985 lines
32 KiB
C++
985 lines
32 KiB
C++
// Allocators -*- C++ -*-
|
|
|
|
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/*
|
|
* Copyright (c) 1996-1997
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
/** @file stl_alloc.h
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
#ifndef __GLIBCPP_INTERNAL_ALLOC_H
|
|
#define __GLIBCPP_INTERNAL_ALLOC_H
|
|
|
|
/**
|
|
* @defgroup Allocators Memory Allocators
|
|
* @if maint
|
|
* stl_alloc.h implements some node allocators. These are NOT the same as
|
|
* allocators in the C++ standard, nor in the original H-P STL. They do not
|
|
* encapsulate different pointer types; we assume that there is only one
|
|
* pointer type. The C++ standard allocators are intended to allocate
|
|
* individual objects, not pools or arenas.
|
|
*
|
|
* In this file allocators are of two different styles: "standard" and
|
|
* "SGI" (quotes included). "Standard" allocators conform to 20.4. "SGI"
|
|
* allocators differ in AT LEAST the following ways (add to this list as you
|
|
* discover them):
|
|
*
|
|
* - "Standard" allocate() takes two parameters (n_count,hint=0) but "SGI"
|
|
* allocate() takes one paramter (n_size).
|
|
* - Likewise, "standard" deallocate()'s argument is a count, but in "SGI"
|
|
* is a byte size.
|
|
* - max_size(), construct(), and destroy() are missing in "SGI" allocators.
|
|
* - reallocate(p,oldsz,newsz) is added in "SGI", and behaves as
|
|
* if p=realloc(p,newsz).
|
|
*
|
|
* "SGI" allocators may be wrapped in __allocator to convert the interface
|
|
* into a "standard" one.
|
|
* @endif
|
|
*
|
|
* @note The @c reallocate member functions have been deprecated for 3.2
|
|
* and will be removed in 3.4. You must define @c _GLIBCPP_DEPRECATED
|
|
* to make this visible in 3.2; see c++config.h.
|
|
*
|
|
* The canonical description of these classes is in docs/html/ext/howto.html
|
|
* or online at http://gcc.gnu.org/onlinedocs/libstdc++/ext/howto.html#3
|
|
*/
|
|
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <cassert>
|
|
#include <bits/functexcept.h> // For __throw_bad_alloc
|
|
#include <bits/stl_threads.h>
|
|
|
|
#include <bits/atomicity.h>
|
|
|
|
namespace std
|
|
{
|
|
/**
|
|
* @if maint
|
|
* A new-based allocator, as required by the standard. Allocation and
|
|
* deallocation forward to global new and delete. "SGI" style, minus
|
|
* reallocate().
|
|
* @endif
|
|
* (See @link Allocators allocators info @endlink for more.)
|
|
*/
|
|
class __new_alloc
|
|
{
|
|
public:
|
|
static void*
|
|
allocate(size_t __n)
|
|
{ return ::operator new(__n); }
|
|
|
|
static void
|
|
deallocate(void* __p, size_t)
|
|
{ ::operator delete(__p); }
|
|
};
|
|
|
|
|
|
/**
|
|
* @if maint
|
|
* A malloc-based allocator. Typically slower than the
|
|
* __default_alloc_template (below). Typically thread-safe and more
|
|
* storage efficient. The template argument is unused and is only present
|
|
* to permit multiple instantiations (but see __default_alloc_template
|
|
* for caveats). "SGI" style, plus __set_malloc_handler for OOM conditions.
|
|
* @endif
|
|
* (See @link Allocators allocators info @endlink for more.)
