freebsd-skq/sys/dev/sym/sym_hipd.c
David E. O'Brien c19e61b2f2 New `sym' device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
PCI SCSI controllers.  This driver also supports the following Symbios/LSI
PCI SCSI chips: 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895.

However, it does NOT support earlier chips as the following ones: 53C810,
53C815, 53C825.

See README.sym for more details.

Submitted-by:	Gerard Roudier <groudier@club-internet.fr>
1999-11-27 23:32:35 +00:00

10922 lines
268 KiB
C

/*
* Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
* PCI-SCSI controllers.
*
* Copyright (C) 1999 Gerard Roudier <groudier@club-internet.fr>
*
* This driver also supports the following Symbios/LSI PCI-SCSI chips:
* 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895.
*
* but does not support earlier chips as the following ones:
* 53C810, 53C815, 53C825.
*
* This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
* Copyright (C) 1998-1999 Gerard Roudier
*
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
* a port of the FreeBSD ncr driver to Linux-1.2.13.
*
* The original ncr driver has been written for 386bsd and FreeBSD by
* Wolfgang Stanglmeier <wolf@cologne.de>
* Stefan Esser <se@mi.Uni-Koeln.de>
* Copyright (C) 1994 Wolfgang Stanglmeier
*
* The initialisation code, and part of the code that addresses
* FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
* written by Justin T. Gibbs.
*
* Other major contributions:
*
* NVRAM detection and reading.
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
*
*-----------------------------------------------------------------------------
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define SYM_DRIVER_NAME "sym-0.9.0-19991024"
#include <pci.h>
#include <stddef.h> /* For offsetof */
#include <sys/param.h>
/*
* Only use the BUS stuff for PCI under FreeBSD 4 and later versions.
* Note that the old BUS stuff also works for FreeBSD 4 and spares
* about 1.5KB for the driver objet file.
*/
#if __FreeBSD_version >= 400000
#define FreeBSD_4_Bus
#endif
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#ifdef FreeBSD_4_Bus
#include <sys/module.h>
#include <sys/bus.h>
#endif
#include <sys/buf.h>
#include <sys/proc.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#ifdef FreeBSD_4_Bus
#include <machine/resource.h>
#include <sys/rman.h>
#endif
#include <machine/clock.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#if 0
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <vm/vm_extern.h>
#endif
/* Short and quite clear integer types */
typedef int8_t s8;
typedef int16_t s16;
typedef int32_t s32;
typedef u_int8_t u8;
typedef u_int16_t u16;
typedef u_int32_t u32;
/* Driver configuration and definitions */
#include <pci/sym_conf.h>
#include <pci/sym_defs.h>
/*
* On x86 architecture, write buffers management does not
* reorder writes to memory. So, preventing compiler from
* optimizing the code is enough to guarantee some ordering
* when the CPU is writing data accessed by the PCI chip.
* On Alpha architecture, explicit barriers are to be used.
* By the way, the *BSD semantic associates the barrier
* with some window on the BUS and the corresponding verbs
* are for now unused. What a strangeness. The driver must
* ensure that accesses from the CPU to the start and done
* queues are not reordered by either the compiler or the
* CPU and uses 'volatile' for this purpose.
* -> Only x86 architecture is supported, for now.
*/
#define MEMORY_BARRIER() do { ; } while(0)
/*
* A la VMS/CAM-3 queue management.
*/
typedef struct sym_quehead {
struct sym_quehead *flink; /* Forward pointer */
struct sym_quehead *blink; /* Backward pointer */
} SYM_QUEHEAD;
#define sym_que_init(ptr) do { \
(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
} while (0)
static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
{
return (head->flink == head) ? 0 : head->flink;
}
static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
{
return (head->blink == head) ? 0 : head->blink;
}
static __inline void __sym_que_add(struct sym_quehead * new,
struct sym_quehead * blink,
struct sym_quehead * flink)
{
flink->blink = new;
new->flink = flink;
new->blink = blink;
blink->flink = new;
}
static __inline void __sym_que_del(struct sym_quehead * blink,
struct sym_quehead * flink)
{
flink->blink = blink;
blink->flink = flink;
}
static __inline int sym_que_empty(struct sym_quehead *head)
{
return head->flink == head;
}
static __inline void sym_que_splice(struct sym_quehead *list,
struct sym_quehead *head)
{
struct sym_quehead *first = list->flink;
if (first != list) {
struct sym_quehead *last = list->blink;
struct sym_quehead *at = head->flink;
first->blink = head;
head->flink = first;
last->flink = at;
at->blink = last;
}
}
#define sym_que_entry(ptr, type, member) \
((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))
#define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink)
#define sym_remque(el) __sym_que_del((el)->blink, (el)->flink)
#define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink)
static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
{
struct sym_quehead *elem = head->flink;
if (elem != head)
__sym_que_del(head, elem->flink);
else
elem = 0;
return elem;
}
#define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head)
static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
{
struct sym_quehead *elem = head->blink;
if (elem != head)
__sym_que_del(elem->blink, head);
else
elem = 0;
return elem;
}
/*
* This one may be usefull.
