1997-11-27 19:49:05 +00:00

4930 lines
144 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* tclExecute.c --
*
* This file contains procedures that execute byte-compiled Tcl
* commands.
*
* Copyright (c) 1996-1997 Sun Microsystems, Inc.
*
* See the file "license.terms" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
* SCCS: @(#) tclExecute.c 1.102 97/11/06 11:36:35
*/
#include "tclInt.h"
#include "tclCompile.h"
#ifdef NO_FLOAT_H
# include "../compat/float.h"
#else
# include <float.h>
#endif
#ifndef TCL_NO_MATH
#include "tclMath.h"
#endif
/*
* The stuff below is a bit of a hack so that this file can be used
* in environments that include no UNIX, i.e. no errno. Just define
* errno here.
*/
#ifndef TCL_GENERIC_ONLY
#include "tclPort.h"
#else
#define NO_ERRNO_H
#endif
#ifdef NO_ERRNO_H
int errno;
#define EDOM 33
#define ERANGE 34
#endif
/*
* Boolean flag indicating whether the Tcl bytecode interpreter has been
* initialized.
*/
static int execInitialized = 0;
/*
* Variable that controls whether execution tracing is enabled and, if so,
* what level of tracing is desired:
* 0: no execution tracing
* 1: trace invocations of Tcl procs only
* 2: trace invocations of all (not compiled away) commands
* 3: display each instruction executed
* This variable is linked to the Tcl variable "tcl_traceExec".
*/
int tclTraceExec = 0;
/*
* The following global variable is use to signal matherr that Tcl
* is responsible for the arithmetic, so errors can be handled in a
* fashion appropriate for Tcl. Zero means no Tcl math is in
* progress; non-zero means Tcl is doing math.
*/
int tcl_MathInProgress = 0;
/*
* The variable below serves no useful purpose except to generate
* a reference to matherr, so that the Tcl version of matherr is
* linked in rather than the system version. Without this reference
* the need for matherr won't be discovered during linking until after
* libtcl.a has been processed, so Tcl's version won't be used.
*/
#ifdef NEED_MATHERR
extern int matherr();
int (*tclMatherrPtr)() = matherr;
#endif
/*
* Array of instruction names.
*/
static char *opName[256];
/*
* Mapping from expression instruction opcodes to strings; used for error
* messages. Note that these entries must match the order and number of the
* expression opcodes (e.g., INST_LOR) in tclCompile.h.
*/
static char *operatorStrings[] = {
"||", "&&", "|", "^", "&", "==", "!=", "<", ">", "<=", ">=", "<<", ">>",
"+", "-", "*", "/", "%", "+", "-", "~", "!",
"BUILTIN FUNCTION", "FUNCTION"
};
/*
* Mapping from Tcl result codes to strings; used for error and debugging
* messages.
*/
#ifdef TCL_COMPILE_DEBUG
static char *resultStrings[] = {
"TCL_OK", "TCL_ERROR", "TCL_RETURN", "TCL_BREAK", "TCL_CONTINUE"
};
#endif /* TCL_COMPILE_DEBUG */
/*
* The following are statistics-related variables that record information
* about the bytecode compiler and interpreter's operation. This includes
* an array that records for each instruction how often it is executed.
*/
#ifdef TCL_COMPILE_STATS
static long numExecutions = 0;
static int instructionCount[256];
#endif /* TCL_COMPILE_STATS */
/*
* Macros for testing floating-point values for certain special cases. Test
* for not-a-number by comparing a value against itself; test for infinity
* by comparing against the largest floating-point value.
*/
#define IS_NAN(v) ((v) != (v))
#ifdef DBL_MAX
# define IS_INF(v) (((v) > DBL_MAX) || ((v) < -DBL_MAX))
#else
# define IS_INF(v) 0
#endif
/*
* Macro to adjust the program counter and restart the instruction execution
* loop after each instruction is executed.
*/
#define ADJUST_PC(instBytes) \
pc += instBytes; continue
/*
* Macros used to cache often-referenced Tcl evaluation stack information
* in local variables. Note that a DECACHE_STACK_INFO()-CACHE_STACK_INFO()
* pair must surround any call inside TclExecuteByteCode (and a few other
* procedures that use this scheme) that could result in a recursive call
* to TclExecuteByteCode.
*/
#define CACHE_STACK_INFO() \
stackPtr = eePtr->stackPtr; \
stackTop = eePtr->stackTop
#define DECACHE_STACK_INFO() \
eePtr->stackTop = stackTop
/*
* Macros used to access items on the Tcl evaluation stack. PUSH_OBJECT
* increments the object's ref count since it makes the stack have another
* reference pointing to the object. However, POP_OBJECT does not decrement
* the ref count. This is because the stack may hold the only reference to
* the object, so the object would be destroyed if its ref count were
* decremented before the caller had a chance to, e.g., store it in a
* variable. It is the caller's responsibility to decrement the ref count
* when it is finished with an object.
*/
#define STK_ITEM(offset) (stackPtr[stackTop + (offset)])
#define STK_OBJECT(offset) (STK_ITEM(offset).o)
#define STK_INT(offset) (STK_ITEM(offset).i)
#define STK_POINTER(offset) (STK_ITEM(offset).p)
/*
* WARNING! It is essential that objPtr only appear once in the PUSH_OBJECT
* macro. The actual parameter might be an expression with side effects,
* and this ensures that it will be executed only once.
*/
#define PUSH_OBJECT(objPtr) \
Tcl_IncrRefCount(stackPtr[++stackTop].o = (objPtr))
#define POP_OBJECT() \
(stackPtr[stackTop--].o)
/*
* Macros used to trace instruction execution. The macros TRACE,
* TRACE_WITH_OBJ, and O2S are only used inside TclExecuteByteCode.
* O2S is only used in TRACE* calls to get a string from an object.
*
* NOTE THAT CLIENTS OF O2S ARE LIKELY TO FAIL IF THE OBJECT'S
* STRING REP CONTAINS NULLS.
*/
#ifdef TCL_COMPILE_DEBUG
#define O2S(objPtr) \
Tcl_GetStringFromObj((objPtr), &length)
#ifdef TCL_COMPILE_STATS
#define TRACE(a) \
if (traceInstructions) { \
fprintf(stdout, "%d: %d,%ld (%u) ", iPtr->numLevels, \
stackTop, (tclObjsAlloced - tclObjsFreed), \
(unsigned int)(pc - codePtr->codeStart)); \
printf a; \
fflush(stdout); \
}
#define TRACE_WITH_OBJ(a, objPtr) \
if (traceInstructions) { \
fprintf(stdout, "%d: %d,%ld (%u) ", iPtr->numLevels, \
stackTop, (tclObjsAlloced - tclObjsFreed), \
(unsigned int)(pc - codePtr->codeStart)); \
printf a; \
bytes = Tcl_GetStringFromObj((objPtr), &length); \
TclPrintSource(stdout, bytes, TclMin(length, 30)); \
fprintf(stdout, "\n"); \
fflush(stdout); \
}
#else /* not TCL_COMPILE_STATS */
#define TRACE(a) \
if (traceInstructions) { \
fprintf(stdout, "%d: %d (%u) ", iPtr->numLevels, stackTop, \
(unsigned int)(pc - codePtr->codeStart)); \
printf a; \
fflush(stdout); \
}
#define TRACE_WITH_OBJ(a, objPtr) \
if (traceInstructions) { \
fprintf(stdout, "%d: %d (%u) ", iPtr->numLevels, stackTop, \
(unsigned int)(pc - codePtr->codeStart)); \
printf a; \
bytes = Tcl_GetStringFromObj((objPtr), &length); \
TclPrintSource(stdout, bytes, TclMin(length, 30)); \
fprintf(stdout, "\n"); \
fflush(stdout); \
}
#endif /* TCL_COMPILE_STATS */
#else /* not TCL_COMPILE_DEBUG */
#define TRACE(a)
#define TRACE_WITH_OBJ(a, objPtr)
#define O2S(objPtr)
#endif /* TCL_COMPILE_DEBUG */
/*
* Declarations for local procedures to this file:
*/
static void CallTraceProcedure _ANSI_ARGS_((Tcl_Interp *interp,
Trace *tracePtr, Command *cmdPtr,
char *command, int numChars,
int objc, Tcl_Obj *objv[]));
static void DupCmdNameInternalRep _ANSI_ARGS_((Tcl_Obj *objPtr,
Tcl_Obj *copyPtr));
static int ExprAbsFunc _ANSI_ARGS_((Tcl_Interp *interp,
ExecEnv *eePtr, ClientData clientData));
static int ExprBinaryFunc _ANSI_ARGS_((Tcl_Interp *interp,
ExecEnv *eePtr, ClientData clientData));
static int ExprCallMathFunc _ANSI_ARGS_((Tcl_Interp *interp,
ExecEnv *eePtr, int objc, Tcl_Obj **objv));
static int ExprDoubleFunc _ANSI_ARGS_((Tcl_Interp *interp,
ExecEnv *eePtr, ClientData clientData));
static int ExprIntFunc _ANSI_ARGS_((Tcl_Interp *interp,
ExecEnv *eePtr, ClientData clientData));
static int ExprRandFunc _ANSI_ARGS_((Tcl_Interp *interp,
ExecEnv *eePtr, ClientData clientData));
static int ExprRoundFunc _ANSI_ARGS_((Tcl_Interp *interp,
ExecEnv *eePtr, ClientData clientData));
static int ExprSrandFunc _ANSI_ARGS_((Tcl_Interp *interp,
ExecEnv *eePtr, ClientData clientData));
static int ExprUnaryFunc _ANSI_ARGS_((Tcl_Interp *interp,
ExecEnv *eePtr, ClientData clientData));
#ifdef TCL_COMPILE_STATS
static int EvalStatsCmd _ANSI_ARGS_((ClientData clientData,
Tcl_Interp *interp, int argc, char **argv));
#endif /* TCL_COMPILE_STATS */
static void FreeCmdNameInternalRep _ANSI_ARGS_((
Tcl_Obj *objPtr));
static char * GetSrcInfoForPc _ANSI_ARGS_((unsigned char *pc,
ByteCode* codePtr, int *lengthPtr));
static void GrowEvaluationStack _ANSI_ARGS_((ExecEnv *eePtr));
static void IllegalExprOperandType _ANSI_ARGS_((
Tcl_Interp *interp, unsigned int opCode,
Tcl_Obj *opndPtr));
static void InitByteCodeExecution _ANSI_ARGS_((
Tcl_Interp *interp));
static void PrintByteCodeInfo _ANSI_ARGS_((ByteCode *codePtr));
static void RecordTracebackInfo _ANSI_ARGS_((Tcl_Interp *interp,
unsigned char *pc, ByteCode *codePtr));
static int SetCmdNameFromAny _ANSI_ARGS_((Tcl_Interp *interp,
Tcl_Obj *objPtr));
#ifdef TCL_COMPILE_DEBUG
static char * StringForResultCode _ANSI_ARGS_((int result));
#endif /* TCL_COMPILE_DEBUG */
static void UpdateStringOfCmdName _ANSI_ARGS_((Tcl_Obj *objPtr));
#ifdef TCL_COMPILE_DEBUG
static void ValidatePcAndStackTop _ANSI_ARGS_((
ByteCode *codePtr, unsigned char *pc,
int stackTop, int stackLowerBound,
int stackUpperBound));
#endif /* TCL_COMPILE_DEBUG */
/*
* Table describing the built-in math functions. Entries in this table are
* indexed by the values of the INST_CALL_BUILTIN_FUNC instruction's
* operand byte.
*/
BuiltinFunc builtinFuncTable[] = {
#ifndef TCL_NO_MATH
{"acos", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) acos},
{"asin", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) asin},
{"atan", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) atan},
{"atan2", 2, {TCL_DOUBLE, TCL_DOUBLE}, ExprBinaryFunc, (ClientData) atan2},
{"ceil", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) ceil},
{"cos", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) cos},
{"cosh", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) cosh},
{"exp", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) exp},
{"floor", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) floor},
{"fmod", 2, {TCL_DOUBLE, TCL_DOUBLE}, ExprBinaryFunc, (ClientData) fmod},
{"hypot", 2, {TCL_DOUBLE, TCL_DOUBLE}, ExprBinaryFunc, (ClientData) hypot},
{"log", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) log},
{"log10", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) log10},
{"pow", 2, {TCL_DOUBLE, TCL_DOUBLE}, ExprBinaryFunc, (ClientData) pow},
{"sin", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) sin},
{"sinh", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) sinh},
{"sqrt", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) sqrt},
{"tan", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) tan},
{"tanh", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) tanh},
#endif
{"abs", 1, {TCL_EITHER}, ExprAbsFunc, 0},
{"double", 1, {TCL_EITHER}, ExprDoubleFunc, 0},
{"int", 1, {TCL_EITHER}, ExprIntFunc, 0},
{"rand", 0, {TCL_EITHER}, ExprRandFunc, 0}, /* NOTE: rand takes no args. */
{"round", 1, {TCL_EITHER}, ExprRoundFunc, 0},
{"srand", 1, {TCL_INT}, ExprSrandFunc, 0},
{0},
};
/*
* The structure below defines the command name Tcl object type by means of
* procedures that can be invoked by generic object code. Objects of this
* type cache the Command pointer that results from looking up command names
* in the command hashtable. Such objects appear as the zeroth ("command
* name") argument in a Tcl command.
*/
Tcl_ObjType tclCmdNameType = {
"cmdName", /* name */
FreeCmdNameInternalRep, /* freeIntRepProc */
DupCmdNameInternalRep, /* dupIntRepProc */
UpdateStringOfCmdName, /* updateStringProc */
SetCmdNameFromAny /* setFromAnyProc */
};
/*
*----------------------------------------------------------------------
*
* InitByteCodeExecution --
*
* This procedure is called once to initialize the Tcl bytecode
* interpreter.
*
* Results:
* None.
*
* Side effects:
* This procedure initializes the array of instruction names. If
* compiling with the TCL_COMPILE_STATS flag, it initializes the
* array that counts the executions of each instruction and it
* creates the "evalstats" command. It also registers the command name
* Tcl_ObjType. It also establishes the link between the Tcl
* "tcl_traceExec" and C "tclTraceExec" variables.
*
*----------------------------------------------------------------------
*/
static void
InitByteCodeExecution(interp)
Tcl_Interp *interp; /* Interpreter for which the Tcl variable
* "tcl_traceExec" is linked to control
* instruction tracing. */
{
int i;
Tcl_RegisterObjType(&tclCmdNameType);
(VOID *) memset(opName, 0, sizeof(opName));
for (i = 0; instructionTable[i].name != NULL; i++) {
opName[i] = instructionTable[i].name;
}
#ifdef TCL_COMPILE_STATS
(VOID *) memset(instructionCount, 0, sizeof(instructionCount));
(VOID *) memset(tclByteCodeCount, 0, sizeof(tclByteCodeCount));
(VOID *) memset(tclSourceCount, 0, sizeof(tclSourceCount));
Tcl_CreateCommand(interp, "evalstats", EvalStatsCmd,
(ClientData) NULL, (Tcl_CmdDeleteProc *) NULL);
#endif /* TCL_COMPILE_STATS */
if (Tcl_LinkVar(interp, "tcl_traceExec", (char *) &tclTraceExec,
TCL_LINK_INT) != TCL_OK) {
panic("InitByteCodeExecution: can't create link for tcl_traceExec variable");
}
}
/*
*----------------------------------------------------------------------
*
* TclCreateExecEnv --
*
* This procedure creates a new execution environment for Tcl bytecode
* execution. An ExecEnv points to a Tcl evaluation stack. An ExecEnv
* is typically created once for each Tcl interpreter (Interp
* structure) and recursively passed to TclExecuteByteCode to execute
* ByteCode sequences for nested commands.
*
* Results:
* A newly allocated ExecEnv is returned. This points to an empty
* evaluation stack of the standard initial size.
*
* Side effects:
* The bytecode interpreter is also initialized here, as this
* procedure will be called before any call to TclExecuteByteCode.
*
*----------------------------------------------------------------------
*/
#define TCL_STACK_INITIAL_SIZE 2000
ExecEnv *
TclCreateExecEnv(interp)
Tcl_Interp *interp; /* Interpreter for which the execution
* environment is being created. */
{
ExecEnv *eePtr = (ExecEnv *) ckalloc(sizeof(ExecEnv));
eePtr->stackPtr = (StackItem *)
ckalloc((unsigned) (TCL_STACK_INITIAL_SIZE * sizeof(StackItem)));
eePtr->stackTop = -1;
eePtr->stackEnd = (TCL_STACK_INITIAL_SIZE - 1);
if (!execInitialized) {
InitByteCodeExecution(interp);
execInitialized = 1;
}
return eePtr;
}
#undef TCL_STACK_INITIAL_SIZE
/*
*----------------------------------------------------------------------
*
* TclDeleteExecEnv --
*
* Frees the storage for an ExecEnv.
*
* Results:
* None.
*
* Side effects:
* Storage for an ExecEnv and its contained storage (e.g. the
* evaluation stack) is freed.
*
*----------------------------------------------------------------------
*/
void
TclDeleteExecEnv(eePtr)
ExecEnv *eePtr; /* Execution environment to free. */
{
ckfree((char *) eePtr->stackPtr);
ckfree((char *) eePtr);
}
/*
*----------------------------------------------------------------------
*
* TclFinalizeExecEnv --
*
* Finalizes the execution environment setup so that it can be
* later reinitialized.
*
* Results:
* None.
*
* Side effects:
* After this call, the next time TclCreateExecEnv will be called
* it will call InitByteCodeExecution.
*
*----------------------------------------------------------------------
*/
void
TclFinalizeExecEnv()
{
execInitialized = 0;
}
/*
*----------------------------------------------------------------------
*
* GrowEvaluationStack --
*
* This procedure grows a Tcl evaluation stack stored in an ExecEnv.
*
* Results:
* None.
*
* Side effects:
* The size of the evaluation stack is doubled.
*
*----------------------------------------------------------------------
*/
static void
GrowEvaluationStack(eePtr)
register ExecEnv *eePtr; /* Points to the ExecEnv with an evaluation
* stack to enlarge. */
{
/*
* The current Tcl stack elements are stored from eePtr->stackPtr[0]
* to eePtr->stackPtr[eePtr->stackEnd] (inclusive).
*/
int currElems = (eePtr->stackEnd + 1);
int newElems = 2*currElems;
int currBytes = currElems * sizeof(StackItem);
int newBytes = 2*currBytes;
StackItem *newStackPtr = (StackItem *) ckalloc((unsigned) newBytes);
/*
* Copy the existing stack items to the new stack space, free the old
* storage if appropriate, and mark new space as malloc'ed.
*/
memcpy((VOID *) newStackPtr, (VOID *) eePtr->stackPtr,
(size_t) currBytes);
ckfree((char *) eePtr->stackPtr);
eePtr->stackPtr = newStackPtr;
eePtr->stackEnd = (newElems - 1); /* i.e. index of last usable item */
}
/*
*----------------------------------------------------------------------
*
* TclExecuteByteCode --
*
* This procedure executes the instructions of a ByteCode structure.
* It returns when a "done" instruction is executed or an error occurs.
*
* Results:
* The return value is one of the return codes defined in tcl.h
* (such as TCL_OK), and interp->objResultPtr refers to a Tcl object
* that either contains the result of executing the code or an
* error message.
*
* Side effects:
* Almost certainly, depending on the ByteCode's instructions.