|
|
*/
|
|
template<int __inst>
|
|
class __malloc_alloc_template
|
|
{
|
|
private:
|
|
static void* _S_oom_malloc(size_t);
|
|
|
|
// _GLIBCPP_DEPRECATED
|
|
static void* _S_oom_realloc(void*, size_t);
|
|
|
|
static void (* __malloc_alloc_oom_handler)();
|
|
|
|
public:
|
|
static void*
|
|
allocate(size_t __n)
|
|
{
|
|
void* __result = malloc(__n);
|
|
if (__builtin_expect(__result == 0, 0))
|
|
__result = _S_oom_malloc(__n);
|
|
return __result;
|
|
}
|
|
|
|
static void
|
|
deallocate(void* __p, size_t /* __n */)
|
|
{ free(__p); }
|
|
|
|
// _GLIBCPP_DEPRECATED
|
|
static void*
|
|
reallocate(void* __p, size_t /* old_sz */, size_t __new_sz)
|
|
{
|
|
void* __result = realloc(__p, __new_sz);
|
|
if (__builtin_expect(__result == 0, 0))
|
|
__result = _S_oom_realloc(__p, __new_sz);
|
|
return __result;
|
|
}
|
|
|
|
static void (* __set_malloc_handler(void (*__f)()))()
|
|
{
|
|
void (* __old)() = __malloc_alloc_oom_handler;
|
|
__malloc_alloc_oom_handler = __f;
|
|
return __old;
|
|
}
|
|
};
|
|
|
|
// malloc_alloc out-of-memory handling
|
|
template<int __inst>
|
|
void (* __malloc_alloc_template<__inst>::__malloc_alloc_oom_handler)() = 0;
|
|
|
|
template<int __inst>
|
|
void*
|
|
__malloc_alloc_template<__inst>::
|
|
_S_oom_malloc(size_t __n)
|
|
{
|
|
void (* __my_malloc_handler)();
|
|
void* __result;
|
|
|
|
for (;;)
|
|
{
|
|
__my_malloc_handler = __malloc_alloc_oom_handler;
|
|
if (__builtin_expect(__my_malloc_handler == 0, 0))
|
|
__throw_bad_alloc();
|
|
(*__my_malloc_handler)();
|
|
__result = malloc(__n);
|
|
if (__result)
|
|
return __result;
|
|
}
|
|
}
|
|
|
|
// _GLIBCPP_DEPRECATED
|
|
template<int __inst>
|
|
void*
|
|
__malloc_alloc_template<__inst>::
|
|
_S_oom_realloc(void* __p, size_t __n)
|
|
{
|
|
void (* __my_malloc_handler)();
|
|
void* __result;
|
|
|
|
for (;;)
|
|
{
|
|
__my_malloc_handler = __malloc_alloc_oom_handler;
|
|
if (__builtin_expect(__my_malloc_handler == 0, 0))
|
|
__throw_bad_alloc();
|
|
(*__my_malloc_handler)();
|
|
__result = realloc(__p, __n);
|
|
if (__result)
|
|
return __result;
|
|
}
|
|
}
|
|
|
|
// Should not be referenced within the library anymore.
|
|
typedef __new_alloc __mem_interface;
|
|
|
|
/**
|
|
* @if maint
|
|
* This is used primarily (only?) in _Alloc_traits and other places to
|
|
* help provide the _Alloc_type typedef. All it does is forward the
|
|
* requests after some minimal checking.
|
|
*
|
|
* This is neither "standard"-conforming nor "SGI". The _Alloc parameter
|
|
* must be "SGI" style.
|
|
* @endif
|
|
* (See @link Allocators allocators info @endlink for more.)
|
|
*/
|
|
template<typename _Tp, typename _Alloc>
|
|
class __simple_alloc
|
|
{
|
|
public:
|
|
static _Tp*
|
|
allocate(size_t __n)
|
|
{
|
|
_Tp* __ret = 0;
|
|
if (__n)
|
|
__ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
|
|
return __ret;
|
|
}
|
|
|
|
static _Tp*
|
|
allocate()
|
|
{ return (_Tp*) _Alloc::allocate(sizeof (_Tp)); }
|
|
|
|
static void
|
|
deallocate(_Tp* __p, size_t __n)
|
|
{ if (0 != __n) _Alloc::deallocate(__p, __n * sizeof (_Tp)); }
|
|
|
|
static void
|
|
deallocate(_Tp* __p)
|
|
{ _Alloc::deallocate(__p, sizeof (_Tp)); }
|
|
};
|
|
|
|
|
|
/**
|
|
* @if maint
|
|
* An adaptor for an underlying allocator (_Alloc) to check the size
|
|
* arguments for debugging. Errors are reported using assert; these
|
|
* checks can be disabled via NDEBUG, but the space penalty is still
|
|
* paid, therefore it is far better to just use the underlying allocator
|
|
* by itelf when no checking is desired.
|
|
*
|
|
* "There is some evidence that this can confuse Purify." - SGI comment
|
|
*
|
|
* This adaptor is "SGI" style. The _Alloc parameter must also be "SGI".
|
|
* @endif
|
|
* (See @link Allocators allocators info @endlink for more.)
|
|
*/
|
|
template<typename _Alloc>
|
|
class __debug_alloc
|
|
{
|
|
private:
|
|
// Size of space used to store size. Note that this must be
|
|
// large enough to preserve alignment.