*/
#define FOR_EACH_QUEUED_ELEMENT(head, qp) \
for (qp = (head)->flink; qp != (head); qp = qp->flink)
/*
* FreeBSD does not offer our kind of queue in the CAM CCB.
* So, we have to cast.
*/
#define sym_qptr(p) ((struct sym_quehead *) (p))
/*
* Simple bitmap operations.
*/
#define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f)))
#define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
#define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f)))
/*
* Number of tasks per device we want to handle.
*/
#if SYMCONF_MAX_TAG_ORDER > 8
#error "more than 256 tags per logical unit not allowed."
#endif
#define SYMCONF_MAX_TASK (1<<SYMCONF_MAX_TAG_ORDER)
/*
* Donnot use more tasks that we can handle.
*/
#ifndef SYMCONF_MAX_TAG
#define SYMCONF_MAX_TAG SYMCONF_MAX_TASK
#endif
#if SYMCONF_MAX_TAG > SYMCONF_MAX_TASK
#undef SYMCONF_MAX_TAG
#define SYMCONF_MAX_TAG SYMCONF_MAX_TASK
#endif
/*
* This one means 'NO TAG for this job'
*/
#define NO_TAG (256)
/*
* Number of SCSI targets.
*/
#if SYMCONF_MAX_TARGET > 16
#error "more than 16 targets not allowed."
#endif
/*
* Number of logical units per target.
*/
#if SYMCONF_MAX_LUN > 64
#error "more than 64 logical units per target not allowed."
#endif
/*
* Asynchronous pre-scaler (ns). Shall be 40 for
* the SCSI timings to be compliant.
*/
#define SYMCONF_MIN_ASYNC (40)
/*
* Number of entries in the START and DONE queues.
*
* We limit to 1 PAGE in order to succeed allocation of
* these queues. Each entry is 8 bytes long (2 DWORDS).
*/
#ifdef SYMCONF_MAX_START
#define SYMCONF_MAX_QUEUE (SYMCONF_MAX_START+2)
#else
#define SYMCONF_MAX_QUEUE (7*SYMCONF_MAX_TASK+2)
#define SYMCONF_MAX_START (SYMCONF_MAX_QUEUE-2)
#endif
#if SYMCONF_MAX_QUEUE > PAGE_SIZE/8
#undef SYMCONF_MAX_QUEUE
#define SYMCONF_MAX_QUEUE PAGE_SIZE/8
#undef SYMCONF_MAX_START
#define SYMCONF_MAX_START (SYMCONF_MAX_QUEUE-2)
#endif
/*
* For this one, we want a short name :-)
*/
#define MAX_QUEUE SYMCONF_MAX_QUEUE
/*
* This one should have been already defined.
*/
#ifndef offsetof
#define offsetof(t, m) ((size_t) (&((t *)0)->m))
#endif
/*
* Active debugging tags and verbosity.
*/
#define DEBUG_ALLOC (0x0001)
#define DEBUG_PHASE (0x0002)
#define DEBUG_POLL (0x0004)
#define DEBUG_QUEUE (0x0008)
#define DEBUG_RESULT (0x0010)
#define DEBUG_SCATTER (0x0020)
#define DEBUG_SCRIPT (0x0040)
#define DEBUG_TINY (0x0080)
#define DEBUG_TIMING (0x0100)
#define DEBUG_NEGO (0x0200)
#define DEBUG_TAGS (0x0400)
#define DEBUG_POINTER (0x0800)
#if 0
static int sym_debug = 0;
#define DEBUG_FLAGS sym_debug
#else
/* #define DEBUG_FLAGS (0x0631) */
#define DEBUG_FLAGS (0x0)
#endif
#define sym_verbose (np->verbose)
/*
* Virtual to bus address translation.
* Only x86 supported.
*/
#define vtobus(p) vtophys(p)
/*
* Copy from main memory to PCI memory space.
*/
#define memcpy_to_pci(d, s, n) bcopy((s), (void *)(d), (n))
/*
* Insert a delay in micro-seconds and milli-seconds.
*/
static void UDELAY(long us) { DELAY(us); }
static void MDELAY(long ms) { while (ms--) UDELAY(1000); }
/*
* Memory allocation/allocator.
* We assume allocations are naturally aligned and if it is
* not guaranteed, we may use our internal allocator.
*/
#ifdef SYMCONF_USE_INTERNAL_ALLOCATOR
/*
* Simple power of two buddy-like allocator.