*
*----------------------------------------------------------------------
*/
int
TclExecuteByteCode(interp, codePtr)
Tcl_Interp *interp; /* Token for command interpreter. */
ByteCode *codePtr; /* The bytecode sequence to interpret. */
{
Interp *iPtr = (Interp *) interp;
ExecEnv *eePtr = iPtr->execEnvPtr;
/* Points to the execution environment. */
register StackItem *stackPtr = eePtr->stackPtr;
/* Cached evaluation stack base pointer. */
register int stackTop = eePtr->stackTop;
/* Cached top index of evaluation stack. */
Tcl_Obj **objArrayPtr = codePtr->objArrayPtr;
/* Points to the ByteCode's object array. */
unsigned char *pc = codePtr->codeStart;
/* The current program counter. */
unsigned char opCode; /* The current instruction code. */
int opnd; /* Current instruction's operand byte. */
int pcAdjustment; /* Hold pc adjustment after instruction. */
int initStackTop = stackTop;/* Stack top at start of execution. */
ExceptionRange *rangePtr; /* Points to closest loop or catch exception
* range enclosing the pc. Used by various
* instructions and processCatch to
* process break, continue, and errors. */
int result = TCL_OK; /* Return code returned after execution. */
int traceInstructions = (tclTraceExec == 3);
Tcl_Obj *valuePtr, *value2Ptr, *namePtr, *objPtr;
char *bytes;
int length;
long i;
Tcl_DString command; /* Used for debugging. If tclTraceExec >= 2
* holds a string representing the last
* command invoked. */
/*
* This procedure uses a stack to hold information about catch commands.
* This information is the current operand stack top when starting to
* execute the code for each catch command. It starts out with stack-
* allocated space but uses dynamically-allocated storage if needed.
*/
#define STATIC_CATCH_STACK_SIZE 5
int (catchStackStorage[STATIC_CATCH_STACK_SIZE]);
int *catchStackPtr = catchStackStorage;
int catchTop = -1;
/*
* THIS PROC FAILS IF AN OBJECT'S STRING REP HAS A NULL BYTE.
*/
if (tclTraceExec >= 2) {
PrintByteCodeInfo(codePtr);
#ifdef TCL_COMPILE_STATS
fprintf(stdout, " Starting stack top=%d, system objects=%ld\n",
eePtr->stackTop, (tclObjsAlloced - tclObjsFreed));
#else
fprintf(stdout, " Starting stack top=%d\n", eePtr->stackTop);
#endif /* TCL_COMPILE_STATS */
fflush(stdout);
}
#ifdef TCL_COMPILE_STATS
numExecutions++;
#endif /* TCL_COMPILE_STATS */
/*
* Make sure the catch stack is large enough to hold the maximum number
* of catch commands that could ever be executing at the same time. This
* will be no more than the exception range array's depth.
*/
if (codePtr->maxExcRangeDepth > STATIC_CATCH_STACK_SIZE) {
catchStackPtr = (int *)
ckalloc(codePtr->maxExcRangeDepth * sizeof(int));
}
/*
* Make sure the stack has enough room to execute this ByteCode.
*/
while ((stackTop + codePtr->maxStackDepth) > eePtr->stackEnd) {
GrowEvaluationStack(eePtr);
stackPtr = eePtr->stackPtr;
}
/*
* Initialize the buffer that holds a string containing the name and
* arguments for the last invoked command.
*/
Tcl_DStringInit(&command);
/*
* Loop executing instructions until a "done" instruction, a TCL_RETURN,
* or some error.
*/
for (;;) {
#ifdef TCL_COMPILE_DEBUG
ValidatePcAndStackTop(codePtr, pc, stackTop, initStackTop,
eePtr->stackEnd);
#else /* not TCL_COMPILE_DEBUG */
if (traceInstructions) {
#ifdef TCL_COMPILE_STATS
fprintf(stdout, "%d: %d,%ld ", iPtr->numLevels, stackTop,
(tclObjsAlloced - tclObjsFreed));
#else /* TCL_COMPILE_STATS */
fprintf(stdout, "%d: %d ", iPtr->numLevels, stackTop);
#endif /* TCL_COMPILE_STATS */
TclPrintInstruction(codePtr, pc);
fflush(stdout);
}
#endif /* TCL_COMPILE_DEBUG */
opCode = *pc;
#ifdef TCL_COMPILE_STATS
instructionCount[opCode]++;
#endif /* TCL_COMPILE_STATS */
switch (opCode) {
case INST_DONE:
/*
* Pop the topmost object from the stack, set the interpreter's
* object result to point to it, and return.
*/
valuePtr = POP_OBJECT();
Tcl_SetObjResult(interp, valuePtr);
TclDecrRefCount(valuePtr);
if (stackTop != initStackTop) {
fprintf(stderr, "\nTclExecuteByteCode: done instruction at pc %u: stack top %d != entry stack top %d\n",
(unsigned int)(pc - codePtr->codeStart),
(unsigned int) stackTop,
(unsigned int) initStackTop);
fprintf(stderr, " Source: ");
TclPrintSource(stderr, codePtr->source, 150);
panic("TclExecuteByteCode execution failure: end stack top != start stack top");
}
TRACE_WITH_OBJ(("done => return code=%d, result is ", result),
iPtr->objResultPtr);
goto done;
case INST_PUSH1:
valuePtr = objArrayPtr[TclGetUInt1AtPtr(pc+1)];
PUSH_OBJECT(valuePtr);
TRACE_WITH_OBJ(("push1 %u => ", TclGetUInt1AtPtr(pc+1)),
valuePtr);
ADJUST_PC(2);
case INST_PUSH4:
valuePtr = objArrayPtr[TclGetUInt4AtPtr(pc+1)];
PUSH_OBJECT(valuePtr);
TRACE_WITH_OBJ(("push4 %u => ", TclGetUInt4AtPtr(pc+1)),
valuePtr);
ADJUST_PC(5);
case INST_POP:
valuePtr = POP_OBJECT();
TRACE_WITH_OBJ(("pop => discarding "), valuePtr);
TclDecrRefCount(valuePtr); /* finished with pop'ed object. */
ADJUST_PC(1);
case INST_DUP:
valuePtr = stackPtr[stackTop].o;
PUSH_OBJECT(Tcl_DuplicateObj(valuePtr));
TRACE_WITH_OBJ(("dup => "), valuePtr);
ADJUST_PC(1);
case INST_CONCAT1:
opnd = TclGetUInt1AtPtr(pc+1);
{
Tcl_Obj *concatObjPtr;
int totalLen = 0;
/*
* Concatenate strings (with no separators) from the top
* opnd items on the stack starting with the deepest item.
* First, determine how many characters are needed.
*/
for (i = (stackTop - (opnd-1)); i <= stackTop; i++) {
valuePtr = stackPtr[i].o;
bytes = TclGetStringFromObj(valuePtr, &length);
if (bytes != NULL) {
totalLen += length;
}
}
/*
* Initialize the new append string object by appending the
* strings of the opnd stack objects. Also pop the objects.
*/
TclNewObj(concatObjPtr);
if (totalLen > 0) {
char *p = (char *) ckalloc((unsigned) (totalLen + 1));
concatObjPtr->bytes = p;
concatObjPtr->length = totalLen;
for (i = (stackTop - (opnd-1)); i <= stackTop; i++) {
valuePtr = stackPtr[i].o;
bytes = TclGetStringFromObj(valuePtr, &length);
if (bytes != NULL) {
memcpy((VOID *) p, (VOID *) bytes,
(size_t) length);
p += length;
}
TclDecrRefCount(valuePtr);
}
*p = '\0';
} else {
for (i = (stackTop - (opnd-1)); i <= stackTop; i++) {
valuePtr = stackPtr[i].o;
Tcl_DecrRefCount(valuePtr);
}
}
stackTop -= opnd;
PUSH_OBJECT(concatObjPtr);
TRACE_WITH_OBJ(("concat %u => ", opnd), concatObjPtr);
ADJUST_PC(2);
}
case INST_INVOKE_STK4:
opnd = TclGetUInt4AtPtr(pc+1);
pcAdjustment = 5;
goto doInvocation;
case INST_INVOKE_STK1:
opnd = TclGetUInt1AtPtr(pc+1);
pcAdjustment = 2;
doInvocation:
{
char *cmdName;
Command *cmdPtr; /* Points to command's Command struct. */
int objc = opnd; /* The number of arguments. */
Tcl_Obj **objv; /* The array of argument objects. */
Tcl_Obj *objv0Ptr; /* Holds objv[0], the command name. */
int newPcOffset = 0;
/* Instruction offset computed during
* break, continue, error processing.
* Init. to avoid compiler warning. */
Tcl_Command cmd;
#ifdef TCL_COMPILE_DEBUG
int isUnknownCmd = 0;
char cmdNameBuf[30];
#endif /* TCL_COMPILE_DEBUG */
/*
* If the interpreter was deleted, return an error.
*/
if (iPtr->flags & DELETED) {
Tcl_ResetResult(interp);
Tcl_AppendToObj(Tcl_GetObjResult(interp),
"attempt to call eval in deleted interpreter", -1);
Tcl_SetErrorCode(interp, "CORE", "IDELETE",
"attempt to call eval in deleted interpreter",
(char *) NULL);
result = TCL_ERROR;
goto checkForCatch;
}
objv = &(stackPtr[stackTop - (objc-1)].o);
objv0Ptr = objv[0];
cmdName = TclGetStringFromObj(objv0Ptr, (int *) NULL);
/*
* Find the procedure to execute this command. If there
* isn't one, then see if there is a command "unknown". If
* so, invoke it, passing it the original command words as
* arguments.
*
* We convert the objv[0] object to be a CmdName object.
* This caches a pointer to the Command structure for the
* command; this pointer is held in a ResolvedCmdName
* structure the object's internal rep. points to.
*/
cmd = Tcl_GetCommandFromObj(interp, objv0Ptr);
cmdPtr = (Command *) cmd;
/*
* If the command is still not found, handle it with the
* "unknown" proc.
*/
if (cmdPtr == NULL) {
cmd = Tcl_FindCommand(interp, "unknown",
(Tcl_Namespace *) NULL, /*flags*/ TCL_GLOBAL_ONLY);
if (cmd == (Tcl_Command) NULL) {
Tcl_ResetResult(interp);
Tcl_AppendStringsToObj(Tcl_GetObjResult(interp),
"invalid command name \"", cmdName, "\"",
(char *) NULL);
TRACE(("%s %u => unknown proc not found: ",
opName[opCode], objc));
result = TCL_ERROR;
goto checkForCatch;
}
cmdPtr = (Command *) cmd;
#ifdef TCL_COMPILE_DEBUG
isUnknownCmd = 1;
#endif /*TCL_COMPILE_DEBUG*/
stackTop++; /* need room for new inserted objv[0] */
for (i = objc; i >= 0; i--) {
objv[i+1] = objv[i];
}
objc++;
objv[0] = Tcl_NewStringObj("unknown", -1);
Tcl_IncrRefCount(objv[0]);
}
/*
* Call any trace procedures.
*/
if (iPtr->tracePtr != NULL) {
Trace *tracePtr, *nextTracePtr;
for (tracePtr = iPtr->tracePtr; tracePtr != NULL;
tracePtr = nextTracePtr) {
nextTracePtr = tracePtr->nextPtr;
if (iPtr->numLevels <= tracePtr->level) {
int numChars;
char *cmd = GetSrcInfoForPc(pc, codePtr,
&numChars);
if (cmd != NULL) {
DECACHE_STACK_INFO();
CallTraceProcedure(interp, tracePtr, cmdPtr,
cmd, numChars, objc, objv);
CACHE_STACK_INFO();
}
}
}
}
/*
* Finally, invoke the command's Tcl_ObjCmdProc. First reset
* the interpreter's string and object results to their
* default empty values since they could have gotten changed
* by earlier invocations.
*/
Tcl_ResetResult(interp);
if (tclTraceExec >= 2) {
char buffer[50];
sprintf(buffer, "%d: (%u) invoking ", iPtr->numLevels,
(unsigned int)(pc - codePtr->codeStart));
Tcl_DStringAppend(&command, buffer, -1);
#ifdef TCL_COMPILE_DEBUG
if (traceInstructions) { /* tclTraceExec == 3 */
strncpy(cmdNameBuf, cmdName, 20);
TRACE(("%s %u => call ", opName[opCode],
(isUnknownCmd? objc-1 : objc)));
} else {
fprintf(stdout, "%s", buffer);
}
#else /* TCL_COMPILE_DEBUG */
fprintf(stdout, "%s", buffer);
#endif /*TCL_COMPILE_DEBUG*/
for (i = 0; i < objc; i++) {
bytes = TclGetStringFromObj(objv[i], &length);
TclPrintSource(stdout, bytes, TclMin(length, 15));
fprintf(stdout, " ");
sprintf(buffer, "\"%.*s\" ", TclMin(length, 15), bytes);
Tcl_DStringAppend(&command, buffer, -1);
}
fprintf(stdout, "\n");
fflush(stdout);
Tcl_DStringFree(&command);
}
iPtr->cmdCount++;
DECACHE_STACK_INFO();
result = (*cmdPtr->objProc)(cmdPtr->objClientData, interp,
objc, objv);
if (Tcl_AsyncReady()) {
result = Tcl_AsyncInvoke(interp, result);
}
CACHE_STACK_INFO();
/*
* If the interpreter has a non-empty string result, the
* result object is either empty or stale because some
* procedure set interp->result directly. If so, move the
* string result to the result object, then reset the
* string result.
*/
if (*(iPtr->result) != 0) {
(void) Tcl_GetObjResult(interp);
}
/*
* Pop the objc top stack elements and decrement their ref
* counts.
*/
i = (stackTop - (objc-1));
while (i <= stackTop) {
valuePtr = stackPtr[i].o;
TclDecrRefCount(valuePtr);
i++;
}
stackTop -= objc;
/*
* Process the result of the Tcl_ObjCmdProc call.
*/
switch (result) {
case TCL_OK:
/*
* Push the call's object result and continue execution
* with the next instruction.
*/
PUSH_OBJECT(Tcl_GetObjResult(interp));
TRACE_WITH_OBJ(("%s %u => ...after \"%.20s\", result=",
opName[opCode], objc, cmdNameBuf),
Tcl_GetObjResult(interp));
ADJUST_PC(pcAdjustment);
case TCL_BREAK:
case TCL_CONTINUE:
/*
* The invoked command requested a break or continue.
* Find the closest enclosing loop or catch exception
* range, if any. If a loop is found, terminate its
* execution or skip to its next iteration. If the
* closest is a catch exception range, jump to its
* catchOffset. If no enclosing range is found, stop
* execution and return the TCL_BREAK or TCL_CONTINUE.
*/
rangePtr = TclGetExceptionRangeForPc(pc,
/*catchOnly*/ 0, codePtr);
if (rangePtr == NULL) {
TRACE(("%s %u => ... after \"%.20s\", no encl. loop or catch, returning %s\n",
opName[opCode], objc, cmdNameBuf,
StringForResultCode(result)));
goto abnormalReturn; /* no catch exists to check */
}
switch (rangePtr->type) {
case LOOP_EXCEPTION_RANGE:
if (result == TCL_BREAK) {
newPcOffset = rangePtr->breakOffset;
} else if (rangePtr->continueOffset == -1) {
TRACE(("%s %u => ... after \"%.20s\", %s, loop w/o continue, checking for catch\n",
opName[opCode], objc, cmdNameBuf,
StringForResultCode(result)));
goto checkForCatch;
} else {
newPcOffset = rangePtr->continueOffset;
}
TRACE(("%s %u => ... after \"%.20s\", %s, range at %d, new pc %d\n",
opName[opCode], objc, cmdNameBuf,
StringForResultCode(result),
rangePtr->codeOffset, newPcOffset));
break;
case CATCH_EXCEPTION_RANGE:
TRACE(("%s %u => ... after \"%.20s\", %s...\n",
opName[opCode], objc, cmdNameBuf,
StringForResultCode(result)));
goto processCatch; /* it will use rangePtr */
default:
panic("TclExecuteByteCode: unrecognized ExceptionRange type %d\n", rangePtr->type);
}
result = TCL_OK;
pc = (codePtr->codeStart + newPcOffset);
continue; /* restart outer instruction loop at pc */
case TCL_ERROR:
/*
* The invoked command returned an error. Look for an
* enclosing catch exception range, if any.
*/
TRACE_WITH_OBJ(("%s %u => ... after \"%.20s\", TCL_ERROR ",
opName[opCode], objc, cmdNameBuf),
Tcl_GetObjResult(interp));
goto checkForCatch;
case TCL_RETURN:
/*
* The invoked command requested that the current
* procedure stop execution and return. First check
* for an enclosing catch exception range, if any.
*/
TRACE(("%s %u => ... after \"%.20s\", TCL_RETURN\n",
opName[opCode], objc, cmdNameBuf));
goto checkForCatch;
default:
TRACE_WITH_OBJ(("%s %u => ... after \"%.20s\", OTHER RETURN CODE %d ",
opName[opCode], objc, cmdNameBuf, result),
Tcl_GetObjResult(interp));
goto checkForCatch;
} /* end of switch on result from invoke instruction */
}
case INST_EVAL_STK:
objPtr = POP_OBJECT();
DECACHE_STACK_INFO();
result = Tcl_EvalObj(interp, objPtr);
CACHE_STACK_INFO();
if (result == TCL_OK) {
/*
* Normal return; push the eval's object result.
*/
PUSH_OBJECT(Tcl_GetObjResult(interp));
TRACE_WITH_OBJ(("evalStk \"%.30s\" => ", O2S(objPtr)),
Tcl_GetObjResult(interp));
TclDecrRefCount(objPtr);
ADJUST_PC(1);
} else if ((result == TCL_BREAK) || (result == TCL_CONTINUE)) {
/*
* Find the closest enclosing loop or catch exception range,
* if any. If a loop is found, terminate its execution or
* skip to its next iteration. If the closest is a catch
* exception range, jump to its catchOffset. If no enclosing
* range is found, stop execution and return that same
* TCL_BREAK or TCL_CONTINUE.
*/
int newPcOffset = 0; /* Pc offset computed during break,
* continue, error processing. Init.