|
|
enum {_S_extra = 8};
|
|
|
|
public:
|
|
static void*
|
|
allocate(size_t __n)
|
|
{
|
|
char* __result = (char*)_Alloc::allocate(__n + (int) _S_extra);
|
|
*(size_t*)__result = __n;
|
|
return __result + (int) _S_extra;
|
|
}
|
|
|
|
static void
|
|
deallocate(void* __p, size_t __n)
|
|
{
|
|
char* __real_p = (char*)__p - (int) _S_extra;
|
|
assert(*(size_t*)__real_p == __n);
|
|
_Alloc::deallocate(__real_p, __n + (int) _S_extra);
|
|
}
|
|
|
|
// _GLIBCPP_DEPRECATED
|
|
static void*
|
|
reallocate(void* __p, size_t __old_sz, size_t __new_sz)
|
|
{
|
|
char* __real_p = (char*)__p - (int) _S_extra;
|
|
assert(*(size_t*)__real_p == __old_sz);
|
|
char* __result = (char*) _Alloc::reallocate(__real_p,
|
|
__old_sz + (int) _S_extra,
|
|
__new_sz + (int) _S_extra);
|
|
*(size_t*)__result = __new_sz;
|
|
return __result + (int) _S_extra;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* @if maint
|
|
* Default node allocator. "SGI" style. Uses various allocators to
|
|
* fulfill underlying requests (and makes as few requests as possible
|
|
* when in default high-speed pool mode).
|
|
*
|
|
* Important implementation properties:
|
|
* 0. If globally mandated, then allocate objects from __new_alloc
|
|
* 1. If the clients request an object of size > _MAX_BYTES, the resulting
|
|
* object will be obtained directly from __new_alloc
|
|
* 2. In all other cases, we allocate an object of size exactly
|
|
* _S_round_up(requested_size). Thus the client has enough size
|
|
* information that we can return the object to the proper free list
|
|
* without permanently losing part of the object.
|
|
*
|
|
* The first template parameter specifies whether more than one thread may
|
|
* use this allocator. It is safe to allocate an object from one instance
|
|
* of a default_alloc and deallocate it with another one. This effectively
|
|
* transfers its ownership to the second one. This may have undesirable
|
|
* effects on reference locality.
|
|
*
|
|
* The second parameter is unused and serves only to allow the creation of
|
|
* multiple default_alloc instances. Note that containers built on different
|
|
* allocator instances have different types, limiting the utility of this
|
|
* approach. If you do not wish to share the free lists with the main
|
|
* default_alloc instance, instantiate this with a non-zero __inst.
|
|
*
|
|
* @endif
|
|
* (See @link Allocators allocators info @endlink for more.)
|
|
*/
|
|
template<bool __threads, int __inst>
|
|
class __default_alloc_template
|
|
{
|
|
private:
|
|
enum {_ALIGN = 8};
|
|
enum {_MAX_BYTES = 128};
|
|
enum {_NFREELISTS = _MAX_BYTES / _ALIGN};
|
|
|
|
union _Obj
|
|
{
|
|
union _Obj* _M_free_list_link;
|
|
char _M_client_data[1]; // The client sees this.
|
|
};
|
|
|
|
static _Obj* volatile _S_free_list[_NFREELISTS];
|
|
|
|
// Chunk allocation state.
|
|
static char* _S_start_free;
|
|
static char* _S_end_free;
|
|
static size_t _S_heap_size;
|
|
|
|
static _STL_mutex_lock _S_node_allocator_lock;
|
|
|
|
static size_t
|
|
_S_round_up(size_t __bytes)
|
|
{ return (((__bytes) + (size_t) _ALIGN-1) & ~((size_t) _ALIGN - 1)); }
|
|
|
|
static size_t
|
|
_S_freelist_index(size_t __bytes)
|
|
{ return (((__bytes) + (size_t)_ALIGN - 1)/(size_t)_ALIGN - 1); }
|
|
|
|
// Returns an object of size __n, and optionally adds to size __n
|
|
// free list.
|
|
static void*
|
|
_S_refill(size_t __n);
|
|
|
|
// Allocates a chunk for nobjs of size size. nobjs may be reduced
|
|
// if it is inconvenient to allocate the requested number.
|
|
static char*
|
|
_S_chunk_alloc(size_t __size, int& __nobjs);
|
|
|
|
// It would be nice to use _STL_auto_lock here. But we need a
|
|
// test whether threads are in use.
|
|
struct _Lock
|
|
{
|
|
_Lock() { if (__threads) _S_node_allocator_lock._M_acquire_lock(); }
|
|
~_Lock() { if (__threads) _S_node_allocator_lock._M_release_lock(); }
|
|
} __attribute__ ((__unused__));
|
|
friend struct _Lock;
|
|
|
|
static _Atomic_word _S_force_new;
|
|
|
|
public:
|
|
// __n must be > 0
|
|
static void*
|
|
allocate(size_t __n)
|
|
{
|
|
void* __ret = 0;
|
|
|
|
// If there is a race through here, assume answer from getenv
|
|
// will resolve in same direction. Inspired by techniques
|
|
// to efficiently support threading found in basic_string.h.