*
* This simple code is not intended to be fast, but to
* provide power of 2 aligned memory allocations.
* Since the SCRIPTS processor only supplies 8 bit arithmetic,
* this allocator allows simple and fast address calculations
* from the SCRIPTS code. In addition, cache line alignment
* is guaranteed for power of 2 cache line size.
*
* This allocator has been developped for the Linux sym53c8xx
* driver, since this O/S does not provide naturally aligned
* allocations.
* It has the vertue to allow the driver to use private pages
* of memory that will be useful if we ever need to deal with
* IO MMU for PCI.
*/
#define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
#define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum (for now (ever?) */
typedef unsigned long addr; /* Enough bits to bit-hack addresses */
#if 0
#define MEMO_FREE_UNUSED /* Free unused pages immediately */
#endif
struct m_link {
struct m_link *next; /* Simple links are enough */
};
#ifndef M_DMA_32BIT
#define M_DMA_32BIT 0 /* Will this flag ever exist */
#endif
#define get_pages() \
malloc(PAGE_SIZE<<MEMO_PAGE_ORDER, M_DEVBUF, M_NOWAIT)
#define free_pages(p) \
free((p), M_DEVBUF)
/*
* Lists of available memory chunks.
* Starts with 16 bytes chunks until 1 PAGE chunks.
*/
static struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
/*
* Allocate a memory area aligned on the lowest power of 2
* greater than the requested size.
*/
static void *__sym_malloc(int size)
{
int i = 0;
int s = (1 << MEMO_SHIFT);
int j;
addr a ;
if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
return 0;
while (size > s) {
s <<= 1;
++i;
}
j = i;
while (!h[j].next) {
if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
h[j].next = (struct m_link *)get_pages();
if (h[j].next)
h[j].next->next = 0;
break;
}
++j;
s <<= 1;
}
a = (addr) h[j].next;
if (a) {
h[j].next = h[j].next->next;
while (j > i) {
j -= 1;
s >>= 1;
h[j].next = (struct m_link *) (a+s);
h[j].next->next = 0;
}
}
#ifdef DEBUG
printf("__sym_malloc(%d) = %p\n", size, (void *) a);
#endif
return (void *) a;
}
/*
* Free a memory area allocated using sym_malloc().
* Coalesce buddies.
* Free pages that become unused if MEMO_FREE_UNUSED is
* defined.
*/
static void __sym_mfree(void *ptr, int size)
{
int i = 0;
int s = (1 << MEMO_SHIFT);
struct m_link *q;
addr a, b;
#ifdef DEBUG
printf("sym_mfree(%p, %d)\n", ptr, size);
#endif
if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
return;
while (size > s) {
s <<= 1;
++i;
}
a = (addr) ptr;
while (1) {
#ifdef MEMO_FREE_UNUSED
if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
free_pages(a);
break;
}
#endif
b = a ^ s;
q = &h[i];
while (q->next && q->next != (struct m_link *) b) {
q = q->next;
}
if (!q->next) {
((struct m_link *) a)->next = h[i].next;
h[i].next = (struct m_link *) a;
break;
}
q->next = q->next->next;
a = a & b;
s <<= 1;
++i;
}
}
#else /* !defined SYSCONF_USE_INTERNAL_ALLOCATOR */
/*
* Using directly the system memory allocator.
*/
#define __sym_mfree(ptr, size) free((ptr), M_DEVBUF)
#define __sym_malloc(size) malloc((size), M_DEVBUF, M_NOWAIT)
#endif /* SYMCONF_USE_INTERNAL_ALLOCATOR */
#define MEMO_WARN 1
static void *sym_calloc2(int size, char *name, int uflags)
{
void *p;
p = __sym_malloc(size);
if (DEBUG_FLAGS & DEBUG_ALLOC)
printf ("new %-10s[%4d] @%p.\n", name, size, p);
if (p)
bzero(p, size);
else if (uflags & MEMO_WARN)
printf ("sym_calloc: failed to allocate %s[%d]\n", name, size);
return p;
}
#define sym_calloc(s, n) sym_calloc2(s, n, MEMO_WARN)
static void sym_mfree(void *ptr, int size, char *name)
{
if (DEBUG_FLAGS & DEBUG_ALLOC)
printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
__sym_mfree(ptr, size);
}
/*
* Print a buffer in hexadecimal format.
*/
static void sym_printb_hex (u_char *p, int n)
{
while (n-- > 0)
printf (" %x", *p++);
}
/*
* Same with a label at beginning and .\n at end.
*/
static void sym_printl_hex (char *label, u_char *p, int n)
{
printf ("%s", label);
sym_printb_hex (p, n);
printf (".\n");
}
/*
* Some poor sync table that refers to Tekram NVRAM layout.