* to avoid compiler warning. */
rangePtr = TclGetExceptionRangeForPc(pc, /*catchOnly*/ 0,
codePtr);
if (rangePtr == NULL) {
TRACE(("evalStk \"%.30s\" => no encl. loop or catch, returning %s\n",
O2S(objPtr), StringForResultCode(result)));
Tcl_DecrRefCount(objPtr);
goto abnormalReturn; /* no catch exists to check */
}
switch (rangePtr->type) {
case LOOP_EXCEPTION_RANGE:
if (result == TCL_BREAK) {
newPcOffset = rangePtr->breakOffset;
} else if (rangePtr->continueOffset == -1) {
TRACE(("evalStk \"%.30s\" => %s, loop w/o continue, checking for catch\n",
O2S(objPtr), StringForResultCode(result)));
Tcl_DecrRefCount(objPtr);
goto checkForCatch;
} else {
newPcOffset = rangePtr->continueOffset;
}
result = TCL_OK;
TRACE_WITH_OBJ(("evalStk \"%.30s\" => %s, range at %d, new pc %d ",
O2S(objPtr), StringForResultCode(result),
rangePtr->codeOffset, newPcOffset), valuePtr);
break;
case CATCH_EXCEPTION_RANGE:
TRACE_WITH_OBJ(("evalStk \"%.30s\" => %s ",
O2S(objPtr), StringForResultCode(result)),
valuePtr);
Tcl_DecrRefCount(objPtr);
goto processCatch; /* it will use rangePtr */
default:
panic("TclExecuteByteCode: unrecognized ExceptionRange type %d\n", rangePtr->type);
}
Tcl_DecrRefCount(objPtr);
pc = (codePtr->codeStart + newPcOffset);
continue; /* restart outer instruction loop at pc */
} else { /* eval returned TCL_ERROR, TCL_RETURN, unknown code */
TRACE_WITH_OBJ(("evalStk \"%.30s\" => ERROR: ", O2S(objPtr)),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(objPtr);
goto checkForCatch;
}
case INST_EXPR_STK:
objPtr = POP_OBJECT();
Tcl_ResetResult(interp);
DECACHE_STACK_INFO();
result = Tcl_ExprObj(interp, objPtr, &valuePtr);
CACHE_STACK_INFO();
if (result != TCL_OK) {
TRACE_WITH_OBJ(("exprStk \"%.30s\" => ERROR: ",
O2S(objPtr)), Tcl_GetObjResult(interp));
Tcl_DecrRefCount(objPtr);
goto checkForCatch;
}
stackPtr[++stackTop].o = valuePtr; /* already has right refct */
TRACE_WITH_OBJ(("exprStk \"%.30s\" => ", O2S(objPtr)), valuePtr);
TclDecrRefCount(objPtr);
ADJUST_PC(1);
case INST_LOAD_SCALAR4:
opnd = TclGetInt4AtPtr(pc+1);
pcAdjustment = 5;
goto doLoadScalar;
case INST_LOAD_SCALAR1:
opnd = TclGetUInt1AtPtr(pc+1);
pcAdjustment = 2;
doLoadScalar:
DECACHE_STACK_INFO();
valuePtr = TclGetIndexedScalar(interp, opnd,
/*leaveErrorMsg*/ 1);
CACHE_STACK_INFO();
if (valuePtr == NULL) {
TRACE_WITH_OBJ(("%s %u => ERROR: ", opName[opCode], opnd),
Tcl_GetObjResult(interp));
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(valuePtr);
TRACE_WITH_OBJ(("%s %u => ", opName[opCode], opnd), valuePtr);
ADJUST_PC(pcAdjustment);
case INST_LOAD_SCALAR_STK:
namePtr = POP_OBJECT();
DECACHE_STACK_INFO();
valuePtr = Tcl_ObjGetVar2(interp, namePtr, (Tcl_Obj *) NULL,
TCL_LEAVE_ERR_MSG);
CACHE_STACK_INFO();
if (valuePtr == NULL) {
TRACE_WITH_OBJ(("loadScalarStk \"%.30s\" => ERROR: ",
O2S(namePtr)), Tcl_GetObjResult(interp));
Tcl_DecrRefCount(namePtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(valuePtr);
TRACE_WITH_OBJ(("loadScalarStk \"%.30s\" => ",
O2S(namePtr)), valuePtr);
TclDecrRefCount(namePtr);
ADJUST_PC(1);
case INST_LOAD_ARRAY4:
opnd = TclGetUInt4AtPtr(pc+1);
pcAdjustment = 5;
goto doLoadArray;
case INST_LOAD_ARRAY1:
opnd = TclGetUInt1AtPtr(pc+1);
pcAdjustment = 2;
doLoadArray:
{
Tcl_Obj *elemPtr = POP_OBJECT();
DECACHE_STACK_INFO();
valuePtr = TclGetElementOfIndexedArray(interp, opnd,
elemPtr, /*leaveErrorMsg*/ 1);
CACHE_STACK_INFO();
if (valuePtr == NULL) {
TRACE_WITH_OBJ(("%s %u \"%.30s\" => ERROR: ",
opName[opCode], opnd, O2S(elemPtr)),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(elemPtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(valuePtr);
TRACE_WITH_OBJ(("%s %u \"%.30s\" => ",
opName[opCode], opnd, O2S(elemPtr)), valuePtr);
TclDecrRefCount(elemPtr);
}
ADJUST_PC(pcAdjustment);
case INST_LOAD_ARRAY_STK:
{
Tcl_Obj *elemPtr = POP_OBJECT();
namePtr = POP_OBJECT();
DECACHE_STACK_INFO();
valuePtr = Tcl_ObjGetVar2(interp, namePtr, elemPtr,
TCL_LEAVE_ERR_MSG);
CACHE_STACK_INFO();
if (valuePtr == NULL) {
TRACE_WITH_OBJ(("loadArrayStk \"%.30s(%.30s)\" => ERROR: ",
O2S(namePtr), O2S(elemPtr)),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(elemPtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(valuePtr);
TRACE_WITH_OBJ(("loadArrayStk \"%.30s(%.30s)\" => ",
O2S(namePtr), O2S(elemPtr)), valuePtr);
TclDecrRefCount(namePtr);
TclDecrRefCount(elemPtr);
}
ADJUST_PC(1);
case INST_LOAD_STK:
namePtr = POP_OBJECT();
DECACHE_STACK_INFO();
valuePtr = Tcl_ObjGetVar2(interp, namePtr, NULL,
TCL_PARSE_PART1|TCL_LEAVE_ERR_MSG);
CACHE_STACK_INFO();
if (valuePtr == NULL) {
TRACE_WITH_OBJ(("loadStk \"%.30s\" => ERROR: ",
O2S(namePtr)), Tcl_GetObjResult(interp));
Tcl_DecrRefCount(namePtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(valuePtr);
TRACE_WITH_OBJ(("loadStk \"%.30s\" => ", O2S(namePtr)),
valuePtr);
TclDecrRefCount(namePtr);
ADJUST_PC(1);
case INST_STORE_SCALAR4:
opnd = TclGetUInt4AtPtr(pc+1);
pcAdjustment = 5;
goto doStoreScalar;
case INST_STORE_SCALAR1:
opnd = TclGetUInt1AtPtr(pc+1);
pcAdjustment = 2;
doStoreScalar:
valuePtr = POP_OBJECT();
DECACHE_STACK_INFO();
value2Ptr = TclSetIndexedScalar(interp, opnd, valuePtr,
/*leaveErrorMsg*/ 1);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("%s %u <- \"%.30s\" => ERROR: ",
opName[opCode], opnd, O2S(valuePtr)),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(valuePtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("%s %u <- \"%.30s\" => ",
opName[opCode], opnd, O2S(valuePtr)), value2Ptr);
TclDecrRefCount(valuePtr);
ADJUST_PC(pcAdjustment);
case INST_STORE_SCALAR_STK:
valuePtr = POP_OBJECT();
namePtr = POP_OBJECT();
DECACHE_STACK_INFO();
value2Ptr = Tcl_ObjSetVar2(interp, namePtr, NULL, valuePtr,
TCL_LEAVE_ERR_MSG);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(
("storeScalarStk \"%.30s\" <- \"%.30s\" => ERROR: ",
O2S(namePtr), O2S(valuePtr)),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(valuePtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(
("storeScalarStk \"%.30s\" <- \"%.30s\" => ",
O2S(namePtr),
O2S(valuePtr)),
value2Ptr);
TclDecrRefCount(namePtr);
TclDecrRefCount(valuePtr);
ADJUST_PC(1);
case INST_STORE_ARRAY4:
opnd = TclGetUInt4AtPtr(pc+1);
pcAdjustment = 5;
goto doStoreArray;
case INST_STORE_ARRAY1:
opnd = TclGetUInt1AtPtr(pc+1);
pcAdjustment = 2;
doStoreArray:
{
Tcl_Obj *elemPtr;
valuePtr = POP_OBJECT();
elemPtr = POP_OBJECT();
DECACHE_STACK_INFO();
value2Ptr = TclSetElementOfIndexedArray(interp, opnd,
elemPtr, valuePtr, TCL_LEAVE_ERR_MSG);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(
("%s %u \"%.30s\" <- \"%.30s\" => ERROR: ",
opName[opCode], opnd, O2S(elemPtr),
O2S(valuePtr)), Tcl_GetObjResult(interp));
Tcl_DecrRefCount(elemPtr);
Tcl_DecrRefCount(valuePtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("%s %u \"%.30s\" <- \"%.30s\" => ",
opName[opCode], opnd, O2S(elemPtr), O2S(valuePtr)),
value2Ptr);
TclDecrRefCount(elemPtr);
TclDecrRefCount(valuePtr);
}
ADJUST_PC(pcAdjustment);
case INST_STORE_ARRAY_STK:
{
Tcl_Obj *elemPtr;
valuePtr = POP_OBJECT();
elemPtr = POP_OBJECT();
namePtr = POP_OBJECT();
DECACHE_STACK_INFO();
value2Ptr = Tcl_ObjSetVar2(interp, namePtr, elemPtr,
valuePtr, TCL_LEAVE_ERR_MSG);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("storeArrayStk \"%.30s(%.30s)\" <- \"%.30s\" => ERROR: ",
O2S(namePtr), O2S(elemPtr), O2S(valuePtr)),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(elemPtr);
Tcl_DecrRefCount(valuePtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("storeArrayStk \"%.30s(%.30s)\" <- \"%.30s\" => ",
O2S(namePtr), O2S(elemPtr), O2S(valuePtr)),
value2Ptr);
TclDecrRefCount(namePtr);
TclDecrRefCount(elemPtr);
TclDecrRefCount(valuePtr);
}
ADJUST_PC(1);
case INST_STORE_STK:
valuePtr = POP_OBJECT();
namePtr = POP_OBJECT();
DECACHE_STACK_INFO();
value2Ptr = Tcl_ObjSetVar2(interp, namePtr, NULL, valuePtr,
TCL_PARSE_PART1|TCL_LEAVE_ERR_MSG);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("storeStk \"%.30s\" <- \"%.30s\" => ERROR: ",
O2S(namePtr), O2S(valuePtr)),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(valuePtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("storeStk \"%.30s\" <- \"%.30s\" => ",
O2S(namePtr), O2S(valuePtr)), value2Ptr);
TclDecrRefCount(namePtr);
TclDecrRefCount(valuePtr);
ADJUST_PC(1);
case INST_INCR_SCALAR1:
opnd = TclGetUInt1AtPtr(pc+1);
valuePtr = POP_OBJECT();
if (valuePtr->typePtr != &tclIntType) {
result = tclIntType.setFromAnyProc(interp, valuePtr);
if (result != TCL_OK) {
TRACE_WITH_OBJ(("incrScalar1 %u (by %s) => ERROR converting increment amount to int: ",
opnd, O2S(valuePtr)), Tcl_GetObjResult(interp));
Tcl_DecrRefCount(valuePtr);
goto checkForCatch;
}
}
i = valuePtr->internalRep.longValue;
DECACHE_STACK_INFO();
value2Ptr = TclIncrIndexedScalar(interp, opnd, i);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("incrScalar1 %u (by %ld) => ERROR: ",
opnd, i), Tcl_GetObjResult(interp));
Tcl_DecrRefCount(valuePtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("incrScalar1 %u (by %ld) => ", opnd, i),
value2Ptr);
TclDecrRefCount(valuePtr);
ADJUST_PC(2);
case INST_INCR_SCALAR_STK:
case INST_INCR_STK:
valuePtr = POP_OBJECT();
namePtr = POP_OBJECT();
if (valuePtr->typePtr != &tclIntType) {
result = tclIntType.setFromAnyProc(interp, valuePtr);
if (result != TCL_OK) {
TRACE_WITH_OBJ(("%s \"%.30s\" (by %s) => ERROR converting increment amount to int: ",
opName[opCode], O2S(namePtr), O2S(valuePtr)),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(valuePtr);
goto checkForCatch;
}
}
i = valuePtr->internalRep.longValue;
DECACHE_STACK_INFO();
value2Ptr = TclIncrVar2(interp, namePtr, (Tcl_Obj *) NULL, i,
/*part1NotParsed*/ (opCode == INST_INCR_STK));
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("%s \"%.30s\" (by %ld) => ERROR: ",
opName[opCode], O2S(namePtr), i),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(valuePtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("%s \"%.30s\" (by %ld) => ",
opName[opCode], O2S(namePtr), i), value2Ptr);
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(valuePtr);
ADJUST_PC(1);
case INST_INCR_ARRAY1:
{
Tcl_Obj *elemPtr;
opnd = TclGetUInt1AtPtr(pc+1);
valuePtr = POP_OBJECT();
elemPtr = POP_OBJECT();
if (valuePtr->typePtr != &tclIntType) {
result = tclIntType.setFromAnyProc(interp, valuePtr);
if (result != TCL_OK) {
TRACE_WITH_OBJ(("incrArray1 %u \"%.30s\" (by %s) => ERROR converting increment amount to int: ",
opnd, O2S(elemPtr), O2S(valuePtr)),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(elemPtr);
Tcl_DecrRefCount(valuePtr);
goto checkForCatch;
}
}
i = valuePtr->internalRep.longValue;
DECACHE_STACK_INFO();
value2Ptr = TclIncrElementOfIndexedArray(interp, opnd,
elemPtr, i);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("incrArray1 %u \"%.30s\" (by %ld) => ERROR: ",
opnd, O2S(elemPtr), i),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(elemPtr);
Tcl_DecrRefCount(valuePtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("incrArray1 %u \"%.30s\" (by %ld) => ",
opnd, O2S(elemPtr), i), value2Ptr);
Tcl_DecrRefCount(elemPtr);
Tcl_DecrRefCount(valuePtr);
}
ADJUST_PC(2);
case INST_INCR_ARRAY_STK:
{
Tcl_Obj *elemPtr;
valuePtr = POP_OBJECT();
elemPtr = POP_OBJECT();
namePtr = POP_OBJECT();
if (valuePtr->typePtr != &tclIntType) {
result = tclIntType.setFromAnyProc(interp, valuePtr);
if (result != TCL_OK) {
TRACE_WITH_OBJ(("incrArrayStk \"%.30s(%.30s)\" (by %s) => ERROR converting increment amount to int: ",
O2S(namePtr), O2S(elemPtr), O2S(valuePtr)),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(elemPtr);
Tcl_DecrRefCount(valuePtr);
goto checkForCatch;
}
}
i = valuePtr->internalRep.longValue;
DECACHE_STACK_INFO();
value2Ptr = TclIncrVar2(interp, namePtr, elemPtr, i,
/*part1NotParsed*/ 0);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("incrArrayStk \"%.30s(%.30s)\" (by %ld) => ERROR: ",
O2S(namePtr), O2S(elemPtr), i),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(elemPtr);
Tcl_DecrRefCount(valuePtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("incrArrayStk \"%.30s(%.30s)\" (by %ld) => ",
O2S(namePtr), O2S(elemPtr), i), value2Ptr);
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(elemPtr);
Tcl_DecrRefCount(valuePtr);
}
ADJUST_PC(1);
case INST_INCR_SCALAR1_IMM:
opnd = TclGetUInt1AtPtr(pc+1);
i = TclGetInt1AtPtr(pc+2);
DECACHE_STACK_INFO();
value2Ptr = TclIncrIndexedScalar(interp, opnd, i);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("incrScalar1Imm %u %ld => ERROR: ",
opnd, i), Tcl_GetObjResult(interp));
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("incrScalar1Imm %u %ld => ", opnd, i),
value2Ptr);
ADJUST_PC(3);
case INST_INCR_SCALAR_STK_IMM:
case INST_INCR_STK_IMM:
namePtr = POP_OBJECT();
i = TclGetInt1AtPtr(pc+1);
DECACHE_STACK_INFO();
value2Ptr = TclIncrVar2(interp, namePtr, (Tcl_Obj *) NULL, i,
/*part1NotParsed*/ (opCode == INST_INCR_STK_IMM));
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("%s \"%.30s\" %ld => ERROR: ",
opName[opCode], O2S(namePtr), i),
Tcl_GetObjResult(interp));
result = TCL_ERROR;
Tcl_DecrRefCount(namePtr);
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("%s \"%.30s\" %ld => ",
opName[opCode], O2S(namePtr), i), value2Ptr);
TclDecrRefCount(namePtr);
ADJUST_PC(2);
case INST_INCR_ARRAY1_IMM:
{
Tcl_Obj *elemPtr;
opnd = TclGetUInt1AtPtr(pc+1);
i = TclGetInt1AtPtr(pc+2);
elemPtr = POP_OBJECT();
DECACHE_STACK_INFO();
value2Ptr = TclIncrElementOfIndexedArray(interp, opnd,
elemPtr, i);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("incrArray1Imm %u \"%.30s\" (by %ld) => ERROR: ",
opnd, O2S(elemPtr), i),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(elemPtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("incrArray1Imm %u \"%.30s\" (by %ld) => ",
opnd, O2S(elemPtr), i), value2Ptr);
Tcl_DecrRefCount(elemPtr);
}
ADJUST_PC(3);
case INST_INCR_ARRAY_STK_IMM:
{
Tcl_Obj *elemPtr;
i = TclGetInt1AtPtr(pc+1);
elemPtr = POP_OBJECT();
namePtr = POP_OBJECT();
DECACHE_STACK_INFO();
value2Ptr = TclIncrVar2(interp, namePtr, elemPtr, i,
/*part1NotParsed*/ 0);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("incrArrayStkImm \"%.30s(%.30s)\" (by %ld) => ERROR: ",
O2S(namePtr), O2S(elemPtr), i),
Tcl_GetObjResult(interp));
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(elemPtr);
result = TCL_ERROR;
goto checkForCatch;
}
PUSH_OBJECT(value2Ptr);
TRACE_WITH_OBJ(("incrArrayStkImm \"%.30s(%.30s)\" (by %ld) => ",
O2S(namePtr), O2S(elemPtr), i), value2Ptr);
Tcl_DecrRefCount(namePtr);
Tcl_DecrRefCount(elemPtr);
}
ADJUST_PC(2);
case INST_JUMP1:
opnd = TclGetInt1AtPtr(pc+1);
TRACE(("jump1 %d => new pc %u\n", opnd,
(unsigned int)(pc + opnd - codePtr->codeStart)));
ADJUST_PC(opnd);
case INST_JUMP4:
opnd = TclGetInt4AtPtr(pc+1);
TRACE(("jump4 %d => new pc %u\n", opnd,
(unsigned int)(pc + opnd - codePtr->codeStart)));
ADJUST_PC(opnd);
case INST_JUMP_TRUE4:
opnd = TclGetInt4AtPtr(pc+1);
pcAdjustment = 5;
goto doJumpTrue;
case INST_JUMP_TRUE1:
opnd = TclGetInt1AtPtr(pc+1);
pcAdjustment = 2;
doJumpTrue:
{
int b;
valuePtr = POP_OBJECT();
if (valuePtr->typePtr == &tclIntType) {
b = (valuePtr->internalRep.longValue != 0);
} else if (valuePtr->typePtr == &tclDoubleType) {
b = (valuePtr->internalRep.doubleValue != 0.0);
} else {
result = Tcl_GetBooleanFromObj(interp, valuePtr, &b);
if (result != TCL_OK) {
TRACE_WITH_OBJ(("%s %d => ERROR: ", opName[opCode],
opnd), Tcl_GetObjResult(interp));
Tcl_DecrRefCount(valuePtr);
goto checkForCatch;
}
}
if (b) {
TRACE(("%s %d => %.20s true, new pc %u\n",
opName[opCode], opnd, O2S(valuePtr),
(unsigned int)(pc+opnd - codePtr->codeStart)));
TclDecrRefCount(valuePtr);
ADJUST_PC(opnd);
} else {
TRACE(("%s %d => %.20s false\n", opName[opCode], opnd,
O2S(valuePtr)));
TclDecrRefCount(valuePtr);
ADJUST_PC(pcAdjustment);
}
}
case INST_JUMP_FALSE4:
opnd = TclGetInt4AtPtr(pc+1);
pcAdjustment = 5;
goto doJumpFalse;
case INST_JUMP_FALSE1:
opnd = TclGetInt1AtPtr(pc+1);
pcAdjustment = 2;
doJumpFalse:
{
int b;
valuePtr = POP_OBJECT();
if (valuePtr->typePtr == &tclIntType) {
b = (valuePtr->internalRep.longValue != 0);
} else if (valuePtr->typePtr == &tclDoubleType) {
b = (valuePtr->internalRep.doubleValue != 0.0);
} else {
result = Tcl_GetBooleanFromObj(interp, valuePtr, &b);
if (result != TCL_OK) {
TRACE_WITH_OBJ(("%s %d => ERROR: ", opName[opCode],
opnd), Tcl_GetObjResult(interp));
Tcl_DecrRefCount(valuePtr);
goto checkForCatch;
}
}
if (b) {
TRACE(("%s %d => %.20s true\n", opName[opCode], opnd,
O2S(valuePtr)));
TclDecrRefCount(valuePtr);
ADJUST_PC(pcAdjustment);
} else {
TRACE(("%s %d => %.20s false, new pc %u\n",
opName[opCode], opnd, O2S(valuePtr),
(unsigned int)(pc + opnd - codePtr->codeStart)));
TclDecrRefCount(valuePtr);
ADJUST_PC(opnd);
}
}
case INST_LOR:
case INST_LAND:
{
/*
* Operands must be boolean or numeric. No int->double
* conversions are performed.