|
|
if (_S_force_new == 0)
|
|
{
|
|
if (getenv("GLIBCPP_FORCE_NEW"))
|
|
__atomic_add(&_S_force_new, 1);
|
|
else
|
|
__atomic_add(&_S_force_new, -1);
|
|
// Trust but verify...
|
|
assert(_S_force_new != 0);
|
|
}
|
|
|
|
if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0))
|
|
__ret = __new_alloc::allocate(__n);
|
|
else
|
|
{
|
|
_Obj* volatile* __my_free_list = _S_free_list
|
|
+ _S_freelist_index(__n);
|
|
// Acquire the lock here with a constructor call. This
|
|
// ensures that it is released in exit or during stack
|
|
// unwinding.
|
|
_Lock __lock_instance;
|
|
_Obj* __restrict__ __result = *__my_free_list;
|
|
if (__builtin_expect(__result == 0, 0))
|
|
__ret = _S_refill(_S_round_up(__n));
|
|
else
|
|
{
|
|
*__my_free_list = __result -> _M_free_list_link;
|
|
__ret = __result;
|
|
}
|
|
if (__builtin_expect(__ret == 0, 0))
|
|
__throw_bad_alloc();
|
|
}
|
|
return __ret;
|
|
}
|
|
|
|
// __p may not be 0
|
|
static void
|
|
deallocate(void* __p, size_t __n)
|
|
{
|
|
if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0))
|
|
__new_alloc::deallocate(__p, __n);
|
|
else
|
|
{
|
|
_Obj* volatile* __my_free_list = _S_free_list
|
|
+ _S_freelist_index(__n);
|
|
_Obj* __q = (_Obj*)__p;
|
|
|
|
// Acquire the lock here with a constructor call. This
|
|
// ensures that it is released in exit or during stack
|
|
// unwinding.
|
|
_Lock __lock_instance;
|
|
__q -> _M_free_list_link = *__my_free_list;
|
|
*__my_free_list = __q;
|
|
}
|
|
}
|
|
|
|
// _GLIBCPP_DEPRECATED
|
|
static void*
|
|
reallocate(void* __p, size_t __old_sz, size_t __new_sz);
|
|
};
|
|
|
|
template<bool __threads, int __inst> _Atomic_word
|
|
__default_alloc_template<__threads, __inst>::_S_force_new = 0;
|
|
|
|
template<bool __threads, int __inst>
|
|
inline bool
|
|
operator==(const __default_alloc_template<__threads,__inst>&,
|
|
const __default_alloc_template<__threads,__inst>&)
|
|
{ return true; }
|
|
|
|
template<bool __threads, int __inst>
|
|
inline bool
|
|
operator!=(const __default_alloc_template<__threads,__inst>&,
|
|
const __default_alloc_template<__threads,__inst>&)
|
|
{ return false; }
|
|
|
|
|
|
// We allocate memory in large chunks in order to avoid fragmenting the
|
|
// heap too much. We assume that __size is properly aligned. We hold
|
|
// the allocation lock.
|
|
template<bool __threads, int __inst>
|
|
char*
|
|
__default_alloc_template<__threads, __inst>::
|
|
_S_chunk_alloc(size_t __size, int& __nobjs)
|
|
{
|
|
char* __result;
|
|
size_t __total_bytes = __size * __nobjs;
|
|
size_t __bytes_left = _S_end_free - _S_start_free;
|
|
|
|
if (__bytes_left >= __total_bytes)
|
|
{
|
|
__result = _S_start_free;
|
|
_S_start_free += __total_bytes;
|
|
return __result ;
|
|
}
|
|
else if (__bytes_left >= __size)
|
|
{
|
|
__nobjs = (int)(__bytes_left/__size);
|
|
__total_bytes = __size * __nobjs;
|
|
__result = _S_start_free;
|
|
_S_start_free += __total_bytes;
|
|
return __result;
|
|
}
|
|
else
|
|
{
|
|
size_t __bytes_to_get =
|
|
2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
|
|
// Try to make use of the left-over piece.
