {
case SIOCSIFFLAGS:
MY_LOCK(sc);
if (ifp->if_flags & IFF_UP)
my_init_locked(sc);
else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
my_stop(sc);
MY_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
MY_LOCK(sc);
my_setmulti(sc);
MY_UNLOCK(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
my_watchdog(void *arg)
{
struct my_softc *sc;
struct ifnet *ifp;
sc = arg;
MY_LOCK_ASSERT(sc);
callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
if (sc->my_timer == 0 || --sc->my_timer > 0)
return;
ifp = sc->my_ifp;
ifp->if_oerrors++;
if_printf(ifp, "watchdog timeout\n");
if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
if_printf(ifp, "no carrier - transceiver cable problem?\n");
my_stop(sc);
my_reset(sc);
my_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
my_start_locked(ifp);
}
/*
* Stop the adapter and free any mbufs allocated to the RX and TX lists.
*/
static void
my_stop(struct my_softc * sc)
{
register int i;
struct ifnet *ifp;
MY_LOCK_ASSERT(sc);
ifp = sc->my_ifp;
callout_stop(&sc->my_autoneg_timer);
callout_stop(&sc->my_watchdog);
MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
CSR_WRITE_4(sc, MY_IMR, 0x00000000);
CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < MY_RX_LIST_CNT; i++) {
if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
}
}
bzero((char *)&sc->my_ldata->my_rx_list,
sizeof(sc->my_ldata->my_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < MY_TX_LIST_CNT; i++) {
if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
}
}
bzero((char *)&sc->my_ldata->my_tx_list,
sizeof(sc->my_ldata->my_tx_list));
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't get confused
* by errant DMAs when rebooting.
*/
static int
my_shutdown(device_t dev)
{
struct my_softc *sc;
sc = device_get_softc(dev);
MY_LOCK(sc);
my_stop(sc);
MY_UNLOCK(sc);
return 0;
}