*/
#ifdef SYMCONF_NVRAM_SUPPORT
static u_char Tekram_sync[16] =
{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
#endif
/*
* Union of supported NVRAM formats.
*/
struct sym_nvram {
int type;
#define SYM_SYMBIOS_NVRAM (1)
#define SYM_TEKRAM_NVRAM (2)
#ifdef SYMCONF_NVRAM_SUPPORT
union {
Symbios_nvram Symbios;
Tekram_nvram Tekram;
} data;
#endif
};
/*
* This one is hopefully useless, but actually useful. :-)
*/
#ifndef assert
#define assert(expression) { \
if (!(expression)) { \
(void)panic( \
"assertion \"%s\" failed: file \"%s\", line %d\n", \
#expression, \
__FILE__, __LINE__); \
} \
}
#endif
/*
* Some provision for a possible big endian support.
* By the way some Symbios chips also may support some kind
* of big endian byte ordering.
* For now, this stuff does not deserve any comments. :)
*/
#define sym_offb(o) (o)
#define sym_offw(o) (o)
#define cpu_to_scr(dw) (dw)
#define scr_to_cpu(dw) (dw)
/*
* Access to the controller chip.
*
* If SYMCONF_IOMAPPED is defined, the driver will use
* normal IOs instead of the MEMORY MAPPED IO method
* recommended by PCI specifications.
* For now, we only support flat memory model that should
* limited support to x86 architecture.
*/
/*
* Define some understable verbs so we will not suffer of
* having to deal with the stupid PC tokens for IO.
*/
#define io_read8(p) scr_to_cpu(inb((p)))
#define io_read16(p) scr_to_cpu(inw((p)))
#define io_read32(p) scr_to_cpu(inl((p)))
#define io_write8(p, v) outb((p), cpu_to_scr(v))
#define io_write16(p, v) outw((p), cpu_to_scr(v))
#define io_write32(p, v) outl((p), cpu_to_scr(v))
#define mmio_read8(a) scr_to_cpu((*(volatile unsigned char *) (a)))
#define mmio_read16(a) scr_to_cpu((*(volatile unsigned short *) (a)))
#define mmio_read32(a) scr_to_cpu((*(volatile unsigned int *) (a)))
#define mmio_write8(a, b) (*(volatile unsigned char *) (a)) = cpu_to_scr(b)
#define mmio_write16(a, b) (*(volatile unsigned short *) (a)) = cpu_to_scr(b)
#define mmio_write32(a, b) (*(volatile unsigned int *) (a)) = cpu_to_scr(b)
/*
* Normal IO
*/
#if defined(SYMCONF_IOMAPPED)
#define INB_OFF(o) io_read8(np->io_port + sym_offb(o))
#define OUTB_OFF(o, v) io_write8(np->io_port + sym_offb(o), (v))
#define INW_OFF(o) io_read16(np->io_port + sym_offw(o))
#define OUTW_OFF(o, v) io_write16(np->io_port + sym_offw(o), (v))
#define INL_OFF(o) io_read32(np->io_port + (o))
#define OUTL_OFF(o, v) io_write32(np->base_io + (o), (v))
#else /* Memory mapped IO */
#define INB_OFF(o) mmio_read8(np->mmio_va + sym_offb(o))
#define OUTB_OFF(o, v) mmio_write8(np->mmio_va + sym_offb(o), (v))
#define INW_OFF(o) mmio_read16(np->mmio_va + sym_offw(o))
#define OUTW_OFF(o, v) mmio_write16(np->mmio_va + sym_offw(o), (v))
#define INL_OFF(o) mmio_read32(np->mmio_va + (o))
#define OUTL_OFF(o, v) mmio_write32(np->mmio_va + (o), (v))
#endif
/*
* Common to both normal IO and MMIO.
*/
#define INB(r) INB_OFF(offsetof(struct sym_reg,r))
#define INW(r) INW_OFF(offsetof(struct sym_reg,r))
#define INL(r) INL_OFF(offsetof(struct sym_reg,r))
#define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v))
#define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v))
#define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v))
#define OUTONB(r, m) OUTB(r, INB(r) | (m))
#define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m))
#define OUTONW(r, m) OUTW(r, INW(r) | (m))
#define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m))
#define OUTONL(r, m) OUTL(r, INL(r) | (m))
#define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m))
/*
* Command control block states.