|
|
if (__bytes_left > 0)
|
|
{
|
|
_Obj* volatile* __my_free_list =
|
|
_S_free_list + _S_freelist_index(__bytes_left);
|
|
|
|
((_Obj*)_S_start_free) -> _M_free_list_link = *__my_free_list;
|
|
*__my_free_list = (_Obj*)_S_start_free;
|
|
}
|
|
_S_start_free = (char*) __new_alloc::allocate(__bytes_to_get);
|
|
if (_S_start_free == 0)
|
|
{
|
|
size_t __i;
|
|
_Obj* volatile* __my_free_list;
|
|
_Obj* __p;
|
|
// Try to make do with what we have. That can't hurt. We
|
|
// do not try smaller requests, since that tends to result
|
|
// in disaster on multi-process machines.
|
|
__i = __size;
|
|
for (; __i <= (size_t) _MAX_BYTES; __i += (size_t) _ALIGN)
|
|
{
|
|
__my_free_list = _S_free_list + _S_freelist_index(__i);
|
|
__p = *__my_free_list;
|
|
if (__p != 0)
|
|
{
|
|
*__my_free_list = __p -> _M_free_list_link;
|
|
_S_start_free = (char*)__p;
|
|
_S_end_free = _S_start_free + __i;
|
|
return _S_chunk_alloc(__size, __nobjs);
|
|
// Any leftover piece will eventually make it to the
|
|
// right free list.
|
|
}
|
|
}
|
|
_S_end_free = 0; // In case of exception.
|
|
_S_start_free = (char*)__new_alloc::allocate(__bytes_to_get);
|
|
// This should either throw an exception or remedy the situation.
|
|
// Thus we assume it succeeded.
|
|
}
|
|
_S_heap_size += __bytes_to_get;
|
|
_S_end_free = _S_start_free + __bytes_to_get;
|
|
return _S_chunk_alloc(__size, __nobjs);
|
|
}
|
|
}
|
|
|
|
|
|
// Returns an object of size __n, and optionally adds to "size
|
|
// __n"'s free list. We assume that __n is properly aligned. We
|
|
// hold the allocation lock.
|
|
template<bool __threads, int __inst>
|
|
void*
|
|
__default_alloc_template<__threads, __inst>::_S_refill(size_t __n)
|
|
{
|
|
int __nobjs = 20;
|
|
char* __chunk = _S_chunk_alloc(__n, __nobjs);
|
|
_Obj* volatile* __my_free_list;
|
|
_Obj* __result;
|
|
_Obj* __current_obj;
|
|
_Obj* __next_obj;
|
|
int __i;
|
|
|
|
if (1 == __nobjs)
|
|
return __chunk;
|
|
__my_free_list = _S_free_list + _S_freelist_index(__n);
|
|
|
|
// Build free list in chunk.
|
|
__result = (_Obj*)__chunk;
|
|
*__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
|
|
for (__i = 1; ; __i++)
|
|
{
|
|
__current_obj = __next_obj;
|
|
__next_obj = (_Obj*)((char*)__next_obj + __n);
|
|
if (__nobjs - 1 == __i)
|
|
{
|
|
__current_obj -> _M_free_list_link = 0;
|
|
break;
|
|
}
|
|
else
|
|
__current_obj -> _M_free_list_link = __next_obj;
|
|
}
|
|
return __result;
|
|
}
|
|
|
|
|
|
// _GLIBCPP_DEPRECATED
|
|
template<bool threads, int inst>
|
|
void*
|
|
__default_alloc_template<threads, inst>::
|
|
reallocate(void* __p, size_t __old_sz, size_t __new_sz)
|
|
{
|
|
void* __result;
|
|
size_t __copy_sz;
|
|
|
|
if (__old_sz > (size_t) _MAX_BYTES && __new_sz > (size_t) _MAX_BYTES)
|
|
return(realloc(__p, __new_sz));
|
|
if (_S_round_up(__old_sz) == _S_round_up(__new_sz))
|
|
return(__p);
|
|
__result = allocate(__new_sz);
|
|
__copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
|
|
memcpy(__result, __p, __copy_sz);
|
|
deallocate(__p, __old_sz);
|
|
return __result;
|
|
}
|
|
|
|
template<bool __threads, int __inst>
|
|
_STL_mutex_lock
|
|
__default_alloc_template<__threads,__inst>::_S_node_allocator_lock
|
|
__STL_MUTEX_INITIALIZER;
|
|
|
|
template<bool __threads, int __inst>
|
|
char* __default_alloc_template<__threads,__inst>::_S_start_free = 0;
|
|
|
|
template<bool __threads, int __inst>
|
|
char* __default_alloc_template<__threads,__inst>::_S_end_free = 0;
|
|
|
|
template<bool __threads, int __inst>
|
|
size_t __default_alloc_template<__threads,__inst>::_S_heap_size = 0;
|
|
|
|
template<bool __threads, int __inst>
|
|
typename __default_alloc_template<__threads,__inst>::_Obj* volatile
|
|
__default_alloc_template<__threads,__inst>::_S_free_list[_NFREELISTS];
|
|
|
|
typedef __default_alloc_template<true,0> __alloc;
|
|
typedef __default_alloc_template<false,0> __single_client_alloc;
|
|
|
|
|
|
/**
|
|
* @brief The "standard" allocator, as per [20.4].