*/
int i1, i2;
int iResult;
char *s;
Tcl_ObjType *t1Ptr, *t2Ptr;
value2Ptr = POP_OBJECT();
valuePtr = POP_OBJECT();
t1Ptr = valuePtr->typePtr;
t2Ptr = value2Ptr->typePtr;
if ((t1Ptr == &tclIntType) || (t1Ptr == &tclBooleanType)) {
i1 = (valuePtr->internalRep.longValue != 0);
} else if (t1Ptr == &tclDoubleType) {
i1 = (valuePtr->internalRep.doubleValue != 0.0);
} else { /* FAILS IF NULL STRING REP */
s = Tcl_GetStringFromObj(valuePtr, (int *) NULL);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL,
valuePtr, &i);
i1 = (i != 0);
} else {
result = Tcl_GetBooleanFromObj((Tcl_Interp *) NULL,
valuePtr, &i1);
i1 = (i1 != 0);
}
if (result != TCL_OK) {
TRACE(("%s \"%.20s\" => ILLEGAL TYPE %s \n",
opName[opCode], O2S(valuePtr),
(t1Ptr? t1Ptr->name : "null")));
IllegalExprOperandType(interp, opCode, valuePtr);
Tcl_DecrRefCount(valuePtr);
Tcl_DecrRefCount(value2Ptr);
goto checkForCatch;
}
}
if ((t2Ptr == &tclIntType) || (t2Ptr == &tclBooleanType)) {
i2 = (value2Ptr->internalRep.longValue != 0);
} else if (t2Ptr == &tclDoubleType) {
i2 = (value2Ptr->internalRep.doubleValue != 0.0);
} else { /* FAILS IF NULL STRING REP */
s = Tcl_GetStringFromObj(value2Ptr, (int *) NULL);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL,
value2Ptr, &i);
i2 = (i != 0);
} else {
result = Tcl_GetBooleanFromObj((Tcl_Interp *) NULL,
value2Ptr, &i2);
i2 = (i2 != 0);
}
if (result != TCL_OK) {
TRACE(("%s \"%.20s\" => ILLEGAL TYPE %s \n",
opName[opCode], O2S(value2Ptr),
(t2Ptr? t2Ptr->name : "null")));
IllegalExprOperandType(interp, opCode, value2Ptr);
Tcl_DecrRefCount(valuePtr);
Tcl_DecrRefCount(value2Ptr);
goto checkForCatch;
}
}
/*
* Reuse the valuePtr object already on stack if possible.
*/
if (opCode == INST_LOR) {
iResult = (i1 || i2);
} else {
iResult = (i1 && i2);
}
if (Tcl_IsShared(valuePtr)) {
PUSH_OBJECT(Tcl_NewLongObj(iResult));
TRACE(("%s %.20s %.20s => %d\n", opName[opCode],
O2S(valuePtr), O2S(value2Ptr), iResult));
TclDecrRefCount(valuePtr);
} else { /* reuse the valuePtr object */
TRACE(("%s %.20s %.20s => %d\n",
opName[opCode], /* NB: stack top is off by 1 */
O2S(valuePtr), O2S(value2Ptr), iResult));
Tcl_SetLongObj(valuePtr, iResult);
++stackTop; /* valuePtr now on stk top has right r.c. */
}
TclDecrRefCount(value2Ptr);
}
ADJUST_PC(1);
case INST_EQ:
case INST_NEQ:
case INST_LT:
case INST_GT:
case INST_LE:
case INST_GE:
{
/*
* Any type is allowed but the two operands must have the
* same type. We will compute value op value2.
*/
Tcl_ObjType *t1Ptr, *t2Ptr;
char *s1 = NULL; /* Init. avoids compiler warning. */
char *s2 = NULL; /* Init. avoids compiler warning. */
long i2 = 0; /* Init. avoids compiler warning. */
double d1 = 0.0; /* Init. avoids compiler warning. */
double d2 = 0.0; /* Init. avoids compiler warning. */
long iResult = 0; /* Init. avoids compiler warning. */
value2Ptr = POP_OBJECT();
valuePtr = POP_OBJECT();
t1Ptr = valuePtr->typePtr;
t2Ptr = value2Ptr->typePtr;
if ((t1Ptr != &tclIntType) && (t1Ptr != &tclDoubleType)) {
s1 = Tcl_GetStringFromObj(valuePtr, &length);
if (TclLooksLikeInt(s1)) { /* FAILS IF NULLS */
(void) Tcl_GetLongFromObj((Tcl_Interp *) NULL,
valuePtr, &i);
} else {
(void) Tcl_GetDoubleFromObj((Tcl_Interp *) NULL,
valuePtr, &d1);
}
t1Ptr = valuePtr->typePtr;
}
if ((t2Ptr != &tclIntType) && (t2Ptr != &tclDoubleType)) {
s2 = Tcl_GetStringFromObj(value2Ptr, &length);
if (TclLooksLikeInt(s2)) { /* FAILS IF NULLS */
(void) Tcl_GetLongFromObj((Tcl_Interp *) NULL,
value2Ptr, &i2);
} else {
(void) Tcl_GetDoubleFromObj((Tcl_Interp *) NULL,
value2Ptr, &d2);
}
t2Ptr = value2Ptr->typePtr;
}
if (((t1Ptr != &tclIntType) && (t1Ptr != &tclDoubleType))
|| ((t2Ptr != &tclIntType) && (t2Ptr != &tclDoubleType))) {
/*
* One operand is not numeric. Compare as strings.
* THIS FAILS IF AN OBJECT'S STRING REP CONTAINS NULLS.
*/
int cmpValue;
s1 = TclGetStringFromObj(valuePtr, &length);
s2 = TclGetStringFromObj(value2Ptr, &length);
cmpValue = strcmp(s1, s2);
switch (opCode) {
case INST_EQ:
iResult = (cmpValue == 0);
break;
case INST_NEQ:
iResult = (cmpValue != 0);
break;
case INST_LT:
iResult = (cmpValue < 0);
break;
case INST_GT:
iResult = (cmpValue > 0);
break;
case INST_LE:
iResult = (cmpValue <= 0);
break;
case INST_GE:
iResult = (cmpValue >= 0);
break;
}
} else if ((t1Ptr == &tclDoubleType)
|| (t2Ptr == &tclDoubleType)) {
/*
* Compare as doubles.
*/
if (t1Ptr == &tclDoubleType) {
d1 = valuePtr->internalRep.doubleValue;
if (t2Ptr == &tclIntType) {
d2 = value2Ptr->internalRep.longValue;
} else {
d2 = value2Ptr->internalRep.doubleValue;
}
} else { /* t1Ptr is int, t2Ptr is double */
d1 = valuePtr->internalRep.longValue;
d2 = value2Ptr->internalRep.doubleValue;
}
switch (opCode) {
case INST_EQ:
iResult = d1 == d2;
break;
case INST_NEQ:
iResult = d1 != d2;
break;
case INST_LT:
iResult = d1 < d2;
break;
case INST_GT:
iResult = d1 > d2;
break;
case INST_LE:
iResult = d1 <= d2;
break;
case INST_GE:
iResult = d1 >= d2;
break;
}
} else {
/*
* Compare as ints.
*/
i = valuePtr->internalRep.longValue;
i2 = value2Ptr->internalRep.longValue;
switch (opCode) {
case INST_EQ:
iResult = i == i2;
break;
case INST_NEQ:
iResult = i != i2;
break;
case INST_LT:
iResult = i < i2;
break;
case INST_GT:
iResult = i > i2;
break;
case INST_LE:
iResult = i <= i2;
break;
case INST_GE:
iResult = i >= i2;
break;
}
}
/*
* Reuse the valuePtr object already on stack if possible.
*/
if (Tcl_IsShared(valuePtr)) {
PUSH_OBJECT(Tcl_NewLongObj(iResult));
TRACE(("%s %.20s %.20s => %ld\n", opName[opCode],
O2S(valuePtr), O2S(value2Ptr), iResult));
TclDecrRefCount(valuePtr);
} else { /* reuse the valuePtr object */
TRACE(("%s %.20s %.20s => %ld\n",
opName[opCode], /* NB: stack top is off by 1 */
O2S(valuePtr), O2S(value2Ptr), iResult));
Tcl_SetLongObj(valuePtr, iResult);
++stackTop; /* valuePtr now on stk top has right r.c. */
}
TclDecrRefCount(value2Ptr);
}
ADJUST_PC(1);
case INST_MOD:
case INST_LSHIFT:
case INST_RSHIFT:
case INST_BITOR:
case INST_BITXOR:
case INST_BITAND:
{
/*
* Only integers are allowed. We compute value op value2.
*/
long i2, rem, negative;
long iResult = 0; /* Init. avoids compiler warning. */
value2Ptr = POP_OBJECT();
valuePtr = POP_OBJECT();
if (valuePtr->typePtr == &tclIntType) {
i = valuePtr->internalRep.longValue;
} else { /* try to convert to int */
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL,
valuePtr, &i);
if (result != TCL_OK) {
TRACE(("%s %.20s %.20s => ILLEGAL 1st TYPE %s\n",
opName[opCode], O2S(valuePtr), O2S(value2Ptr),
(valuePtr->typePtr?
valuePtr->typePtr->name : "null")));
IllegalExprOperandType(interp, opCode, valuePtr);
Tcl_DecrRefCount(valuePtr);
Tcl_DecrRefCount(value2Ptr);
goto checkForCatch;
}
}
if (value2Ptr->typePtr == &tclIntType) {
i2 = value2Ptr->internalRep.longValue;
} else {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL,
value2Ptr, &i2);
if (result != TCL_OK) {
TRACE(("%s %.20s %.20s => ILLEGAL 2nd TYPE %s\n",
opName[opCode], O2S(valuePtr), O2S(value2Ptr),
(value2Ptr->typePtr?
value2Ptr->typePtr->name : "null")));
IllegalExprOperandType(interp, opCode, value2Ptr);
Tcl_DecrRefCount(valuePtr);
Tcl_DecrRefCount(value2Ptr);
goto checkForCatch;
}
}
switch (opCode) {
case INST_MOD:
/*
* This code is tricky: C doesn't guarantee much about
* the quotient or remainder, but Tcl does. The
* remainder always has the same sign as the divisor and
* a smaller absolute value.
*/
if (i2 == 0) {
TRACE(("mod %ld %ld => DIVIDE BY ZERO\n", i, i2));
Tcl_DecrRefCount(valuePtr);
Tcl_DecrRefCount(value2Ptr);
goto divideByZero;
}
negative = 0;
if (i2 < 0) {
i2 = -i2;
i = -i;
negative = 1;
}
rem = i % i2;
if (rem < 0) {
rem += i2;
}
if (negative) {
rem = -rem;
}
iResult = rem;
break;
case INST_LSHIFT:
iResult = i << i2;
break;
case INST_RSHIFT:
/*
* The following code is a bit tricky: it ensures that
* right shifts propagate the sign bit even on machines
* where ">>" won't do it by default.
*/
if (i < 0) {
iResult = ~((~i) >> i2);
} else {
iResult = i >> i2;
}
break;
case INST_BITOR:
iResult = i | i2;
break;
case INST_BITXOR:
iResult = i ^ i2;
break;
case INST_BITAND:
iResult = i & i2;
break;
}
/*
* Reuse the valuePtr object already on stack if possible.
*/
if (Tcl_IsShared(valuePtr)) {
PUSH_OBJECT(Tcl_NewLongObj(iResult));
TRACE(("%s %ld %ld => %ld\n", opName[opCode], i, i2,
iResult));
TclDecrRefCount(valuePtr);
} else { /* reuse the valuePtr object */
TRACE(("%s %ld %ld => %ld\n", opName[opCode], i, i2,
iResult)); /* NB: stack top is off by 1 */
Tcl_SetLongObj(valuePtr, iResult);
++stackTop; /* valuePtr now on stk top has right r.c. */
}
TclDecrRefCount(value2Ptr);
}
ADJUST_PC(1);
case INST_ADD:
case INST_SUB:
case INST_MULT:
case INST_DIV:
{
/*
* Operands must be numeric and ints get converted to floats
* if necessary. We compute value op value2.
*/
Tcl_ObjType *t1Ptr, *t2Ptr;
long i2, quot, rem;
double d1, d2;
long iResult = 0; /* Init. avoids compiler warning. */
double dResult = 0.0; /* Init. avoids compiler warning. */
int doDouble = 0; /* 1 if doing floating arithmetic */
value2Ptr = POP_OBJECT();
valuePtr = POP_OBJECT();
t1Ptr = valuePtr->typePtr;
t2Ptr = value2Ptr->typePtr;
if (t1Ptr == &tclIntType) {
i = valuePtr->internalRep.longValue;
} else if (t1Ptr == &tclDoubleType) {
d1 = valuePtr->internalRep.doubleValue;
} else { /* try to convert; FAILS IF NULLS */
char *s = Tcl_GetStringFromObj(valuePtr, &length);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL,
valuePtr, &i);
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL,
valuePtr, &d1);
}
if (result != TCL_OK) {
TRACE(("%s %.20s %.20s => ILLEGAL 1st TYPE %s\n",
opName[opCode], s, O2S(value2Ptr),
(valuePtr->typePtr?
valuePtr->typePtr->name : "null")));
IllegalExprOperandType(interp, opCode, valuePtr);
Tcl_DecrRefCount(valuePtr);
Tcl_DecrRefCount(value2Ptr);
goto checkForCatch;
}
t1Ptr = valuePtr->typePtr;
}
if (t2Ptr == &tclIntType) {
i2 = value2Ptr->internalRep.longValue;
} else if (t2Ptr == &tclDoubleType) {
d2 = value2Ptr->internalRep.doubleValue;
} else { /* try to convert; FAILS IF NULLS */
char *s = Tcl_GetStringFromObj(value2Ptr, &length);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL,
value2Ptr, &i2);
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL,
value2Ptr, &d2);
}
if (result != TCL_OK) {
TRACE(("%s %.20s %.20s => ILLEGAL 2nd TYPE %s\n",
opName[opCode], O2S(valuePtr), s,
(value2Ptr->typePtr?
value2Ptr->typePtr->name : "null")));
IllegalExprOperandType(interp, opCode, value2Ptr);
Tcl_DecrRefCount(valuePtr);
Tcl_DecrRefCount(value2Ptr);
goto checkForCatch;
}
t2Ptr = value2Ptr->typePtr;
}
if ((t1Ptr == &tclDoubleType) || (t2Ptr == &tclDoubleType)) {
/*
* Do double arithmetic.
*/
doDouble = 1;
if (t1Ptr == &tclIntType) {
d1 = i; /* promote value 1 to double */
} else if (t2Ptr == &tclIntType) {
d2 = i2; /* promote value 2 to double */
}
switch (opCode) {
case INST_ADD:
dResult = d1 + d2;
break;
case INST_SUB:
dResult = d1 - d2;
break;
case INST_MULT:
dResult = d1 * d2;
break;
case INST_DIV:
if (d2 == 0.0) {
TRACE(("div %.6g %.6g => DIVIDE BY ZERO\n",
d1, d2));
Tcl_DecrRefCount(valuePtr);
Tcl_DecrRefCount(value2Ptr);
goto divideByZero;
}
dResult = d1 / d2;
break;
}
/*
* Check now for IEEE floating-point error.
*/
if (IS_NAN(dResult) || IS_INF(dResult)) {
TRACE(("%s %.20s %.20s => IEEE FLOATING PT ERROR\n",
opName[opCode], O2S(valuePtr), O2S(value2Ptr)));
TclExprFloatError(interp, dResult);
result = TCL_ERROR;
Tcl_DecrRefCount(valuePtr);
Tcl_DecrRefCount(value2Ptr);
goto checkForCatch;
}
} else {
/*
* Do integer arithmetic.
*/
switch (opCode) {
case INST_ADD:
iResult = i + i2;
break;
case INST_SUB:
iResult = i - i2;
break;
case INST_MULT:
iResult = i * i2;
break;
case INST_DIV:
/*
* This code is tricky: C doesn't guarantee much
* about the quotient or remainder, but Tcl does.
* The remainder always has the same sign as the
* divisor and a smaller absolute value.
*/
if (i2 == 0) {
TRACE(("div %ld %ld => DIVIDE BY ZERO\n",
i, i2));
Tcl_DecrRefCount(valuePtr);
Tcl_DecrRefCount(value2Ptr);
goto divideByZero;
}
if (i2 < 0) {
i2 = -i2;
i = -i;
}
quot = i / i2;
rem = i % i2;
if (rem < 0) {
quot -= 1;
}
iResult = quot;
break;
}
}
/*
* Reuse the valuePtr object already on stack if possible.
*/
if (Tcl_IsShared(valuePtr)) {
if (doDouble) {
PUSH_OBJECT(Tcl_NewDoubleObj(dResult));
TRACE(("%s %.6g %.6g => %.6g\n", opName[opCode],
d1, d2, dResult));
} else {
PUSH_OBJECT(Tcl_NewLongObj(iResult));
TRACE(("%s %ld %ld => %ld\n", opName[opCode],
i, i2, iResult));
}
TclDecrRefCount(valuePtr);
} else { /* reuse the valuePtr object */
if (doDouble) { /* NB: stack top is off by 1 */
TRACE(("%s %.6g %.6g => %.6g\n", opName[opCode],
d1, d2, dResult));
Tcl_SetDoubleObj(valuePtr, dResult);
} else {
TRACE(("%s %ld %ld => %ld\n", opName[opCode],
i, i2, iResult));
Tcl_SetLongObj(valuePtr, iResult);
}
++stackTop; /* valuePtr now on stk top has right r.c. */
}
TclDecrRefCount(value2Ptr);
}
ADJUST_PC(1);
case INST_UPLUS:
{
/*
* Operand must be numeric.