*/
#define HS_IDLE (0)
#define HS_BUSY (1)
#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
#define HS_DISCONNECT (3) /* Disconnected by target */
#define HS_DONEMASK (0x80)
#define HS_COMPLETE (4|HS_DONEMASK)
#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
/*
* Software Interrupt Codes
*/
#define SIR_BAD_SCSI_STATUS (1)
#define SIR_SEL_ATN_NO_MSG_OUT (2)
#define SIR_MSG_RECEIVED (3)
#define SIR_MSG_WEIRD (4)
#define SIR_NEGO_FAILED (5)
#define SIR_NEGO_PROTO (6)
#define SIR_SCRIPT_STOPPED (7)
#define SIR_REJECT_TO_SEND (8)
#define SIR_SWIDE_OVERRUN (9)
#define SIR_SODL_UNDERRUN (10)
#define SIR_RESEL_NO_MSG_IN (11)
#define SIR_RESEL_NO_IDENTIFY (12)
#define SIR_RESEL_BAD_LUN (13)
#define SIR_TARGET_SELECTED (14)
#define SIR_RESEL_BAD_I_T_L (15)
#define SIR_RESEL_BAD_I_T_L_Q (16)
#define SIR_ABORT_SENT (17)
#define SIR_RESEL_ABORTED (18)
#define SIR_MSG_OUT_DONE (19)
#define SIR_COMPLETE_ERROR (20)
#define SIR_MAX (20)
/*
* Extended error bit codes.
* xerr_status field of struct sym_ccb.
*/
#define XE_EXTRA_DATA (1) /* unexpected data phase */
#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
/*
* Negotiation status.
* nego_status field of struct sym_ccb.
*/
#define NS_SYNC (1)
#define NS_WIDE (2)
#define NS_PPR (3)
/*
* A CCB hashed table is used to retrieve CCB address
* from DSA value.
*/
#define CCB_HASH_SHIFT 8
#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
#define CCB_HASH_MASK (CCB_HASH_SIZE-1)
#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
/*
* Device flags.
*/
#define SYM_DISC_ENABLED (1)
#define SYM_TAGS_ENABLED (1<<1)
#define SYM_SCAN_BOOT_DISABLED (1<<2)
#define SYM_SCAN_LUNS_DISABLED (1<<3)
/*
* Device quirks.
* Some devices, for example the CHEETAH 2 LVD, disconnects without
* saving the DATA POINTER then reconnect and terminates the IO.
* On reselection, the automatic RESTORE DATA POINTER makes the
* CURRENT DATA POINTER not point at the end of the IO.
* This behaviour just breaks our calculation of the residual.
* For now, we just force an AUTO SAVE on disconnection and will
* fix that in a further driver version.
*/
#define SYM_QUIRK_AUTOSAVE 1
/*
* Misc.
*/
#define SYM_SNOOP_TIMEOUT (10000000)
#define SYM_PCI_IO PCIR_MAPS
#define SYM_PCI_MMIO (PCIR_MAPS + 4)
#define SYM_PCI_RAM (PCIR_MAPS + 8)
#define SYM_PCI_RAM64 (PCIR_MAPS + 12)
/*
* Back-pointer from the CAM CCB to our data structures.
*/
#define sym_hcb_ptr spriv_ptr0
/* #define sym_ccb_ptr spriv_ptr1 */
/*
* We mostly have to deal with pointers.
* Thus these typedef's.
*/
typedef struct sym_tcb *tcb_p;
typedef struct sym_lcb *lcb_p;
typedef struct sym_ccb *ccb_p;
typedef struct sym_hcb *hcb_p;
typedef struct sym_scr *script_p;
typedef struct sym_scrh *scripth_p;
/*
* Gather negotiable parameters value
*/
struct sym_trans {
u8 period;
u8 offset;
u8 width;
u8 options; /* PPR options */
};
struct sym_tinfo {
struct sym_trans current;
struct sym_trans goal;
struct sym_trans user;
};
#define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT
#define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT
/*
* Target Control Block
*/
struct sym_tcb {
/*
* LUN table used by the SCRIPTS processor.
* An array of bus addresses is used on reselection.
* LUN #0 is a special case, since multi-lun devices are rare,
* and we we want to speed-up the general case and not waste
* resources.
*/
u32 *luntbl; /* LCBs bus address table */
u32 luntbl_sa; /* bus address of this table */
u32 lun0_sa; /* bus address of LCB #0 */
/*
* LUN table used by the C code.
*/
lcb_p lun0p; /* LCB of LUN #0 (usual case) */
#if SYMCONF_MAX_LUN > 1
lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */
#endif
/*
* Bitmap that tells about LUNs that succeeded at least
* 1 IO and therefore assumed to be a real device.
* Avoid useless allocation of the LCB structure.
*/
u32 lun_map[(SYMCONF_MAX_LUN+31)/32];
/*
* Bitmap that tells about LUNs that haven't yet an LCB
* allocated (not discovered or LCB allocation failed).
*/
u32 busy0_map[(SYMCONF_MAX_LUN+31)/32];
/*
* Actual SYNC/WIDE IO registers value for this target.
* 'sval', 'wval' and 'uval' are read from SCRIPTS and
* so have alignment constraints.