|
|
*
|
|
* The private _Alloc is "SGI" style. (See comments at the top
|
|
* of stl_alloc.h.)
|
|
*
|
|
* The underlying allocator behaves as follows.
|
|
* - __default_alloc_template is used via two typedefs
|
|
* - "__single_client_alloc" typedef does no locking for threads
|
|
* - "__alloc" typedef is threadsafe via the locks
|
|
* - __new_alloc is used for memory requests
|
|
*
|
|
* (See @link Allocators allocators info @endlink for more.)
|
|
*/
|
|
template<typename _Tp>
|
|
class allocator
|
|
{
|
|
typedef __alloc _Alloc; // The underlying allocator.
|
|
public:
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef _Tp* pointer;
|
|
typedef const _Tp* const_pointer;
|
|
typedef _Tp& reference;
|
|
typedef const _Tp& const_reference;
|
|
typedef _Tp value_type;
|
|
|
|
template<typename _Tp1>
|
|
struct rebind
|
|
{ typedef allocator<_Tp1> other; };
|
|
|
|
allocator() throw() {}
|
|
allocator(const allocator&) throw() {}
|
|
template<typename _Tp1>
|
|
allocator(const allocator<_Tp1>&) throw() {}
|
|
~allocator() throw() {}
|
|
|
|
pointer
|
|
address(reference __x) const { return &__x; }
|
|
|
|
const_pointer
|
|
address(const_reference __x) const { return &__x; }
|
|
|
|
// NB: __n is permitted to be 0. The C++ standard says nothing
|
|
// about what the return value is when __n == 0.
|
|
_Tp*
|
|
allocate(size_type __n, const void* = 0)
|
|
{
|
|
_Tp* __ret = 0;
|
|
if (__n)
|
|
{
|
|
if (__n <= this->max_size())
|
|
__ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
|
|
else
|
|
__throw_bad_alloc();
|
|
}
|
|
return __ret;
|
|
}
|
|
|
|
// __p is not permitted to be a null pointer.
|
|
void
|
|
deallocate(pointer __p, size_type __n)
|
|
{ _Alloc::deallocate(__p, __n * sizeof(_Tp)); }
|
|
|
|
size_type
|
|
max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
|
|
|
|
void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
|
|
void destroy(pointer __p) { __p->~_Tp(); }
|
|
};
|
|
|
|
template<>
|
|
class allocator<void>
|
|
{
|
|
public:
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef void* pointer;
|
|
typedef const void* const_pointer;
|
|
typedef void value_type;
|
|
|
|
template<typename _Tp1>
|
|
struct rebind
|
|
{ typedef allocator<_Tp1> other; };
|
|
};
|
|
|
|
|
|
template<typename _T1, typename _T2>
|
|
inline bool
|
|
operator==(const allocator<_T1>&, const allocator<_T2>&)
|
|
{ return true; }
|
|
|
|
template<typename _T1, typename _T2>
|
|
inline bool
|
|
operator!=(const allocator<_T1>&, const allocator<_T2>&)
|
|
{ return false; }
|
|
|
|
|
|
/**
|
|
* @if maint
|
|
* Allocator adaptor to turn an "SGI" style allocator (e.g.,
|
|
* __alloc, __malloc_alloc_template) into a "standard" conforming
|
|
* allocator. Note that this adaptor does *not* assume that all
|
|
* objects of the underlying alloc class are identical, nor does it
|
|
* assume that all of the underlying alloc's member functions are
|
|
* static member functions. Note, also, that __allocator<_Tp,
|
|
* __alloc> is essentially the same thing as allocator<_Tp>.
|
|
* @endif
|
|
* (See @link Allocators allocators info @endlink for more.)