*/
double d;
Tcl_ObjType *tPtr;
valuePtr = stackPtr[stackTop].o;
tPtr = valuePtr->typePtr;
if ((tPtr != &tclIntType) && (tPtr != &tclDoubleType)) {
char *s = Tcl_GetStringFromObj(valuePtr, (int *) NULL);
if (TclLooksLikeInt(s)) { /* FAILS IF NULLS */
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL,
valuePtr, &i);
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL,
valuePtr, &d);
}
if (result != TCL_OK) {
TRACE(("%s \"%.20s\" => ILLEGAL TYPE %s \n",
opName[opCode], s,
(tPtr? tPtr->name : "null")));
IllegalExprOperandType(interp, opCode, valuePtr);
goto checkForCatch;
}
}
TRACE_WITH_OBJ(("uplus %s => ", O2S(valuePtr)), valuePtr);
}
ADJUST_PC(1);
case INST_UMINUS:
case INST_LNOT:
{
/*
* The operand must be numeric. If the operand object is
* unshared modify it directly, otherwise create a copy to
* modify: this is "copy on write". free any old string
* representation since it is now invalid.
*/
double d;
Tcl_ObjType *tPtr;
valuePtr = POP_OBJECT();
tPtr = valuePtr->typePtr;
if ((tPtr != &tclIntType) && (tPtr != &tclDoubleType)) {
char *s = Tcl_GetStringFromObj(valuePtr, (int *) NULL);
if (TclLooksLikeInt(s)) { /* FAILS IF NULLS */
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL,
valuePtr, &i);
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL,
valuePtr, &d);
}
if (result != TCL_OK) {
TRACE(("%s \"%.20s\" => ILLEGAL TYPE %s\n",
opName[opCode], s,
(tPtr? tPtr->name : "null")));
IllegalExprOperandType(interp, opCode, valuePtr);
Tcl_DecrRefCount(valuePtr);
goto checkForCatch;
}
tPtr = valuePtr->typePtr;
}
if (Tcl_IsShared(valuePtr)) {
/*
* Create a new object.
*/
if (tPtr == &tclIntType) {
i = valuePtr->internalRep.longValue;
objPtr = Tcl_NewLongObj(
(opCode == INST_UMINUS)? -i : !i);
TRACE_WITH_OBJ(("%s %ld => ", opName[opCode], i),
objPtr); /* NB: stack top is off by 1 */
} else {
d = valuePtr->internalRep.doubleValue;
if (opCode == INST_UMINUS) {
objPtr = Tcl_NewDoubleObj(-d);
} else {
/*
* Should be able to use "!d", but apparently
* some compilers can't handle it.
*/
objPtr = Tcl_NewLongObj((d==0.0)? 1 : 0);
}
TRACE_WITH_OBJ(("%s %.6g => ", opName[opCode], d),
objPtr); /* NB: stack top is off by 1 */
}
PUSH_OBJECT(objPtr);
TclDecrRefCount(valuePtr);
} else {
/*
* valuePtr is unshared. Modify it directly.
*/
if (tPtr == &tclIntType) {
i = valuePtr->internalRep.longValue;
Tcl_SetLongObj(valuePtr,
(opCode == INST_UMINUS)? -i : !i);
TRACE_WITH_OBJ(("%s %ld => ", opName[opCode], i),
valuePtr); /* NB: stack top is off by 1 */
} else {
d = valuePtr->internalRep.doubleValue;
if (opCode == INST_UMINUS) {
Tcl_SetDoubleObj(valuePtr, -d);
} else {
/*
* Should be able to use "!d", but apparently
* some compilers can't handle it.
*/
Tcl_SetLongObj(valuePtr, (d==0.0)? 1 : 0);
}
TRACE_WITH_OBJ(("%s %.6g => ", opName[opCode], d),
valuePtr); /* NB: stack top is off by 1 */
}
++stackTop; /* valuePtr now on stk top has right r.c. */
}
}
ADJUST_PC(1);
case INST_BITNOT:
{
/*
* The operand must be an integer. If the operand object is
* unshared modify it directly, otherwise modify a copy.
* Free any old string representation since it is now
* invalid.
*/
Tcl_ObjType *tPtr;
valuePtr = POP_OBJECT();
tPtr = valuePtr->typePtr;
if (tPtr != &tclIntType) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL,
valuePtr, &i);
if (result != TCL_OK) { /* try to convert to double */
TRACE(("bitnot \"%.20s\" => ILLEGAL TYPE %s\n",
O2S(valuePtr), (tPtr? tPtr->name : "null")));
IllegalExprOperandType(interp, opCode, valuePtr);
Tcl_DecrRefCount(valuePtr);
goto checkForCatch;
}
}
i = valuePtr->internalRep.longValue;
if (Tcl_IsShared(valuePtr)) {
PUSH_OBJECT(Tcl_NewLongObj(~i));
TRACE(("bitnot 0x%lx => (%lu)\n", i, ~i));
TclDecrRefCount(valuePtr);
} else {
/*
* valuePtr is unshared. Modify it directly.
*/
Tcl_SetLongObj(valuePtr, ~i);
++stackTop; /* valuePtr now on stk top has right r.c. */
TRACE(("bitnot 0x%lx => (%lu)\n", i, ~i));
}
}
ADJUST_PC(1);
case INST_CALL_BUILTIN_FUNC1:
opnd = TclGetUInt1AtPtr(pc+1);
{
/*
* Call one of the built-in Tcl math functions.
*/
BuiltinFunc *mathFuncPtr;
if ((opnd < 0) || (opnd > LAST_BUILTIN_FUNC)) {
TRACE(("UNRECOGNIZED BUILTIN FUNC CODE %d\n", opnd));
panic("TclExecuteByteCode: unrecognized builtin function code %d", opnd);
}
mathFuncPtr = &(builtinFuncTable[opnd]);
DECACHE_STACK_INFO();
tcl_MathInProgress++;
result = (*mathFuncPtr->proc)(interp, eePtr,
mathFuncPtr->clientData);
tcl_MathInProgress--;
CACHE_STACK_INFO();
if (result != TCL_OK) {
goto checkForCatch;
}
TRACE_WITH_OBJ(("callBuiltinFunc1 %d => ", opnd),
stackPtr[stackTop].o);
}
ADJUST_PC(2);
case INST_CALL_FUNC1:
opnd = TclGetUInt1AtPtr(pc+1);
{
/*
* Call a non-builtin Tcl math function previously
* registered by a call to Tcl_CreateMathFunc.
*/
int objc = opnd; /* Number of arguments. The function name
* is the 0-th argument. */
Tcl_Obj **objv; /* The array of arguments. The function
* name is objv[0]. */
objv = &(stackPtr[stackTop - (objc-1)].o); /* "objv[0]" */
DECACHE_STACK_INFO();
tcl_MathInProgress++;
result = ExprCallMathFunc(interp, eePtr, objc, objv);
tcl_MathInProgress--;
CACHE_STACK_INFO();
if (result != TCL_OK) {
goto checkForCatch;
}
TRACE_WITH_OBJ(("callFunc1 %d => ", objc),
stackPtr[stackTop].o);
ADJUST_PC(2);
}
case INST_TRY_CVT_TO_NUMERIC:
{
/*
* Try to convert the topmost stack object to an int or
* double object. This is done in order to support Tcl's
* policy of interpreting operands if at all possible as
* first integers, else floating-point numbers.
*/
double d;
char *s;
Tcl_ObjType *tPtr;
int converted, shared;
valuePtr = stackPtr[stackTop].o;
tPtr = valuePtr->typePtr;
converted = 0;
if ((tPtr != &tclIntType) && (tPtr != &tclDoubleType)) {
s = Tcl_GetStringFromObj(valuePtr, (int *) NULL);
if (TclLooksLikeInt(s)) { /* FAILS IF NULLS */
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL,
valuePtr, &i);
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL,
valuePtr, &d);
}
if (result == TCL_OK) {
converted = 1;
}
result = TCL_OK; /* reset the result variable */
tPtr = valuePtr->typePtr;
}
/*
* Ensure that the topmost stack object, if numeric, has a
* string rep the same as the formatted version of its
* internal rep. This is used, e.g., to make sure that "expr
* {0001}" yields "1", not "0001". We implement this by
* _discarding_ the string rep since we know it will be
* regenerated, if needed later, by formatting the internal
* rep's value. Also check if there has been an IEEE
* floating point error.
*/
if ((tPtr == &tclIntType) || (tPtr == &tclDoubleType)) {
shared = 0;
if (Tcl_IsShared(valuePtr)) {
shared = 1;
if (tPtr == &tclIntType) {
i = valuePtr->internalRep.longValue;
objPtr = Tcl_NewLongObj(i);
} else {
d = valuePtr->internalRep.doubleValue;
objPtr = Tcl_NewDoubleObj(d);
}
Tcl_IncrRefCount(objPtr);
TclDecrRefCount(valuePtr);
valuePtr = objPtr;
tPtr = valuePtr->typePtr;
} else {
Tcl_InvalidateStringRep(valuePtr);
}
stackPtr[stackTop].o = valuePtr;
if (tPtr == &tclDoubleType) {
d = valuePtr->internalRep.doubleValue;
if (IS_NAN(d) || IS_INF(d)) {
TRACE(("tryCvtToNumeric \"%.20s\" => IEEE FLOATING PT ERROR\n",
O2S(valuePtr)));
TclExprFloatError(interp, d);
result = TCL_ERROR;
goto checkForCatch;
}
}
shared = shared; /* lint, shared not used. */
converted = converted; /* lint, converted not used. */
TRACE(("tryCvtToNumeric \"%.20s\" => numeric, %s, %s\n",
O2S(valuePtr),
(converted? "converted" : "not converted"),
(shared? "shared" : "not shared")));
} else {
TRACE(("tryCvtToNumeric \"%.20s\" => not numeric\n",
O2S(valuePtr)));
}
}
ADJUST_PC(1);
case INST_BREAK:
/*
* First reset the interpreter's result. Then find the closest
* enclosing loop or catch exception range, if any. If a loop is
* found, terminate its execution. If the closest is a catch
* exception range, jump to its catchOffset. If no enclosing
* range is found, stop execution and return TCL_BREAK.
*/
Tcl_ResetResult(interp);
rangePtr = TclGetExceptionRangeForPc(pc, /*catchOnly*/ 0,
codePtr);
if (rangePtr == NULL) {
TRACE(("break => no encl. loop or catch, returning TCL_BREAK\n"));
result = TCL_BREAK;
goto abnormalReturn; /* no catch exists to check */
}
switch (rangePtr->type) {
case LOOP_EXCEPTION_RANGE:
result = TCL_OK;
TRACE(("break => range at %d, new pc %d\n",
rangePtr->codeOffset, rangePtr->breakOffset));
break;
case CATCH_EXCEPTION_RANGE:
result = TCL_BREAK;
TRACE(("break => ...\n"));
goto processCatch; /* it will use rangePtr */
default:
panic("TclExecuteByteCode: unrecognized ExceptionRange type %d\n", rangePtr->type);
}
pc = (codePtr->codeStart + rangePtr->breakOffset);
continue; /* restart outer instruction loop at pc */
case INST_CONTINUE:
/*
* Find the closest enclosing loop or catch exception range,
* if any. If a loop is found, skip to its next iteration.
* If the closest is a catch exception range, jump to its
* catchOffset. If no enclosing range is found, stop
* execution and return TCL_CONTINUE.
*/
Tcl_ResetResult(interp);
rangePtr = TclGetExceptionRangeForPc(pc, /*catchOnly*/ 0,
codePtr);
if (rangePtr == NULL) {
TRACE(("continue => no encl. loop or catch, returning TCL_CONTINUE\n"));
result = TCL_CONTINUE;
goto abnormalReturn;
}
switch (rangePtr->type) {
case LOOP_EXCEPTION_RANGE:
if (rangePtr->continueOffset == -1) {
TRACE(("continue => loop w/o continue, checking for catch\n"));
goto checkForCatch;
} else {
result = TCL_OK;
TRACE(("continue => range at %d, new pc %d\n",
rangePtr->codeOffset, rangePtr->continueOffset));
}
break;
case CATCH_EXCEPTION_RANGE:
result = TCL_CONTINUE;
TRACE(("continue => ...\n"));
goto processCatch; /* it will use rangePtr */
default:
panic("TclExecuteByteCode: unrecognized ExceptionRange type %d\n", rangePtr->type);
}
pc = (codePtr->codeStart + rangePtr->continueOffset);
continue; /* restart outer instruction loop at pc */
case INST_FOREACH_START4:
opnd = TclGetUInt4AtPtr(pc+1);
{
/*
* Initialize the temporary local var that holds the count
* of the number of iterations of the loop body to -1.
*/
ForeachInfo *infoPtr = (ForeachInfo *)
codePtr->auxDataArrayPtr[opnd].clientData;
int iterTmpIndex = infoPtr->loopIterNumTmp;
CallFrame *varFramePtr = iPtr->varFramePtr;
Var *compiledLocals = varFramePtr->compiledLocals;
Var *iterVarPtr;
Tcl_Obj *oldValuePtr;
iterVarPtr = &(compiledLocals[iterTmpIndex]);
oldValuePtr = iterVarPtr->value.objPtr;
if (oldValuePtr == NULL) {
iterVarPtr->value.objPtr = Tcl_NewLongObj(-1);
Tcl_IncrRefCount(iterVarPtr->value.objPtr);
if (oldValuePtr != NULL) {
Tcl_DecrRefCount(oldValuePtr);
}
} else {
Tcl_SetLongObj(oldValuePtr, -1);
}
TclSetVarScalar(iterVarPtr);
TclClearVarUndefined(iterVarPtr);
TRACE(("foreach_start4 %u => loop iter count temp %d\n",
opnd, iterTmpIndex));
}
ADJUST_PC(5);
case INST_FOREACH_STEP4:
opnd = TclGetUInt4AtPtr(pc+1);
{
/*
* "Step" a foreach loop (i.e., begin its next iteration) by
* assigning the next value list element to each loop var.
*/
ForeachInfo *infoPtr = (ForeachInfo *)
codePtr->auxDataArrayPtr[opnd].clientData;
ForeachVarList *varListPtr;
int numLists = infoPtr->numLists;
int iterTmpIndex = infoPtr->loopIterNumTmp;
CallFrame *varFramePtr = iPtr->varFramePtr;
Var *compiledLocals = varFramePtr->compiledLocals;
int iterNum, listTmpIndex, listLen, numVars;
int varIndex, valIndex, j;
Tcl_Obj *listPtr, *elemPtr, *oldValuePtr;
List *listRepPtr;
Var *iterVarPtr, *listVarPtr;
int continueLoop = 0;
/*
* Increment the temp holding the loop iteration number.
*/
iterVarPtr = &(compiledLocals[iterTmpIndex]);
oldValuePtr = iterVarPtr->value.objPtr;
iterNum = (oldValuePtr->internalRep.longValue + 1);
Tcl_SetLongObj(oldValuePtr, iterNum);
/*
* Check whether all value lists are exhausted and we should
* stop the loop.
*/
listTmpIndex = infoPtr->firstListTmp;
for (i = 0; i < numLists; i++) {
varListPtr = infoPtr->varLists[i];
numVars = varListPtr->numVars;
listVarPtr = &(compiledLocals[listTmpIndex]);
listPtr = listVarPtr->value.objPtr;
result = Tcl_ListObjLength(interp, listPtr, &listLen);
if (result != TCL_OK) {
TRACE_WITH_OBJ(("foreach_step4 %u => ERROR converting list %ld, \"%s\": ",
opnd, i, O2S(listPtr)),
Tcl_GetObjResult(interp));
goto checkForCatch;
}
if (listLen > (iterNum * numVars)) {
continueLoop = 1;
}
listTmpIndex++;
}
/*
* If some var in some var list still has a remaining list
* element iterate one more time. Assign to var the next
* element from its value list. We already checked above
* that each list temp holds a valid list object.
*/
if (continueLoop) {
listTmpIndex = infoPtr->firstListTmp;
for (i = 0; i < numLists; i++) {
varListPtr = infoPtr->varLists[i];
numVars = varListPtr->numVars;
listVarPtr = &(compiledLocals[listTmpIndex]);
listPtr = listVarPtr->value.objPtr;
listRepPtr = (List *)
listPtr->internalRep.otherValuePtr;
listLen = listRepPtr->elemCount;
valIndex = (iterNum * numVars);
for (j = 0; j < numVars; j++) {
int setEmptyStr = 0;
if (valIndex >= listLen) {
setEmptyStr = 1;
elemPtr = Tcl_NewObj();
} else {
elemPtr = listRepPtr->elements[valIndex];
}
varIndex = varListPtr->varIndexes[j];
DECACHE_STACK_INFO();
value2Ptr = TclSetIndexedScalar(interp,
varIndex, elemPtr, /*leaveErrorMsg*/ 1);
CACHE_STACK_INFO();
if (value2Ptr == NULL) {
TRACE_WITH_OBJ(("foreach_step4 %u => ERROR init. index temp %d: ",
opnd, varIndex),
Tcl_GetObjResult(interp));
if (setEmptyStr) {
Tcl_DecrRefCount(elemPtr); /* unneeded */
}
result = TCL_ERROR;
goto checkForCatch;
}
valIndex++;
}
listTmpIndex++;
}
}
/*
* Now push a "1" object if at least one value list had a
* remaining element and the loop should continue.
* Otherwise push "0".
*/
PUSH_OBJECT(Tcl_NewLongObj(continueLoop));
TRACE(("foreach_step4 %u => %d lists, iter %d, %s loop\n",
opnd, numLists, iterNum,
(continueLoop? "continue" : "exit")));
}
ADJUST_PC(5);
case INST_BEGIN_CATCH4:
/*
* Record start of the catch command with exception range index
* equal to the operand. Push the current stack depth onto the
* special catch stack.
*/
catchStackPtr[++catchTop] = stackTop;
TRACE(("beginCatch4 %u => catchTop=%d, stackTop=%d\n",
TclGetUInt4AtPtr(pc+1), catchTop, stackTop));
ADJUST_PC(5);
case INST_END_CATCH:
catchTop--;
result = TCL_OK;
TRACE(("endCatch => catchTop=%d\n", catchTop));
ADJUST_PC(1);
case INST_PUSH_RESULT:
PUSH_OBJECT(Tcl_GetObjResult(interp));
TRACE_WITH_OBJ(("pushResult => "), Tcl_GetObjResult(interp));
ADJUST_PC(1);
case INST_PUSH_RETURN_CODE:
PUSH_OBJECT(Tcl_NewLongObj(result));
TRACE(("pushReturnCode => %u\n", result));
ADJUST_PC(1);
default:
TRACE(("UNRECOGNIZED INSTRUCTION %u\n", opCode));
panic("TclExecuteByteCode: unrecognized opCode %u", opCode);
} /* end of switch on opCode */
/*
* Division by zero in an expression. Control only reaches this
* point by "goto divideByZero".
*/
divideByZero:
Tcl_ResetResult(interp);
Tcl_AppendToObj(Tcl_GetObjResult(interp), "divide by zero", -1);
Tcl_SetErrorCode(interp, "ARITH", "DIVZERO", "divide by zero",
(char *) NULL);
result = TCL_ERROR;
/*
* Execution has generated an "exception" such as TCL_ERROR. If the
* exception is an error, record information about what was being
* executed when the error occurred. Find the closest enclosing
* catch range, if any. If no enclosing catch range is found, stop
* execution and return the "exception" code.