*/
/*0*/ u_char uval; /* -> SCNTL4 register */
/*1*/ u_char sval; /* -> SXFER io register */
/*2*/ u_char filler1;
/*3*/ u_char wval; /* -> SCNTL3 io register */
/*
* Transfer capabilities (SIP)
*/
struct sym_tinfo tinfo;
/*
* Keep track of the CCB used for the negotiation in order
* to ensure that only 1 negotiation is queued at a time.
*/
ccb_p nego_cp; /* CCB used for the nego */
/*
* Set when we want to reset the device.
*/
u_char to_reset;
/*
* Other user settable limits and options.
* These limits are read from the NVRAM if present.
*/
u_char usrflags;
u_short usrtags;
};
/*
* Logical Unit Control Block
*/
struct sym_lcb {
/*
* SCRIPTS address jumped by SCRIPTS on reselection.
* For not probed logical units, this address points to
* SCRIPTS that deal with bad LU handling (must be at
* offset zero for that reason).
*/
/*0*/ u32 resel_sa;
/*
* Task (bus address of a CCB) read from SCRIPTS that points
* to the unique ITL nexus allowed to be disconnected.
*/
u32 itl_task_sa;
/*
* Task table read from SCRIPTS that contains pointers to
* ITLQ nexuses (bus addresses read from SCRIPTS).
*/
u32 *itlq_tbl; /* Kernel virtual address */
u32 itlq_tbl_sa; /* Bus address used by SCRIPTS */
/*
* Busy CCBs management.
*/
u_short busy_itlq; /* Number of busy tagged CCBs */
u_short busy_itl; /* Number of busy untagged CCBs */
/*
* Circular tag allocation buffer.
*/
u_short ia_tag; /* Tag allocation index */
u_short if_tag; /* Tag release index */
u_char *cb_tags; /* Circular tags buffer */
/*
* Set when we want to clear all tasks.
*/
u_char to_clear;
/*
* Capabilities.
*/
u_char user_flags;
u_char current_flags;
};
/*
* Action from SCRIPTS on a task.
* Is part of the CCB, but is also used separately to plug
* error handling action to perform from SCRIPTS.
*/
struct sym_actscr {
u32 start; /* Jumped by SCRIPTS after selection */
u32 restart; /* Jumped by SCRIPTS on relection */
};
/*
* Phase mismatch context.
*
* It is part of the CCB and is used as parameters for the
* DATA pointer. We need two contexts to handle correctly the
* SAVED DATA POINTER.
*/
struct sym_pmc {
struct sym_tblmove sg; /* Updated interrupted SG block */
u32 ret; /* SCRIPT return address */
};
/*
* LUN control block lookup.
* We use a direct pointer for LUN #0, and a table of
* pointers which is only allocated for devices that support
* LUN(s) > 0.
*/
#if SYMCONF_MAX_LUN <= 1
#define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
#else
#define sym_lp(np, tp, lun) \
(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
#endif
/*
* Status are used by the host and the script processor.
*
* The last four bytes (status[4]) are copied to the
* scratchb register (declared as scr0..scr3) just after the
* select/reselect, and copied back just after disconnecting.
* Inside the script the XX_REG are used.
*
* The first four bytes (scr_st[4]) are used inside the
* script by "LOAD/STORE" commands.
* Because source and destination must have the same alignment
* in a DWORD, the fields HAVE to be at the choosen offsets.
* xerr_st 0 (0x34) scratcha
* nego_st 2
*/
/*
* Last four bytes (script)
*/
#define QU_REG scr0
#define HS_REG scr1
#define HS_PRT nc_scr1
#define SS_REG scr2
#define SS_PRT nc_scr2
#define HF_REG scr3
#define HF_PRT nc_scr3
/*
* Last four bytes (host)
*/
#define actualquirks phys.status[0]
#define host_status phys.status[1]
#define ssss_status phys.status[2]
#define host_flags phys.status[3]
/*
* Host flags
*/
#define HF_IN_PM0 1u
#define HF_IN_PM1 (1u<<1)
#define HF_ACT_PM (1u<<2)
#define HF_DP_SAVED (1u<<3)
#define HF_SENSE (1u<<4)
#define HF_EXT_ERR (1u<<5)
#ifdef SYMCONF_IARB_SUPPORT
#define HF_HINT_IARB (1u<<7)
#endif
/*
* First four bytes (script)
*/
#define xerr_st scr_st[0]
#define nego_st scr_st[2]
/*
* First four bytes (host)
*/
#define xerr_status phys.xerr_st
#define nego_status phys.nego_st
/*
* Data Structure Block
*
* During execution of a ccb by the script processor, the
* DSA (data structure address) register points to this
* substructure of the ccb.
*/
struct dsb {
/*
* Start and restart SCRIPTS addresses (must be at 0).