|
|
*/
|
|
template<typename _Tp, typename _Alloc>
|
|
struct __allocator
|
|
{
|
|
_Alloc __underlying_alloc;
|
|
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef _Tp* pointer;
|
|
typedef const _Tp* const_pointer;
|
|
typedef _Tp& reference;
|
|
typedef const _Tp& const_reference;
|
|
typedef _Tp value_type;
|
|
|
|
template<typename _Tp1>
|
|
struct rebind
|
|
{ typedef __allocator<_Tp1, _Alloc> other; };
|
|
|
|
__allocator() throw() {}
|
|
__allocator(const __allocator& __a) throw()
|
|
: __underlying_alloc(__a.__underlying_alloc) {}
|
|
|
|
template<typename _Tp1>
|
|
__allocator(const __allocator<_Tp1, _Alloc>& __a) throw()
|
|
: __underlying_alloc(__a.__underlying_alloc) {}
|
|
|
|
~__allocator() throw() {}
|
|
|
|
pointer
|
|
address(reference __x) const { return &__x; }
|
|
|
|
const_pointer
|
|
address(const_reference __x) const { return &__x; }
|
|
|
|
// NB: __n is permitted to be 0. The C++ standard says nothing
|
|
// about what the return value is when __n == 0.
|
|
_Tp*
|
|
allocate(size_type __n, const void* = 0)
|
|
{
|
|
_Tp* __ret = 0;
|
|
if (__n)
|
|
__ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
|
|
return __ret;
|
|
}
|
|
|
|
// __p is not permitted to be a null pointer.
|
|
void
|
|
deallocate(pointer __p, size_type __n)
|
|
{ __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
|
|
|
|
size_type
|
|
max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
|
|
|
|
void
|
|
construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
|
|
|
|
void
|
|
destroy(pointer __p) { __p->~_Tp(); }
|
|
};
|
|
|
|
template<typename _Alloc>
|
|
struct __allocator<void, _Alloc>
|
|
{
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef void* pointer;
|
|
typedef const void* const_pointer;
|
|
typedef void value_type;
|
|
|
|
template<typename _Tp1>
|
|
struct rebind
|
|
{ typedef __allocator<_Tp1, _Alloc> other; };
|
|
};
|
|
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator==(const __allocator<_Tp,_Alloc>& __a1,
|
|
const __allocator<_Tp,_Alloc>& __a2)
|
|
{ return __a1.__underlying_alloc == __a2.__underlying_alloc; }
|
|
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator!=(const __allocator<_Tp, _Alloc>& __a1,
|
|
const __allocator<_Tp, _Alloc>& __a2)
|
|
{ return __a1.__underlying_alloc != __a2.__underlying_alloc; }
|
|
|
|
|
|
//@{
|
|
/** Comparison operators for all of the predifined SGI-style allocators.
|
|
* This ensures that __allocator<malloc_alloc> (for example) will work
|
|
* correctly. As required, all allocators compare equal.
|
|
*/
|
|
template<int inst>
|
|
inline bool
|
|
operator==(const __malloc_alloc_template<inst>&,
|
|
const __malloc_alloc_template<inst>&)
|
|
{ return true; }
|
|
|
|
template<int __inst>
|
|
inline bool
|
|
operator!=(const __malloc_alloc_template<__inst>&,
|
|
const __malloc_alloc_template<__inst>&)
|
|
{ return false; }
|
|
|
|
template<typename _Alloc>
|
|
inline bool
|
|
operator==(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&)
|
|
{ return true; }
|
|
|
|
template<typename _Alloc>
|
|
inline bool
|
|
operator!=(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&)
|
|
{ return false; }
|
|
//@}
|
|
|
|
|
|
/**
|
|
* @if maint
|
|
* Another allocator adaptor: _Alloc_traits. This serves two purposes.
|
|
* First, make it possible to write containers that can use either "SGI"
|
|
* style allocators or "standard" allocators. Second, provide a mechanism
|
|
* so that containers can query whether or not the allocator has distinct
|
|
* instances. If not, the container can avoid wasting a word of memory to
|
|
* store an empty object. For examples of use, see stl_vector.h, etc, or
|
|
* any of the other classes derived from this one.
|
|
*
|
|
* This adaptor uses partial specialization. The general case of
|
|
* _Alloc_traits<_Tp, _Alloc> assumes that _Alloc is a
|
|
* standard-conforming allocator, possibly with non-equal instances and
|
|
* non-static members. (It still behaves correctly even if _Alloc has
|
|
* static member and if all instances are equal. Refinements affect
|
|
* performance, not correctness.)
|
|
*
|
|
* There are always two members: allocator_type, which is a standard-
|
|
* conforming allocator type for allocating objects of type _Tp, and
|
|
* _S_instanceless, a static const member of type bool. If
|
|
* _S_instanceless is true, this means that there is no difference
|
|
* between any two instances of type allocator_type. Furthermore, if
|
|
* _S_instanceless is true, then _Alloc_traits has one additional
|
|
* member: _Alloc_type. This type encapsulates allocation and
|
|
* deallocation of objects of type _Tp through a static interface; it
|
|
* has two member functions, whose signatures are
|
|
*
|
|
* - static _Tp* allocate(size_t)
|
|
* - static void deallocate(_Tp*, size_t)
|
|
*
|
|
* The size_t parameters are "standard" style (see top of stl_alloc.h) in
|
|
* that they take counts, not sizes.