*/
checkForCatch:
if ((result == TCL_ERROR) && !(iPtr->flags & ERR_ALREADY_LOGGED)) {
RecordTracebackInfo(interp, pc, codePtr);
}
rangePtr = TclGetExceptionRangeForPc(pc, /*catchOnly*/ 1, codePtr);
if (rangePtr == NULL) {
TRACE((" ... no enclosing catch, returning %s\n",
StringForResultCode(result)));
goto abnormalReturn;
}
/*
* A catch exception range (rangePtr) was found to handle an
* "exception". It was found either by checkForCatch just above or
* by an instruction during break, continue, or error processing.
* Jump to its catchOffset after unwinding the operand stack to
* the depth it had when starting to execute the range's catch
* command.
*/
processCatch:
while (stackTop > catchStackPtr[catchTop]) {
valuePtr = POP_OBJECT();
TclDecrRefCount(valuePtr);
}
TRACE((" ... found catch at %d, catchTop=%d, unwound to %d, new pc %u\n",
rangePtr->codeOffset, catchTop, catchStackPtr[catchTop],
(unsigned int)(rangePtr->catchOffset)));
pc = (codePtr->codeStart + rangePtr->catchOffset);
continue; /* restart the execution loop at pc */
} /* end of infinite loop dispatching on instructions */
/*
* Abnormal return code. Restore the stack to state it had when starting
* to execute the ByteCode.
*/
abnormalReturn:
while (stackTop > initStackTop) {
valuePtr = POP_OBJECT();
Tcl_DecrRefCount(valuePtr);
}
/*
* Free the catch stack array if malloc'ed storage was used.
*/
done:
if (catchStackPtr != catchStackStorage) {
ckfree((char *) catchStackPtr);
}
eePtr->stackTop = initStackTop;
return result;
#undef STATIC_CATCH_STACK_SIZE
}
/*
*----------------------------------------------------------------------
*
* PrintByteCodeInfo --
*
* This procedure prints a summary about a bytecode object to stdout.
* It is called by TclExecuteByteCode when starting to execute the
* bytecode object if tclTraceExec has the value 2 or more.
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static void
PrintByteCodeInfo(codePtr)
register ByteCode *codePtr; /* The bytecode whose summary is printed
* to stdout. */
{
Proc *procPtr = codePtr->procPtr;
int numCmds = codePtr->numCommands;
int numObjs = codePtr->numObjects;
int objBytes, i;
objBytes = (numObjs * sizeof(Tcl_Obj));
for (i = 0; i < numObjs; i++) {
Tcl_Obj *litObjPtr = codePtr->objArrayPtr[i];
if (litObjPtr->bytes != NULL) {
objBytes += litObjPtr->length;
}
}
fprintf(stdout, "\nExecuting ByteCode 0x%x, ref ct %u, epoch %u, interp 0x%x(epoch %u)\n",
(unsigned int) codePtr, codePtr->refCount,
codePtr->compileEpoch, (unsigned int) codePtr->iPtr,
codePtr->iPtr->compileEpoch);
fprintf(stdout, " Source: ");
TclPrintSource(stdout, codePtr->source, 70);
fprintf(stdout, "\n Cmds %d, chars %d, inst %u, objs %u, aux %d, stk depth %u, code/src %.2fn",
numCmds, codePtr->numSrcChars, codePtr->numCodeBytes, numObjs,
codePtr->numAuxDataItems, codePtr->maxStackDepth,
(codePtr->numSrcChars?
((float)codePtr->totalSize)/((float)codePtr->numSrcChars) : 0.0));
fprintf(stdout, " Code %d = %d(header)+%d(inst)+%d(objs)+%d(exc)+%d(aux)+%d(cmd map)\n",
codePtr->totalSize, sizeof(ByteCode), codePtr->numCodeBytes,
objBytes, (codePtr->numExcRanges * sizeof(ExceptionRange)),
(codePtr->numAuxDataItems * sizeof(AuxData)),
codePtr->numCmdLocBytes);
if (procPtr != NULL) {
fprintf(stdout,
" Proc 0x%x, ref ct %d, args %d, compiled locals %d\n",
(unsigned int) procPtr, procPtr->refCount,
procPtr->numArgs, procPtr->numCompiledLocals);
}
}
/*
*----------------------------------------------------------------------
*
* ValidatePcAndStackTop --
*
* This procedure is called by TclExecuteByteCode when debugging to
* verify that the program counter and stack top are valid during
* execution.
*
* Results:
* None.
*
* Side effects:
* Prints a message to stderr and panics if either the pc or stack
* top are invalid.
*
*----------------------------------------------------------------------
*/
#ifdef TCL_COMPILE_DEBUG
static void
ValidatePcAndStackTop(codePtr, pc, stackTop, stackLowerBound, stackUpperBound)
register ByteCode *codePtr; /* The bytecode whose summary is printed
* to stdout. */
unsigned char *pc; /* Points to first byte of a bytecode
* instruction. The program counter. */
int stackTop; /* Current stack top. Must be between
* stackLowerBound and stackUpperBound
* (inclusive). */
int stackLowerBound; /* Smallest legal value for stackTop. */
int stackUpperBound; /* Greatest legal value for stackTop. */
{
unsigned int relativePc = (unsigned int) (pc - codePtr->codeStart);
unsigned int codeStart = (unsigned int) codePtr->codeStart;
unsigned int codeEnd = (unsigned int)
(codePtr->codeStart + codePtr->numCodeBytes);
unsigned char opCode = *pc;
if (((unsigned int) pc < codeStart) || ((unsigned int) pc > codeEnd)) {
fprintf(stderr, "\nBad instruction pc 0x%x in TclExecuteByteCode\n",
(unsigned int) pc);
panic("TclExecuteByteCode execution failure: bad pc");
}
if ((unsigned int) opCode > LAST_INST_OPCODE) {
fprintf(stderr, "\nBad opcode %d at pc %u in TclExecuteByteCode\n",
(unsigned int) opCode, relativePc);
panic("TclExecuteByteCode execution failure: bad opcode");
}
if ((stackTop < stackLowerBound) || (stackTop > stackUpperBound)) {
int numChars;
char *cmd = GetSrcInfoForPc(pc, codePtr, &numChars);
char *ellipsis = "";
fprintf(stderr, "\nBad stack top %d at pc %u in TclExecuteByteCode",
stackTop, relativePc);
if (cmd != NULL) {
if (numChars > 100) {
numChars = 100;
ellipsis = "...";
}
fprintf(stderr, "\n executing %.*s%s\n", numChars, cmd,
ellipsis);
} else {
fprintf(stderr, "\n");
}
panic("TclExecuteByteCode execution failure: bad stack top");
}
}
#endif /* TCL_COMPILE_DEBUG */
/*
*----------------------------------------------------------------------
*
* IllegalExprOperandType --
*
* Used by TclExecuteByteCode to add an error message to errorInfo
* when an illegal operand type is detected by an expression
* instruction. The argument opCode holds the failing instruction's
* opcode and opndPtr holds the operand object in error.
*
* Results:
* None.
*
* Side effects:
* An error message is appended to errorInfo.
*
*----------------------------------------------------------------------
*/
static void
IllegalExprOperandType(interp, opCode, opndPtr)
Tcl_Interp *interp; /* Interpreter to which error information
* pertains. */
unsigned int opCode; /* The instruction opcode being executed
* when the illegal type was found. */
Tcl_Obj *opndPtr; /* Points to the operand holding the value
* with the illegal type. */
{
Tcl_ResetResult(interp);
if ((opndPtr->bytes == NULL) || (opndPtr->length == 0)) {
Tcl_AppendStringsToObj(Tcl_GetObjResult(interp),
"can't use empty string as operand of \"",
operatorStrings[opCode - INST_LOR], "\"", (char *) NULL);
} else {
Tcl_AppendStringsToObj(Tcl_GetObjResult(interp), "can't use ",
((opndPtr->typePtr == &tclDoubleType) ?
"floating-point value" : "non-numeric string"),
" as operand of \"", operatorStrings[opCode - INST_LOR],
"\"", (char *) NULL);
}
}
/*
*----------------------------------------------------------------------
*
* CallTraceProcedure --
*
* Invokes a trace procedure registered with an interpreter. These
* procedures trace command execution. Currently this trace procedure
* is called with the address of the string-based Tcl_CmdProc for the
* command, not the Tcl_ObjCmdProc.
*
* Results:
* None.
*
* Side effects:
* Those side effects made by the trace procedure.
*
*----------------------------------------------------------------------
*/
static void
CallTraceProcedure(interp, tracePtr, cmdPtr, command, numChars, objc, objv)
Tcl_Interp *interp; /* The current interpreter. */
register Trace *tracePtr; /* Describes the trace procedure to call. */
Command *cmdPtr; /* Points to command's Command struct. */
char *command; /* Points to the first character of the
* command's source before substitutions. */
int numChars; /* The number of characters in the
* command's source. */
register int objc; /* Number of arguments for the command. */
Tcl_Obj *objv[]; /* Pointers to Tcl_Obj of each argument. */
{
Interp *iPtr = (Interp *) interp;
register char **argv;
register int i;
int length;
char *p;
/*
* Get the string rep from the objv argument objects and place their
* pointers in argv. First make sure argv is large enough to hold the
* objc args plus 1 extra word for the zero end-of-argv word.
* THIS FAILS IF AN OBJECT'S STRING REP CONTAINS NULLS.
*/
argv = (char **) ckalloc((unsigned)(objc + 1) * sizeof(char *));
for (i = 0; i < objc; i++) {
argv[i] = Tcl_GetStringFromObj(objv[i], &length);
}
argv[objc] = 0;
/*
* Copy the command characters into a new string.
*/
p = (char *) ckalloc((unsigned) (numChars + 1));
memcpy((VOID *) p, (VOID *) command, (size_t) numChars);
p[numChars] = '\0';
/*
* Call the trace procedure then free allocated storage.
*/
(*tracePtr->proc)(tracePtr->clientData, interp, iPtr->numLevels,
p, cmdPtr->proc, cmdPtr->clientData, objc, argv);
ckfree((char *) argv);
ckfree((char *) p);
}
/*
*----------------------------------------------------------------------
*
* RecordTracebackInfo --
*
* Procedure called by TclExecuteByteCode to record information
* about what was being executed when the error occurred.
*
* Results:
* None.
*
* Side effects:
* Appends information about the command being executed to the
* "errorInfo" variable. Sets the errorLine field in the interpreter
* to the line number of that command. Sets the ERR_ALREADY_LOGGED
* bit in the interpreter's execution flags.
*
*----------------------------------------------------------------------
*/
static void
RecordTracebackInfo(interp, pc, codePtr)
Tcl_Interp *interp; /* The interpreter in which the error
* occurred. */
unsigned char *pc; /* The program counter value where the error * occurred. This points to a bytecode
* instruction in codePtr's code. */
ByteCode *codePtr; /* The bytecode sequence being executed. */
{
register Interp *iPtr = (Interp *) interp;
char *cmd, *ellipsis;
char buf[200];
register char *p;
int numChars;
/*
* Record the command in errorInfo (up to a certain number of
* characters, or up to the first newline).
*/
iPtr->errorLine = 1;
cmd = GetSrcInfoForPc(pc, codePtr, &numChars);
if (cmd != NULL) {
for (p = codePtr->source; p != cmd; p++) {
if (*p == '\n') {
iPtr->errorLine++;
}
}
for ( ; (isspace(UCHAR(*p)) || (*p == ';')); p++) {
if (*p == '\n') {
iPtr->errorLine++;
}
}
ellipsis = "";
if (numChars > 150) {
numChars = 150;
ellipsis = "...";
}
if (!(iPtr->flags & ERR_IN_PROGRESS)) {
sprintf(buf, "\n while executing\n\"%.*s%s\"",
numChars, cmd, ellipsis);
} else {
sprintf(buf, "\n invoked from within\n\"%.*s%s\"",
numChars, cmd, ellipsis);
}
Tcl_AddObjErrorInfo(interp, buf, -1);
iPtr->flags |= ERR_ALREADY_LOGGED;
}
}
/*
*----------------------------------------------------------------------
*
* GetSrcInfoForPc --
*
* Given a program counter value, finds the closest command in the
* bytecode code unit's CmdLocation array and returns information about
* that command's source: a pointer to its first byte and the number of
* characters.
*
* Results:
* If a command is found that encloses the program counter value, a
* pointer to the command's source is returned and the length of the
* source is stored at *lengthPtr. If multiple commands resulted in
* code at pc, information about the closest enclosing command is
* returned. If no matching command is found, NULL is returned and
* *lengthPtr is unchanged.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static char *
GetSrcInfoForPc(pc, codePtr, lengthPtr)
unsigned char *pc; /* The program counter value for which to
* return the closest command's source info.
* This points to a bytecode instruction
* in codePtr's code. */
ByteCode *codePtr; /* The bytecode sequence in which to look
* up the command source for the pc. */
int *lengthPtr; /* If non-NULL, the location where the
* length of the command's source should be
* stored. If NULL, no length is stored. */
{
register int pcOffset = (pc - codePtr->codeStart);
int numCmds = codePtr->numCommands;
unsigned char *codeDeltaNext, *codeLengthNext;
unsigned char *srcDeltaNext, *srcLengthNext;
int codeOffset, codeLen, codeEnd, srcOffset, srcLen, delta, i;
int bestDist = INT_MAX; /* Distance of pc to best cmd's start pc. */
int bestSrcOffset = -1; /* Initialized to avoid compiler warning. */
int bestSrcLength = -1; /* Initialized to avoid compiler warning. */
if ((pcOffset < 0) || (pcOffset >= codePtr->numCodeBytes)) {
return NULL;
}
/*
* Decode the code and source offset and length for each command. The
* closest enclosing command is the last one whose code started before
* pcOffset.
*/
codeDeltaNext = codePtr->codeDeltaStart;
codeLengthNext = codePtr->codeLengthStart;
srcDeltaNext = codePtr->srcDeltaStart;
srcLengthNext = codePtr->srcLengthStart;
codeOffset = srcOffset = 0;
for (i = 0; i < numCmds; i++) {
if ((unsigned int) (*codeDeltaNext) == (unsigned int) 0xFF) {
codeDeltaNext++;
delta = TclGetInt4AtPtr(codeDeltaNext);
codeDeltaNext += 4;
} else {
delta = TclGetInt1AtPtr(codeDeltaNext);
codeDeltaNext++;
}
codeOffset += delta;
if ((unsigned int) (*codeLengthNext) == (unsigned int) 0xFF) {
codeLengthNext++;
codeLen = TclGetInt4AtPtr(codeLengthNext);
codeLengthNext += 4;
} else {
codeLen = TclGetInt1AtPtr(codeLengthNext);
codeLengthNext++;
}
codeEnd = (codeOffset + codeLen - 1);
if ((unsigned int) (*srcDeltaNext) == (unsigned int) 0xFF) {
srcDeltaNext++;
delta = TclGetInt4AtPtr(srcDeltaNext);
srcDeltaNext += 4;
} else {
delta = TclGetInt1AtPtr(srcDeltaNext);
srcDeltaNext++;
}
srcOffset += delta;
if ((unsigned int) (*srcLengthNext) == (unsigned int) 0xFF) {
srcLengthNext++;
srcLen = TclGetInt4AtPtr(srcLengthNext);
srcLengthNext += 4;
} else {
srcLen = TclGetInt1AtPtr(srcLengthNext);
srcLengthNext++;
}
if (codeOffset > pcOffset) { /* best cmd already found */
break;
} else if (pcOffset <= codeEnd) { /* this cmd's code encloses pc */
int dist = (pcOffset - codeOffset);
if (dist <= bestDist) {
bestDist = dist;
bestSrcOffset = srcOffset;
bestSrcLength = srcLen;
}
}
}
if (bestDist == INT_MAX) {
return NULL;
}
if (lengthPtr != NULL) {
*lengthPtr = bestSrcLength;
}
return (codePtr->source + bestSrcOffset);
}
/*
*----------------------------------------------------------------------
*
* TclGetExceptionRangeForPc --
*
* Procedure that given a program counter value, returns the closest
* enclosing ExceptionRange that matches the kind requested.
*
* Results:
* In the normal case, catchOnly is 0 (false) and this procedure
* returns a pointer to the most closely enclosing ExceptionRange
* structure regardless of whether it is a loop or catch exception
* range. This is appropriate when processing a TCL_BREAK or
* TCL_CONTINUE, which will be "handled" either by a loop exception
* range or a closer catch range. If catchOnly is nonzero (true), this
* procedure ignores loop exception ranges and returns a pointer to the
* closest catch range. If no matching ExceptionRange is found that
* encloses pc, a NULL is returned.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
ExceptionRange *
TclGetExceptionRangeForPc(pc, catchOnly, codePtr)
unsigned char *pc; /* The program counter value for which to
* search for a closest enclosing exception
* range. This points to a bytecode
* instruction in codePtr's code. */
int catchOnly; /* If 0, consider either loop or catch
* ExceptionRanges in search. Otherwise
* consider only catch ranges (and ignore
* any closer loop ranges). */
ByteCode* codePtr; /* Points to the ByteCode in which to search
* for the enclosing ExceptionRange. */
{
ExceptionRange *rangeArrayPtr = codePtr->excRangeArrayPtr;
int numRanges = codePtr->numExcRanges;
register ExceptionRange *rangePtr;
int codeOffset = (pc - codePtr->codeStart);
register int i, level;
for (level = codePtr->maxExcRangeDepth; level >= 0; level--) {
for (i = 0; i < numRanges; i++) {
rangePtr = &(rangeArrayPtr[i]);
if (rangePtr->nestingLevel == level) {
int start = rangePtr->codeOffset;
int end = (start + rangePtr->numCodeBytes);
if ((start <= codeOffset) && (codeOffset < end)) {
if ((!catchOnly)
|| (rangePtr->type == CATCH_EXCEPTION_RANGE)) {
return rangePtr;
}
}
}
}
}
return NULL;
}
/*
*----------------------------------------------------------------------
*
* Math Functions --
*
* This page contains the procedures that implement all of the
* built-in math functions for expressions.
*
* Results:
* Each procedure returns TCL_OK if it succeeds and pushes an
* Tcl object holding the result. If it fails it returns TCL_ERROR
* and leaves an error message in the interpreter's result.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int
ExprUnaryFunc(interp, eePtr, clientData)
Tcl_Interp *interp; /* The interpreter in which to execute the
* function. */
ExecEnv *eePtr; /* Points to the environment for executing
* the function. */
ClientData clientData; /* Contains the address of a procedure that
* takes one double argument and returns a
* double result. */
{
StackItem *stackPtr; /* Cached evaluation stack base pointer. */
register int stackTop; /* Cached top index of evaluation stack. */
register Tcl_Obj *valuePtr;
Tcl_ObjType *tPtr;
double d, dResult;
long i;
int result = TCL_OK;
double (*func) _ANSI_ARGS_((double)) =
(double (*)_ANSI_ARGS_((double))) clientData;
/*
* Set stackPtr and stackTop from eePtr.
*/
CACHE_STACK_INFO();
/*
* Pop the function's argument from the evaluation stack. Convert it
* to a double if necessary.
*/
valuePtr = POP_OBJECT();
tPtr = valuePtr->typePtr;
if (tPtr == &tclIntType) {
d = (double) valuePtr->internalRep.longValue;
} else if (tPtr == &tclDoubleType) {
d = valuePtr->internalRep.doubleValue;
} else { /* FAILS IF STRING REP HAS NULLS */
char *s = Tcl_GetStringFromObj(valuePtr, (int *) NULL);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i);
d = (double) valuePtr->internalRep.longValue;
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d);
}
if (result != TCL_OK) {
Tcl_ResetResult(interp);
Tcl_AppendToObj(Tcl_GetObjResult(interp),
"argument to math function didn't have numeric value", -1);
goto done;
}
}
errno = 0;
dResult = (*func)(d);
if ((errno != 0) || IS_NAN(dResult) || IS_INF(dResult)) {
TclExprFloatError(interp, dResult);
result = TCL_ERROR;
goto done;
}
/*
* Push a Tcl object holding the result.