*/
/*0*/ struct sym_actscr go;
/*
* SCRIPTS jump address that deal with data pointers.
* 'savep' points to the position in the script responsible
* for the actual transfer of data.
* It's written on reception of a SAVE_DATA_POINTER message.
*/
u32 savep; /* Jump address to saved data pointer */
u32 lastp; /* SCRIPTS address at end of data */
u32 goalp; /* Not used for now */
/*
* Status fields.
*/
u8 scr_st[4]; /* script status */
u8 status[4]; /* host status */
/*
* Table data for Script
*/
struct sym_tblsel select;
struct sym_tblmove smsg;
struct sym_tblmove smsg_ext;
struct sym_tblmove cmd;
struct sym_tblmove sense;
struct sym_tblmove data [SYMCONF_MAX_SG];
/*
* Phase mismatch contexts.
* We need two to handle correctly the SAVED DATA POINTER.
*/
struct sym_pmc pm0;
struct sym_pmc pm1;
/*
* Extra bytes count transferred in case of data overrun.
*/
u32 extra_bytes;
};
/*
* Our Command Control Block
*/
struct sym_ccb {
/*
* This is the data structure which is pointed by the DSA
* register when it is executed by the script processor.
* It must be the first entry.
*/
struct dsb phys;
/*
* Pointer to CAM ccb and related stuff.
*/
union ccb *cam_ccb; /* CAM scsiio ccb */
int data_len; /* Total data length */
int segments; /* Number of SG segments */
/*
* Message areas.
* We prepare a message to be sent after selection.
* We may use a second one if the command is rescheduled
* due to CHECK_CONDITION or COMMAND TERMINATED.
* Contents are IDENTIFY and SIMPLE_TAG.
* While negotiating sync or wide transfer,
* a SDTR or WDTR message is appended.
*/
u_char scsi_smsg [12];
u_char scsi_smsg2[12];
/*
* Auto request sense related fields.
*/
u_char sensecmd[6]; /* Request Sense command */
u_char sv_scsi_status; /* Saved SCSI status */
u_char sv_xerr_status; /* Saved extended status */
int sv_resid; /* Saved residual */
/*
* Other fields.
*/
u_long ccb_ba; /* BUS address of this CCB */
u_short tag; /* Tag for this transfer */
/* NO_TAG means no tag */
u_char target;
u_char lun;
ccb_p link_ccb; /* Host adapter CCB chain */
ccb_p link_ccbh; /* Host adapter CCB hash chain */
SYM_QUEHEAD
link_ccbq; /* Link to free/busy CCB queue */
u32 startp; /* Initial data pointer */
int ext_sg; /* Extreme data pointer, used */
int ext_ofs; /* to calculate the residual. */
u_char to_abort; /* Want this IO to be aborted */
};
#define CCB_PHYS(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl))
/*
* Host Control Block
*/
struct sym_hcb {
/*
* Idle task and invalid task actions and
* their bus addresses.
*/
struct sym_actscr idletask, notask, bad_itl, bad_itlq;
vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
/*
* Dummy lun table to protect us against target
* returning bad lun number on reselection.
*/
u32 *badluntbl; /* Table physical address */
u32 badlun_sa; /* SCRIPT handler BUS address */
/*
* Bit 32-63 of the on-chip RAM bus address in LE format.
* The START_RAM64 script loads the MMRS and MMWS from this
* field.
*/
u32 scr_ram_seg;
/*
* Chip and controller indentification.
*/
#ifdef FreeBSD_4_Bus
device_t device;
#else
pcici_t pci_tag;
#endif
int unit;
char inst_name[8];
/*
* Initial value of some IO register bits.
* These values are assumed to have been set by BIOS, and may
* be used to probe adapter implementation differences.
*/
u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4;
/*
* Actual initial value of IO register bits used by the
* driver. They are loaded at initialisation according to
* features that are to be enabled/disabled.
*/
u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
/*
* Target data used by the CPU.
*/
struct sym_tcb target[SYMCONF_MAX_TARGET];
/*
* Target control block bus address array used by the SCRIPT
* on reselection.
*/
u32 *targtbl;
/*
* CAM SIM information for this instance.
*/
struct cam_sim *sim;
struct cam_path *path;
/*
* Allocated hardware resources.
*/
#ifdef FreeBSD_4_Bus
struct resource *irq_res;
struct resource *io_res;
struct resource *mmio_res;
struct resource *ram_res;
int ram_id;
void *intr;
#endif
/*
* Bus stuff.
*
* My understanding of PCI is that all agents must share the
* same addressing range and model.
* But some hardware architecture guys provide complex and
* brain-deaded stuff that makes shit.
* This driver only support PCI compliant implementations and
* deals with part of the BUS stuff complexity only to fit O/S
* requirements.
