c19547f379
The remaining, unmerged portions of r175404 Retire PMAP_DIAGNOSTIC. Any useful diagnostics that were conditionally compiled under PMAP_DIAGNOSTIC are now KASSERT()s. (Note: The kernel option DIAGNOSTIC still disables inlining of certain pmap functions.) Eliminate dead code from pmap_enter(). This code implemented an assertion. On i386, an equivalent check is already implemented. However, on amd64, a small change is required to implement an equivalent check. Eliminate \n from a nearby panic string. Use KASSERT() to reimplement pmap_copy()'s two assertions. Merge portions of r177659 To date, we have assumed that the TLB will only set the PG_M bit in a PTE if that PTE has the PG_RW bit set. However, this assumption does not hold on recent processors from Intel. For example, consider a PTE that has the PG_RW bit set but the PG_M bit clear. Suppose this PTE is cached in the TLB and later the PG_RW bit is cleared in the PTE, but the corresponding TLB entry is not (yet) invalidated. Historically, upon a write access using this (stale) TLB entry, the TLB would observe that the PG_RW bit had been cleared and initiate a page fault, aborting the setting of the PG_M bit in the PTE. Now, however, P4- and Core2-family processors will set the PG_M bit before observing that the PG_RW bit is clear and initiating a page fault. In other words, the write does not occur but the PG_M bit is still set. The real impact of this difference is not that great. Specifically, we should no longer assert that any PTE with the PG_M bit set must also have the PG_RW bit set, and we should ignore the state of the PG_M bit unless the PG_RW bit is set. r208609 Defer freeing any page table pages in pmap_remove_all() until after the page queues lock is released. This may reduce the amount of time that the page queues lock is held by pmap_remove_all(). r208645 When I pushed down the page queues lock into pmap_is_modified(), I created an ordering dependence: A pmap operation that clears PG_WRITEABLE and calls vm_page_dirty() must perform the call first. Otherwise, pmap_is_modified() could return FALSE without acquiring the page queues lock because the page is not (currently) writeable, and the caller to pmap_is_modified() might believe that the page's dirty field is clear because it has not seen the effect of the vm_page_dirty() call. When I pushed down the page queues lock into pmap_is_modified(), I overlooked one place where this ordering dependence is violated: pmap_enter(). In a rare situation pmap_enter() can be called to replace a dirty mapping to one page with a mapping to another page. (I say rare because replacements generally occur as a result of a copy-on-write fault, and so the old page is not dirty.) This change delays clearing PG_WRITEABLE until after vm_page_dirty() has been called. Fixing the ordering dependency also makes it easy to introduce a small optimization: When pmap_enter() used to replace a mapping to one page with a mapping to another page, it freed the pv entry for the first mapping and later called the pv entry allocator for the new mapping. Now, pmap_enter() attempts to recycle the old pv entry, saving two calls to the pv entry allocator. There is no point in setting PG_WRITEABLE on unmanaged pages, so don't. Update a comment to reflect this. Tidy up the variable declarations at the start of pmap_enter(). |
||
---|---|---|
.. | ||
amd64 | ||
arm | ||
boot | ||
bsm | ||
cam | ||
cddl | ||
compat | ||
conf | ||
contrib | ||
crypto | ||
ddb | ||
dev | ||
fs | ||
gdb | ||
geom | ||
gnu | ||
i386 | ||
ia64 | ||
isa | ||
kern | ||
kgssapi | ||
libkern | ||
mips | ||
modules | ||
net | ||
net80211 | ||
netatalk | ||
netgraph | ||
netinet | ||
netinet6 | ||
netipsec | ||
netipx | ||
netnatm | ||
netncp | ||
netsmb | ||
nfs | ||
nfsclient | ||
nfsserver | ||
nlm | ||
opencrypto | ||
pc98 | ||
pci | ||
powerpc | ||
rpc | ||
security | ||
sparc64 | ||
sun4v | ||
sys | ||
teken | ||
tools | ||
ufs | ||
vm | ||
x86 | ||
xdr | ||
xen | ||
Makefile |