*/
PUSH_OBJECT(Tcl_NewDoubleObj(dResult));
/*
* Reflect the change to stackTop back in eePtr.
*/
done:
Tcl_DecrRefCount(valuePtr);
DECACHE_STACK_INFO();
return result;
}
static int
ExprBinaryFunc(interp, eePtr, clientData)
Tcl_Interp *interp; /* The interpreter in which to execute the
* function. */
ExecEnv *eePtr; /* Points to the environment for executing
* the function. */
ClientData clientData; /* Contains the address of a procedure that
* takes two double arguments and
* returns a double result. */
{
StackItem *stackPtr; /* Cached evaluation stack base pointer. */
register int stackTop; /* Cached top index of evaluation stack. */
register Tcl_Obj *valuePtr, *value2Ptr;
Tcl_ObjType *tPtr;
double d1, d2, dResult;
long i;
char *s;
int result = TCL_OK;
double (*func) _ANSI_ARGS_((double, double))
= (double (*)_ANSI_ARGS_((double, double))) clientData;
/*
* Set stackPtr and stackTop from eePtr.
*/
CACHE_STACK_INFO();
/*
* Pop the function's two arguments from the evaluation stack. Convert
* them to doubles if necessary.
*/
value2Ptr = POP_OBJECT();
valuePtr = POP_OBJECT();
tPtr = valuePtr->typePtr;
if (tPtr == &tclIntType) {
d1 = (double) valuePtr->internalRep.longValue;
} else if (tPtr == &tclDoubleType) {
d1 = valuePtr->internalRep.doubleValue;
} else { /* FAILS IF STRING REP HAS NULLS */
s = Tcl_GetStringFromObj(valuePtr, (int *) NULL);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i);
d1 = (double) valuePtr->internalRep.longValue;
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d1);
}
if (result != TCL_OK) {
badArg:
Tcl_ResetResult(interp);
Tcl_AppendToObj(Tcl_GetObjResult(interp),
"argument to math function didn't have numeric value", -1);
goto done;
}
}
tPtr = value2Ptr->typePtr;
if (tPtr == &tclIntType) {
d2 = value2Ptr->internalRep.longValue;
} else if (tPtr == &tclDoubleType) {
d2 = value2Ptr->internalRep.doubleValue;
} else { /* FAILS IF STRING REP HAS NULLS */
s = Tcl_GetStringFromObj(value2Ptr, (int *) NULL);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, value2Ptr, &i);
d2 = (double) value2Ptr->internalRep.longValue;
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, value2Ptr, &d2);
}
if (result != TCL_OK) {
goto badArg;
}
}
errno = 0;
dResult = (*func)(d1, d2);
if ((errno != 0) || IS_NAN(dResult) || IS_INF(dResult)) {
TclExprFloatError(interp, dResult);
result = TCL_ERROR;
goto done;
}
/*
* Push a Tcl object holding the result.
*/
PUSH_OBJECT(Tcl_NewDoubleObj(dResult));
/*
* Reflect the change to stackTop back in eePtr.
*/
done:
Tcl_DecrRefCount(valuePtr);
Tcl_DecrRefCount(value2Ptr);
DECACHE_STACK_INFO();
return result;
}
static int
ExprAbsFunc(interp, eePtr, clientData)
Tcl_Interp *interp; /* The interpreter in which to execute the
* function. */
ExecEnv *eePtr; /* Points to the environment for executing
* the function. */
ClientData clientData; /* Ignored. */
{
StackItem *stackPtr; /* Cached evaluation stack base pointer. */
register int stackTop; /* Cached top index of evaluation stack. */
register Tcl_Obj *valuePtr;
Tcl_ObjType *tPtr;
long i, iResult;
double d, dResult;
int result = TCL_OK;
/*
* Set stackPtr and stackTop from eePtr.
*/
CACHE_STACK_INFO();
/*
* Pop the argument from the evaluation stack.
*/
valuePtr = POP_OBJECT();
tPtr = valuePtr->typePtr;
if (tPtr == &tclIntType) {
i = valuePtr->internalRep.longValue;
} else if (tPtr == &tclDoubleType) {
d = valuePtr->internalRep.doubleValue;
} else { /* FAILS IF STRING REP HAS NULLS */
char *s = Tcl_GetStringFromObj(valuePtr, (int *) NULL);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i);
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d);
}
if (result != TCL_OK) {
Tcl_ResetResult(interp);
Tcl_AppendToObj(Tcl_GetObjResult(interp),
"argument to math function didn't have numeric value", -1);
goto done;
}
tPtr = valuePtr->typePtr;
}
/*
* Push a Tcl object with the result.
*/
if (tPtr == &tclIntType) {
if (i < 0) {
iResult = -i;
if (iResult < 0) {
Tcl_ResetResult(interp);
Tcl_AppendToObj(Tcl_GetObjResult(interp),
"integer value too large to represent", -1);
Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW",
"integer value too large to represent", (char *) NULL);
result = TCL_ERROR;
goto done;
}
} else {
iResult = i;
}
PUSH_OBJECT(Tcl_NewLongObj(iResult));
} else {
if (d < 0.0) {
dResult = -d;
} else {
dResult = d;
}
if (IS_NAN(dResult) || IS_INF(dResult)) {
TclExprFloatError(interp, dResult);
result = TCL_ERROR;
goto done;
}
PUSH_OBJECT(Tcl_NewDoubleObj(dResult));
}
/*
* Reflect the change to stackTop back in eePtr.
*/
done:
Tcl_DecrRefCount(valuePtr);
DECACHE_STACK_INFO();
return result;
}
static int
ExprDoubleFunc(interp, eePtr, clientData)
Tcl_Interp *interp; /* The interpreter in which to execute the
* function. */
ExecEnv *eePtr; /* Points to the environment for executing
* the function. */
ClientData clientData; /* Ignored. */
{
StackItem *stackPtr; /* Cached evaluation stack base pointer. */
register int stackTop; /* Cached top index of evaluation stack. */
register Tcl_Obj *valuePtr;
double dResult;
long i;
int result = TCL_OK;
/*
* Set stackPtr and stackTop from eePtr.
*/
CACHE_STACK_INFO();
/*
* Pop the argument from the evaluation stack.
*/
valuePtr = POP_OBJECT();
if (valuePtr->typePtr == &tclIntType) {
dResult = (double) valuePtr->internalRep.longValue;
} else if (valuePtr->typePtr == &tclDoubleType) {
dResult = valuePtr->internalRep.doubleValue;
} else { /* FAILS IF STRING REP HAS NULLS */
char *s = Tcl_GetStringFromObj(valuePtr, (int *) NULL);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i);
dResult = (double) valuePtr->internalRep.longValue;
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr,
&dResult);
}
if (result != TCL_OK) {
Tcl_ResetResult(interp);
Tcl_AppendToObj(Tcl_GetObjResult(interp),
"argument to math function didn't have numeric value", -1);
goto done;
}
}
/*
* Push a Tcl object with the result.
*/
PUSH_OBJECT(Tcl_NewDoubleObj(dResult));
/*
* Reflect the change to stackTop back in eePtr.
*/
done:
Tcl_DecrRefCount(valuePtr);
DECACHE_STACK_INFO();
return result;
}
static int
ExprIntFunc(interp, eePtr, clientData)
Tcl_Interp *interp; /* The interpreter in which to execute the
* function. */
ExecEnv *eePtr; /* Points to the environment for executing
* the function. */
ClientData clientData; /* Ignored. */
{
StackItem *stackPtr; /* Cached evaluation stack base pointer. */
register int stackTop; /* Cached top index of evaluation stack. */
register Tcl_Obj *valuePtr;
Tcl_ObjType *tPtr;
long i = 0; /* Initialized to avoid compiler warning. */
long iResult;
double d;
int result = TCL_OK;
/*
* Set stackPtr and stackTop from eePtr.
*/
CACHE_STACK_INFO();
/*
* Pop the argument from the evaluation stack.
*/
valuePtr = POP_OBJECT();
tPtr = valuePtr->typePtr;
if (tPtr == &tclIntType) {
i = valuePtr->internalRep.longValue;
} else if (tPtr == &tclDoubleType) {
d = valuePtr->internalRep.doubleValue;
} else { /* FAILS IF STRING REP HAS NULLS */
char *s = Tcl_GetStringFromObj(valuePtr, (int *) NULL);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i);
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d);
}
if (result != TCL_OK) {
Tcl_ResetResult(interp);
Tcl_AppendToObj(Tcl_GetObjResult(interp),
"argument to math function didn't have numeric value", -1);
goto done;
}
tPtr = valuePtr->typePtr;
}
/*
* Push a Tcl object with the result.
*/
if (tPtr == &tclIntType) {
iResult = i;
} else {
if (d < 0.0) {
if (d < (double) (long) LONG_MIN) {
tooLarge:
Tcl_ResetResult(interp);
Tcl_AppendToObj(Tcl_GetObjResult(interp),
"integer value too large to represent", -1);
Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW",
"integer value too large to represent", (char *) NULL);
result = TCL_ERROR;
goto done;
}
} else {
if (d > (double) LONG_MAX) {
goto tooLarge;
}
}
if (IS_NAN(d) || IS_INF(d)) {
TclExprFloatError(interp, d);
result = TCL_ERROR;
goto done;
}
iResult = (long) d;
}
PUSH_OBJECT(Tcl_NewLongObj(iResult));
/*
* Reflect the change to stackTop back in eePtr.
*/
done:
Tcl_DecrRefCount(valuePtr);
DECACHE_STACK_INFO();
return result;
}
static int
ExprRandFunc(interp, eePtr, clientData)
Tcl_Interp *interp; /* The interpreter in which to execute the
* function. */
ExecEnv *eePtr; /* Points to the environment for executing
* the function. */
ClientData clientData; /* Ignored. */
{
StackItem *stackPtr; /* Cached evaluation stack base pointer. */
register int stackTop; /* Cached top index of evaluation stack. */
Interp *iPtr = (Interp *) interp;
double dResult;
int tmp;
if (!(iPtr->flags & RAND_SEED_INITIALIZED)) {
iPtr->flags |= RAND_SEED_INITIALIZED;
iPtr->randSeed = TclpGetClicks();
}
/*
* Set stackPtr and stackTop from eePtr.
*/
CACHE_STACK_INFO();
/*
* Generate the random number using the linear congruential
* generator defined by the following recurrence:
* seed = ( IA * seed ) mod IM
* where IA is 16807 and IM is (2^31) - 1. In order to avoid
* potential problems with integer overflow, the code uses
* additional constants IQ and IR such that
* IM = IA*IQ + IR
* For details on how this algorithm works, refer to the following
* papers:
*
* S.K. Park & K.W. Miller, "Random number generators: good ones
* are hard to find," Comm ACM 31(10):1192-1201, Oct 1988
*
* W.H. Press & S.A. Teukolsky, "Portable random number
* generators," Computers in Physics 6(5):522-524, Sep/Oct 1992.
*/
#define RAND_IA 16807
#define RAND_IM 2147483647
#define RAND_IQ 127773
#define RAND_IR 2836
#define RAND_MASK 123459876
if (iPtr->randSeed == 0) {
/*
* Don't allow a 0 seed, since it breaks the generator. Shift
* it to some other value.
*/
iPtr->randSeed = 123459876;
}
tmp = iPtr->randSeed/RAND_IQ;
iPtr->randSeed = RAND_IA*(iPtr->randSeed - tmp*RAND_IQ) - RAND_IR*tmp;
if (iPtr->randSeed < 0) {
iPtr->randSeed += RAND_IM;
}
/*
* On 64-bit architectures we need to mask off the upper bits to
* ensure we only have a 32-bit range. The constant has the
* bizarre form below in order to make sure that it doesn't
* get sign-extended (the rules for sign extension are very
* concat, particularly on 64-bit machines).
*/
iPtr->randSeed &= ((((unsigned long) 0xfffffff) << 4) | 0xf);
dResult = iPtr->randSeed * (1.0/RAND_IM);
/*
* Push a Tcl object with the result.
*/
PUSH_OBJECT(Tcl_NewDoubleObj(dResult));
/*
* Reflect the change to stackTop back in eePtr.
*/
DECACHE_STACK_INFO();
return TCL_OK;
}
static int
ExprRoundFunc(interp, eePtr, clientData)
Tcl_Interp *interp; /* The interpreter in which to execute the
* function. */
ExecEnv *eePtr; /* Points to the environment for executing
* the function. */
ClientData clientData; /* Ignored. */
{
StackItem *stackPtr; /* Cached evaluation stack base pointer. */
register int stackTop; /* Cached top index of evaluation stack. */
Tcl_Obj *valuePtr;
Tcl_ObjType *tPtr;
long i = 0; /* Initialized to avoid compiler warning. */
long iResult;
double d, temp;
int result = TCL_OK;
/*
* Set stackPtr and stackTop from eePtr.
*/
CACHE_STACK_INFO();
/*
* Pop the argument from the evaluation stack.
*/
valuePtr = POP_OBJECT();
tPtr = valuePtr->typePtr;
if (tPtr == &tclIntType) {
i = valuePtr->internalRep.longValue;
} else if (tPtr == &tclDoubleType) {
d = valuePtr->internalRep.doubleValue;
} else { /* FAILS IF STRING REP HAS NULLS */
char *s = Tcl_GetStringFromObj(valuePtr, (int *) NULL);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i);
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d);
}
if (result != TCL_OK) {
Tcl_ResetResult(interp);
Tcl_AppendToObj(Tcl_GetObjResult(interp),
"argument to math function didn't have numeric value", -1);
goto done;
}
tPtr = valuePtr->typePtr;
}
/*
* Push a Tcl object with the result.
*/
if (tPtr == &tclIntType) {
iResult = i;
} else {
if (d < 0.0) {
if (d <= (((double) (long) LONG_MIN) - 0.5)) {
tooLarge:
Tcl_ResetResult(interp);
Tcl_AppendToObj(Tcl_GetObjResult(interp),
"integer value too large to represent", -1);
Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW",
"integer value too large to represent",
(char *) NULL);
result = TCL_ERROR;
goto done;
}
temp = (long) (d - 0.5);
} else {
if (d >= (((double) LONG_MAX + 0.5))) {
goto tooLarge;
}
temp = (long) (d + 0.5);
}
if (IS_NAN(temp) || IS_INF(temp)) {
TclExprFloatError(interp, temp);
result = TCL_ERROR;
goto done;
}
iResult = (long) temp;
}
PUSH_OBJECT(Tcl_NewLongObj(iResult));
/*
* Reflect the change to stackTop back in eePtr.
*/
done:
Tcl_DecrRefCount(valuePtr);
DECACHE_STACK_INFO();
return result;
}
static int
ExprSrandFunc(interp, eePtr, clientData)
Tcl_Interp *interp; /* The interpreter in which to execute the
* function. */
ExecEnv *eePtr; /* Points to the environment for executing
* the function. */
ClientData clientData; /* Ignored. */
{
StackItem *stackPtr; /* Cached evaluation stack base pointer. */
register int stackTop; /* Cached top index of evaluation stack. */
Interp *iPtr = (Interp *) interp;
Tcl_Obj *valuePtr;
Tcl_ObjType *tPtr;
long i = 0; /* Initialized to avoid compiler warning. */
int result;
/*
* Set stackPtr and stackTop from eePtr.
*/
CACHE_STACK_INFO();
/*
* Pop the argument from the evaluation stack. Use the value
* to reset the random number seed.
*/
valuePtr = POP_OBJECT();
tPtr = valuePtr->typePtr;
if (tPtr == &tclIntType) {
i = valuePtr->internalRep.longValue;
} else { /* FAILS IF STRING REP HAS NULLS */
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i);
if (result != TCL_OK) {
Tcl_ResetResult(interp);
Tcl_AppendStringsToObj(Tcl_GetObjResult(interp), "can't use ",
((tPtr == &tclDoubleType)? "floating-point value" : "non-numeric string"),
" as argument to srand", (char *) NULL);
Tcl_DecrRefCount(valuePtr);
DECACHE_STACK_INFO();
return result;
}
}
/*
* Reset the seed.
*/
iPtr->flags |= RAND_SEED_INITIALIZED;
iPtr->randSeed = i;
/*
* To avoid duplicating the random number generation code we simply
* clean up our state and call the real random number function. That
* function will always succeed.
*/
Tcl_DecrRefCount(valuePtr);
DECACHE_STACK_INFO();
ExprRandFunc(interp, eePtr, clientData);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* ExprCallMathFunc --
*
* This procedure is invoked to call a non-builtin math function
* during the execution of an expression.
*
* Results:
* TCL_OK is returned if all went well and the function's value
* was computed successfully. If an error occurred, TCL_ERROR
* is returned and an error message is left in the interpreter's
* result. After a successful return this procedure pushes a Tcl object
* holding the result.
*
* Side effects:
* None, unless the called math function has side effects.
*
*----------------------------------------------------------------------
*/
static int
ExprCallMathFunc(interp, eePtr, objc, objv)
Tcl_Interp *interp; /* The interpreter in which to execute the
* function. */
ExecEnv *eePtr; /* Points to the environment for executing
* the function. */
int objc; /* Number of arguments. The function name is
* the 0-th argument. */
Tcl_Obj **objv; /* The array of arguments. The function name
* is objv[0]. */
{
Interp *iPtr = (Interp *) interp;
StackItem *stackPtr; /* Cached evaluation stack base pointer. */
register int stackTop; /* Cached top index of evaluation stack. */
char *funcName;
Tcl_HashEntry *hPtr;
MathFunc *mathFuncPtr; /* Information about math function. */
Tcl_Value args[MAX_MATH_ARGS]; /* Arguments for function call. */
Tcl_Value funcResult; /* Result of function call as Tcl_Value. */
register Tcl_Obj *valuePtr;
Tcl_ObjType *tPtr;
long i;
double d;
int j, k, result;
Tcl_ResetResult(interp);
/*
* Set stackPtr and stackTop from eePtr.
*/
CACHE_STACK_INFO();
/*
* Look up the MathFunc record for the function.
* THIS FAILS IF THE OBJECT'S STRING REP CONTAINS NULLS.
*/
funcName = Tcl_GetStringFromObj(objv[0], (int *) NULL);
hPtr = Tcl_FindHashEntry(&iPtr->mathFuncTable, funcName);
if (hPtr == NULL) {
Tcl_AppendStringsToObj(Tcl_GetObjResult(interp),
"unknown math function \"", funcName, "\"", (char *) NULL);
result = TCL_ERROR;
goto done;
}
mathFuncPtr = (MathFunc *) Tcl_GetHashValue(hPtr);
if (mathFuncPtr->numArgs != (objc-1)) {
panic("ExprCallMathFunc: expected number of args %d != actual number %d",
mathFuncPtr->numArgs, objc);
result = TCL_ERROR;
goto done;
}
/*
* Collect the arguments for the function, if there are any, into the
* array "args". Note that args[0] will have the Tcl_Value that
* corresponds to objv[1].