|
|
*
|
|
* @endif
|
|
* (See @link Allocators allocators info @endlink for more.)
|
|
*/
|
|
//@{
|
|
// The fully general version.
|
|
template<typename _Tp, typename _Allocator>
|
|
struct _Alloc_traits
|
|
{
|
|
static const bool _S_instanceless = false;
|
|
typedef typename _Allocator::template rebind<_Tp>::other allocator_type;
|
|
};
|
|
|
|
template<typename _Tp, typename _Allocator>
|
|
const bool _Alloc_traits<_Tp, _Allocator>::_S_instanceless;
|
|
|
|
/// The version for the default allocator.
|
|
template<typename _Tp, typename _Tp1>
|
|
struct _Alloc_traits<_Tp, allocator<_Tp1> >
|
|
{
|
|
static const bool _S_instanceless = true;
|
|
typedef __simple_alloc<_Tp, __alloc> _Alloc_type;
|
|
typedef allocator<_Tp> allocator_type;
|
|
};
|
|
//@}
|
|
|
|
//@{
|
|
/// Versions for the predefined "SGI" style allocators.
|
|
template<typename _Tp, int __inst>
|
|
struct _Alloc_traits<_Tp, __malloc_alloc_template<__inst> >
|
|
{
|
|
static const bool _S_instanceless = true;
|
|
typedef __simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
|
|
typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
|
|
};
|
|
|
|
template<typename _Tp, bool __threads, int __inst>
|
|
struct _Alloc_traits<_Tp, __default_alloc_template<__threads, __inst> >
|
|
{
|
|
static const bool _S_instanceless = true;
|
|
typedef __simple_alloc<_Tp, __default_alloc_template<__threads, __inst> >
|
|
_Alloc_type;
|
|
typedef __allocator<_Tp, __default_alloc_template<__threads, __inst> >
|
|
allocator_type;
|
|
};
|
|
|
|
template<typename _Tp, typename _Alloc>
|
|
struct _Alloc_traits<_Tp, __debug_alloc<_Alloc> >
|
|
{
|
|
static const bool _S_instanceless = true;
|
|
typedef __simple_alloc<_Tp, __debug_alloc<_Alloc> > _Alloc_type;
|
|
typedef __allocator<_Tp, __debug_alloc<_Alloc> > allocator_type;
|
|
};
|
|
//@}
|
|
|
|
//@{
|
|
/// Versions for the __allocator adaptor used with the predefined
|
|
/// "SGI" style allocators.
|
|
template<typename _Tp, typename _Tp1, int __inst>
|
|
struct _Alloc_traits<_Tp,
|
|
__allocator<_Tp1, __malloc_alloc_template<__inst> > >
|
|
{
|
|
static const bool _S_instanceless = true;
|
|
typedef __simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
|
|
typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
|
|
};
|
|
|
|
template<typename _Tp, typename _Tp1, bool __thr, int __inst>
|
|
struct _Alloc_traits<_Tp, __allocator<_Tp1, __default_alloc_template<__thr, __inst> > >
|
|
{
|
|
static const bool _S_instanceless = true;
|
|
typedef __simple_alloc<_Tp, __default_alloc_template<__thr,__inst> >
|
|
_Alloc_type;
|
|
typedef __allocator<_Tp, __default_alloc_template<__thr,__inst> >
|
|
allocator_type;
|
|
};
|
|
|
|
template<typename _Tp, typename _Tp1, typename _Alloc>
|
|
struct _Alloc_traits<_Tp, __allocator<_Tp1, __debug_alloc<_Alloc> > >
|
|
{
|
|
static const bool _S_instanceless = true;
|
|
typedef __simple_alloc<_Tp, __debug_alloc<_Alloc> > _Alloc_type;
|
|
typedef __allocator<_Tp, __debug_alloc<_Alloc> > allocator_type;
|
|
};
|
|
//@}
|
|
|
|
// Inhibit implicit instantiations for required instantiations,
|
|
// which are defined via explicit instantiations elsewhere.
|
|
// NB: This syntax is a GNU extension.
|
|
extern template class allocator<char>;
|
|
extern template class allocator<wchar_t>;
|
|
extern template class __default_alloc_template<true,0>;
|
|
} // namespace std
|
|
|
|
#endif
|