*/
for (j = 1, k = 0; j < objc; j++, k++) {
valuePtr = objv[j];
tPtr = valuePtr->typePtr;
if (tPtr == &tclIntType) {
i = valuePtr->internalRep.longValue;
} else if (tPtr == &tclDoubleType) {
d = valuePtr->internalRep.doubleValue;
} else {
/*
* Try to convert to int first then double.
* FAILS IF STRING REP HAS NULLS.
*/
char *s = Tcl_GetStringFromObj(valuePtr, (int *) NULL);
if (TclLooksLikeInt(s)) {
result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i);
} else {
result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL,
valuePtr, &d);
}
if (result != TCL_OK) {
Tcl_AppendToObj(Tcl_GetObjResult(interp),
"argument to math function didn't have numeric value", -1);
goto done;
}
tPtr = valuePtr->typePtr;
}
/*
* Copy the object's numeric value to the argument record,
* converting it if necessary.
*/
if (tPtr == &tclIntType) {
if (mathFuncPtr->argTypes[k] == TCL_DOUBLE) {
args[k].type = TCL_DOUBLE;
args[k].doubleValue = i;
} else {
args[k].type = TCL_INT;
args[k].intValue = i;
}
} else {
if (mathFuncPtr->argTypes[k] == TCL_INT) {
args[k].type = TCL_INT;
args[k].intValue = (long) d;
} else {
args[k].type = TCL_DOUBLE;
args[k].doubleValue = d;
}
}
}
/*
* Invoke the function and copy its result back into valuePtr.
*/
tcl_MathInProgress++;
result = (*mathFuncPtr->proc)(mathFuncPtr->clientData, interp, args,
&funcResult);
tcl_MathInProgress--;
if (result != TCL_OK) {
goto done;
}
/*
* Pop the objc top stack elements and decrement their ref counts.
*/
i = (stackTop - (objc-1));
while (i <= stackTop) {
valuePtr = stackPtr[i].o;
Tcl_DecrRefCount(valuePtr);
i++;
}
stackTop -= objc;
/*
* Push the call's object result.
*/
if (funcResult.type == TCL_INT) {
PUSH_OBJECT(Tcl_NewLongObj(funcResult.intValue));
} else {
d = funcResult.doubleValue;
if (IS_NAN(d) || IS_INF(d)) {
TclExprFloatError(interp, d);
result = TCL_ERROR;
goto done;
}
PUSH_OBJECT(Tcl_NewDoubleObj(d));
}
/*
* Reflect the change to stackTop back in eePtr.
*/
done:
DECACHE_STACK_INFO();
return result;
}
/*
*----------------------------------------------------------------------
*
* TclExprFloatError --
*
* This procedure is called when an error occurs during a
* floating-point operation. It reads errno and sets
* interp->objResultPtr accordingly.
*
* Results:
* interp->objResultPtr is set to hold an error message.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
void
TclExprFloatError(interp, value)
Tcl_Interp *interp; /* Where to store error message. */
double value; /* Value returned after error; used to
* distinguish underflows from overflows. */
{
char *s;
Tcl_ResetResult(interp);
if ((errno == EDOM) || (value != value)) {
s = "domain error: argument not in valid range";
Tcl_AppendToObj(Tcl_GetObjResult(interp), s, -1);
Tcl_SetErrorCode(interp, "ARITH", "DOMAIN", s, (char *) NULL);
} else if ((errno == ERANGE) || IS_INF(value)) {
if (value == 0.0) {
s = "floating-point value too small to represent";
Tcl_AppendToObj(Tcl_GetObjResult(interp), s, -1);
Tcl_SetErrorCode(interp, "ARITH", "UNDERFLOW", s, (char *) NULL);
} else {
s = "floating-point value too large to represent";
Tcl_AppendToObj(Tcl_GetObjResult(interp), s, -1);
Tcl_SetErrorCode(interp, "ARITH", "OVERFLOW", s, (char *) NULL);
}
} else { /* FAILS IF STRING REP CONTAINS NULLS */
char msg[100];
sprintf(msg, "unknown floating-point error, errno = %d", errno);
Tcl_AppendToObj(Tcl_GetObjResult(interp), msg, -1);
Tcl_SetErrorCode(interp, "ARITH", "UNKNOWN", msg, (char *) NULL);
}
}
#ifdef TCL_COMPILE_STATS
/*
*----------------------------------------------------------------------
*
* TclLog2 --
*
* Procedure used while collecting compilation statistics to determine
* the log base 2 of an integer.
*
* Results:
* Returns the log base 2 of the operand. If the argument is less
* than or equal to zero, a zero is returned.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int
TclLog2(value)
register int value; /* The integer for which to compute the
* log base 2. */
{
register int n = value;
register int result = 0;
while (n > 1) {
n = n >> 1;
result++;
}
return result;
}
/*
*----------------------------------------------------------------------
*
* EvalStatsCmd --
*
* Implements the "evalstats" command that prints instruction execution
* counts to stdout.
*
* Results:
* Standard Tcl results.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int
EvalStatsCmd(unused, interp, argc, argv)
ClientData unused; /* Unused. */
Tcl_Interp *interp; /* The current interpreter. */
int argc; /* The number of arguments. */
char **argv; /* The argument strings. */
{
register double total = 0.0;
register int i;
int maxSizeDecade = 0;
double totalHeaderBytes = (tclNumCompilations * sizeof(ByteCode));
for (i = 0; i < 256; i++) {
if (instructionCount[i] != 0) {
total += instructionCount[i];
}
}
for (i = 31; i >= 0; i--) {
if ((tclSourceCount[i] > 0) && (tclByteCodeCount[i] > 0)) {
maxSizeDecade = i;
break;
}
}
fprintf(stdout, "\nNumber of compilations %ld\n",
tclNumCompilations);
fprintf(stdout, "Number of executions %ld\n",
numExecutions);
fprintf(stdout, "Average executions/compilation %.0f\n",
((float) numExecutions/tclNumCompilations));
fprintf(stdout, "\nInstructions executed %.0f\n",
total);
fprintf(stdout, "Average instructions/compile %.0f\n",
total/tclNumCompilations);
fprintf(stdout, "Average instructions/execution %.0f\n",
total/numExecutions);
fprintf(stdout, "\nTotal source bytes %.6g\n",
tclTotalSourceBytes);
fprintf(stdout, "Total code bytes %.6g\n",
tclTotalCodeBytes);
fprintf(stdout, "Average code/compilation %.0f\n",
tclTotalCodeBytes/tclNumCompilations);
fprintf(stdout, "Average code/source %.2f\n",
tclTotalCodeBytes/tclTotalSourceBytes);
fprintf(stdout, "Current source bytes %.6g\n",
tclCurrentSourceBytes);
fprintf(stdout, "Current code bytes %.6g\n",
tclCurrentCodeBytes);
fprintf(stdout, "Current code/source %.2f\n",
tclCurrentCodeBytes/tclCurrentSourceBytes);
fprintf(stdout, "\nTotal objects allocated %ld\n",
tclObjsAlloced);
fprintf(stdout, "Total objects freed %ld\n",
tclObjsFreed);
fprintf(stdout, "Current objects: %ld\n",
(tclObjsAlloced - tclObjsFreed));
fprintf(stdout, "\nBreakdown of code byte requirements:\n");
fprintf(stdout, " Total bytes Pct of Avg per\n");
fprintf(stdout, " all code compile\n");
fprintf(stdout, "Total code %12.6g 100%% %8.2f\n",
tclTotalCodeBytes, tclTotalCodeBytes/tclNumCompilations);
fprintf(stdout, "Header %12.6g %8.2f%% %8.2f\n",
totalHeaderBytes,
((totalHeaderBytes * 100.0) / tclTotalCodeBytes),
totalHeaderBytes/tclNumCompilations);
fprintf(stdout, "Instructions %12.6g %8.2f%% %8.2f\n",
tclTotalInstBytes,
((tclTotalInstBytes * 100.0) / tclTotalCodeBytes),
tclTotalInstBytes/tclNumCompilations);
fprintf(stdout, "Objects %12.6g %8.2f%% %8.2f\n",
tclTotalObjBytes,
((tclTotalObjBytes * 100.0) / tclTotalCodeBytes),
tclTotalObjBytes/tclNumCompilations);
fprintf(stdout, "Exception table %12.6g %8.2f%% %8.2f\n",
tclTotalExceptBytes,
((tclTotalExceptBytes * 100.0) / tclTotalCodeBytes),
tclTotalExceptBytes/tclNumCompilations);
fprintf(stdout, "Auxiliary data %12.6g %8.2f%% %8.2f\n",
tclTotalAuxBytes,
((tclTotalAuxBytes * 100.0) / tclTotalCodeBytes),
tclTotalAuxBytes/tclNumCompilations);
fprintf(stdout, "Command map %12.6g %8.2f%% %8.2f\n",
tclTotalCmdMapBytes,
((tclTotalCmdMapBytes * 100.0) / tclTotalCodeBytes),
tclTotalCmdMapBytes/tclNumCompilations);
fprintf(stdout, "\nSource and ByteCode size distributions:\n");
fprintf(stdout, " binary decade source code\n");
for (i = 0; i <= maxSizeDecade; i++) {
int decadeLow, decadeHigh;
if (i == 0) {
decadeLow = 0;
} else {
decadeLow = 1 << i;
}
decadeHigh = (1 << (i+1)) - 1;
fprintf(stdout, " %6d -%6d %6d %6d\n",
decadeLow, decadeHigh,
tclSourceCount[i], tclByteCodeCount[i]);
}
fprintf(stdout, "\nInstruction counts:\n");
for (i = 0; i < 256; i++) {
if (instructionCount[i]) {
fprintf(stdout, "%20s %8d %6.2f%%\n",
opName[i], instructionCount[i],
(instructionCount[i] * 100.0)/total);
}
}
#ifdef TCL_MEM_DEBUG
fprintf(stdout, "\nHeap Statistics:\n");
TclDumpMemoryInfo(stdout);
#endif /* TCL_MEM_DEBUG */
return TCL_OK;
}
#endif /* TCL_COMPILE_STATS */
/*
*----------------------------------------------------------------------
*
* Tcl_GetCommandFromObj --
*
* Returns the command specified by the name in a Tcl_Obj.
*
* Results:
* Returns a token for the command if it is found. Otherwise, if it
* can't be found or there is an error, returns NULL.
*
* Side effects:
* May update the internal representation for the object, caching
* the command reference so that the next time this procedure is
* called with the same object, the command can be found quickly.
*
*----------------------------------------------------------------------
*/
Tcl_Command
Tcl_GetCommandFromObj(interp, objPtr)
Tcl_Interp *interp; /* The interpreter in which to resolve the
* command and to report errors. */
register Tcl_Obj *objPtr; /* The object containing the command's
* name. If the name starts with "::", will
* be looked up in global namespace. Else,
* looked up first in the current namespace
* if contextNsPtr is NULL, then in global
* namespace. */
{
Interp *iPtr = (Interp *) interp;
register ResolvedCmdName *resPtr;
register Command *cmdPtr;
Namespace *currNsPtr;
int result;
/*
* Get the internal representation, converting to a command type if
* needed. The internal representation is a ResolvedCmdName that points
* to the actual command.
*/
if (objPtr->typePtr != &tclCmdNameType) {
result = tclCmdNameType.setFromAnyProc(interp, objPtr);
if (result != TCL_OK) {
return (Tcl_Command) NULL;
}
}
resPtr = (ResolvedCmdName *) objPtr->internalRep.otherValuePtr;
/*
* Get the current namespace.
*/
if (iPtr->varFramePtr != NULL) {
currNsPtr = iPtr->varFramePtr->nsPtr;
} else {
currNsPtr = iPtr->globalNsPtr;
}
/*
* Check the context namespace and the namespace epoch of the resolved
* symbol to make sure that it is fresh. If not, then force another
* conversion to the command type, to discard the old rep and create a
* new one. Note that we verify that the namespace id of the context
* namespace is the same as the one we cached; this insures that the
* namespace wasn't deleted and a new one created at the same address
* with the same command epoch.
*/
cmdPtr = NULL;
if ((resPtr != NULL)
&& (resPtr->refNsPtr == currNsPtr)
&& (resPtr->refNsId == currNsPtr->nsId)
&& (resPtr->refNsCmdEpoch == currNsPtr->cmdRefEpoch)) {
cmdPtr = resPtr->cmdPtr;
if (cmdPtr->cmdEpoch != resPtr->cmdEpoch) {
cmdPtr = NULL;
}
}
if (cmdPtr == NULL) {
result = tclCmdNameType.setFromAnyProc(interp, objPtr);
if (result != TCL_OK) {
return (Tcl_Command) NULL;
}
resPtr = (ResolvedCmdName *) objPtr->internalRep.otherValuePtr;
if (resPtr != NULL) {
cmdPtr = resPtr->cmdPtr;
}
}
if (cmdPtr == NULL) {
return (Tcl_Command) NULL;
}
return (Tcl_Command) cmdPtr;
}
/*
*----------------------------------------------------------------------
*
* FreeCmdNameInternalRep --
*
* Frees the resources associated with a cmdName object's internal
* representation.
*
* Results:
* None.
*
* Side effects:
* Decrements the ref count of any cached ResolvedCmdName structure
* pointed to by the cmdName's internal representation. If this is
* the last use of the ResolvedCmdName, it is freed. This in turn
* decrements the ref count of the Command structure pointed to by
* the ResolvedSymbol, which may free the Command structure.
*
*----------------------------------------------------------------------
*/
static void
FreeCmdNameInternalRep(objPtr)
register Tcl_Obj *objPtr; /* CmdName object with internal
* representation to free. */
{
register ResolvedCmdName *resPtr =
(ResolvedCmdName *) objPtr->internalRep.otherValuePtr;
if (resPtr != NULL) {
/*
* Decrement the reference count of the ResolvedCmdName structure.
* If there are no more uses, free the ResolvedCmdName structure.
*/
resPtr->refCount--;
if (resPtr->refCount == 0) {
/*
* Now free the cached command, unless it is still in its
* hash table or if there are other references to it
* from other cmdName objects.
*/
Command *cmdPtr = resPtr->cmdPtr;
TclCleanupCommand(cmdPtr);
ckfree((char *) resPtr);
}
}
}
/*
*----------------------------------------------------------------------
*
* DupCmdNameInternalRep --
*
* Initialize the internal representation of an cmdName Tcl_Obj to a
* copy of the internal representation of an existing cmdName object.
*
* Results:
* None.
*
* Side effects:
* "copyPtr"s internal rep is set to point to the ResolvedCmdName
* structure corresponding to "srcPtr"s internal rep. Increments the
* ref count of the ResolvedCmdName structure pointed to by the
* cmdName's internal representation.
*
*----------------------------------------------------------------------
*/
static void
DupCmdNameInternalRep(srcPtr, copyPtr)
Tcl_Obj *srcPtr; /* Object with internal rep to copy. */
register Tcl_Obj *copyPtr; /* Object with internal rep to set. */
{
register ResolvedCmdName *resPtr =
(ResolvedCmdName *) srcPtr->internalRep.otherValuePtr;
copyPtr->internalRep.twoPtrValue.ptr1 = (VOID *) resPtr;
copyPtr->internalRep.twoPtrValue.ptr2 = NULL;
if (resPtr != NULL) {
resPtr->refCount++;
}
copyPtr->typePtr = &tclCmdNameType;
}
/*
*----------------------------------------------------------------------
*
* SetCmdNameFromAny --
*
* Generate an cmdName internal form for the Tcl object "objPtr".
*
* Results:
* The return value is a standard Tcl result. The conversion always
* succeeds and TCL_OK is returned.
*
* Side effects:
* A pointer to a ResolvedCmdName structure that holds a cached pointer
* to the command with a name that matches objPtr's string rep is
* stored as objPtr's internal representation. This ResolvedCmdName
* pointer will be NULL if no matching command was found. The ref count
* of the cached Command's structure (if any) is also incremented.
*
*----------------------------------------------------------------------
*/
static int
SetCmdNameFromAny(interp, objPtr)
Tcl_Interp *interp; /* Used for error reporting if not NULL. */
register Tcl_Obj *objPtr; /* The object to convert. */
{
Interp *iPtr = (Interp *) interp;
char *name;
Tcl_Command cmd;
register Command *cmdPtr;
Namespace *currNsPtr;
register ResolvedCmdName *resPtr;
/*
* Get "objPtr"s string representation. Make it up-to-date if necessary.
*/
name = objPtr->bytes;
if (name == NULL) {
name = Tcl_GetStringFromObj(objPtr, (int *) NULL);
}
/*
* Find the Command structure, if any, that describes the command called
* "name". Build a ResolvedCmdName that holds a cached pointer to this
* Command, and bump the reference count in the referenced Command
* structure. A Command structure will not be deleted as long as it is
* referenced from a CmdName object.
*/
cmd = Tcl_FindCommand(interp, name, (Tcl_Namespace *) NULL,
/*flags*/ 0);
cmdPtr = (Command *) cmd;
if (cmdPtr != NULL) {
/*
* Get the current namespace.
*/
if (iPtr->varFramePtr != NULL) {
currNsPtr = iPtr->varFramePtr->nsPtr;
} else {
currNsPtr = iPtr->globalNsPtr;
}
cmdPtr->refCount++;
resPtr = (ResolvedCmdName *) ckalloc(sizeof(ResolvedCmdName));
resPtr->cmdPtr = cmdPtr;
resPtr->refNsPtr = currNsPtr;
resPtr->refNsId = currNsPtr->nsId;
resPtr->refNsCmdEpoch = currNsPtr->cmdRefEpoch;
resPtr->cmdEpoch = cmdPtr->cmdEpoch;
resPtr->refCount = 1;
} else {
resPtr = NULL; /* no command named "name" was found */
}
/*
* Free the old internalRep before setting the new one. We do this as
* late as possible to allow the conversion code, in particular
* GetStringFromObj, to use that old internalRep. If no Command
* structure was found, leave NULL as the cached value.
*/
if ((objPtr->typePtr != NULL)
&& (objPtr->typePtr->freeIntRepProc != NULL)) {
objPtr->typePtr->freeIntRepProc(objPtr);
}
objPtr->internalRep.twoPtrValue.ptr1 = (VOID *) resPtr;
objPtr->internalRep.twoPtrValue.ptr2 = NULL;
objPtr->typePtr = &tclCmdNameType;
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* UpdateStringOfCmdName --
*
* Update the string representation for an cmdName object.
*
* Results:
* None.
*
* Side effects:
* Generates a panic.
*
*----------------------------------------------------------------------
*/
static void
UpdateStringOfCmdName(objPtr)
Tcl_Obj *objPtr; /* CmdName obj to update string rep. */
{
/*
* This procedure is never invoked since the internal representation of
* a cmdName object is never modified.
*/
panic("UpdateStringOfCmdName should never be invoked");
}
#ifdef TCL_COMPILE_DEBUG
/*
*----------------------------------------------------------------------
*
* StringForResultCode --
*
* Procedure that returns a human-readable string representing a
* Tcl result code such as TCL_ERROR.
*
* Results:
* If the result code is one of the standard Tcl return codes, the
* result is a string representing that code such as "TCL_ERROR".
* Otherwise, the result string is that code formatted as a
* sequence of decimal digit characters. Note that the resulting
* string must not be modified by the caller.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static char *
StringForResultCode(result)
int result; /* The Tcl result code for which to
* generate a string. */
{
static char buf[20];
if ((result >= TCL_OK) && (result <= TCL_CONTINUE)) {
return resultStrings[result];
}
TclFormatInt(buf, result);
return buf;
}
#endif /* TCL_COMPILE_DEBUG */