*/
#ifdef FreeBSD_4_Bus
bus_space_handle_t io_bsh;
bus_space_tag_t io_tag;
bus_space_handle_t mmio_bsh;
bus_space_tag_t mmio_tag;
bus_space_handle_t ram_bsh;
bus_space_tag_t ram_tag;
#endif
/*
* Virtual and physical bus addresses of the chip.
*/
vm_offset_t mmio_va; /* MMIO kernel virtual address */
vm_offset_t mmio_pa; /* MMIO CPU physical address */
vm_offset_t mmio_ba; /* MMIO BUS address */
int mmio_ws; /* MMIO Window size */
vm_offset_t ram_va; /* RAM kernel virtual address */
vm_offset_t ram_pa; /* RAM CPU physical address */
vm_offset_t ram_ba; /* RAM BUS address */
int ram_ws; /* RAM window size */
u32 io_port; /* IO port address */
/*
* SCRIPTS virtual and physical bus addresses.
* 'script' is loaded in the on-chip RAM if present.
* 'scripth' stays in main memory for all chips except the
* 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
*/
struct sym_scr *script0; /* Copies of script and scripth */
struct sym_scrh *scripth0; /* relocated for this host. */
vm_offset_t script_ba; /* Actual script and scripth */
vm_offset_t scripth_ba; /* bus addresses. */
vm_offset_t scripth0_ba;
/*
* General controller parameters and configuration.
*/
u_short device_id; /* PCI device id */
u_char revision_id; /* PCI device revision id */
u_int features; /* Chip features map */
u_char myaddr; /* SCSI id of the adapter */
u_char maxburst; /* log base 2 of dwords burst */
u_char maxwide; /* Maximum transfer width */
u_char minsync; /* Min sync period factor (ST) */
u_char maxsync; /* Max sync period factor (ST) */
u_char minsync_dt; /* Min sync period factor (DT) */
u_char maxsync_dt; /* Max sync period factor (DT) */
u_char maxoffs; /* Max scsi offset */
u_char multiplier; /* Clock multiplier (1,2,4) */
u_char clock_divn; /* Number of clock divisors */
u_long clock_khz; /* SCSI clock frequency in KHz */
/*
* Start queue management.
* It is filled up by the host processor and accessed by the
* SCRIPTS processor in order to start SCSI commands.
*/
volatile /* Prevent code optimizations */
u32 *squeue; /* Start queue */
u_short squeueput; /* Next free slot of the queue */
u_short actccbs; /* Number of allocated CCBs */
/*
* Command completion queue.
* It is the same size as the start queue to avoid overflow.
*/
u_short dqueueget; /* Next position to scan */
volatile /* Prevent code optimizations */
u32 *dqueue; /* Completion (done) queue */
/*
* Miscellaneous buffers accessed by the scripts-processor.
* They shall be DWORD aligned, because they may be read or
* written with a script command.
*/
u_char msgout[8]; /* Buffer for MESSAGE OUT */
u_char msgin [8]; /* Buffer for MESSAGE IN */
u32 lastmsg; /* Last SCSI message sent */
u_char scratch; /* Scratch for SCSI receive */
/*
* Miscellaneous configuration and status parameters.
*/
u_char scsi_mode; /* Current SCSI BUS mode */
u_char verbose; /* Verbosity for this controller*/
u32 cache; /* Used for cache test at init. */
/*
* CCB lists and queue.
*/
ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */
ccb_p ccbc; /* CCB chain */
SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
/*
* During error handling and/or recovery,
* active CCBs that are to be completed with
* error or requeued are moved from the busy_ccbq
* to the comp_ccbq prior to completion.
*/
SYM_QUEHEAD comp_ccbq;
/*
* CAM CCB pending queue.
*/
SYM_QUEHEAD cam_ccbq;
/*
* IMMEDIATE ARBITRATION (IARB) control.
*
* We keep track in 'last_cp' of the last CCB that has been
* queued to the SCRIPTS processor and clear 'last_cp' when
* this CCB completes. If last_cp is not zero at the moment
* we queue a new CCB, we set a flag in 'last_cp' that is
* used by the SCRIPTS as a hint for setting IARB.
* We donnot set more than 'iarb_max' consecutive hints for
* IARB in order to leave devices a chance to reselect.
* By the way, any non zero value of 'iarb_max' is unfair. :)
*/
#ifdef SYMCONF_IARB_SUPPORT
u_short iarb_max; /* Max. # consecutive IARB hints*/
u_short iarb_count; /* Actual # of these hints */
ccb_p last_cp;
#endif
/*
* Command abort handling.
* We need to synchronize tightly with the SCRIPTS
* processor in order to handle things correctly.
*/
u_char abrt_msg[4]; /* Message to send buffer */
struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
struct sym_tblsel abrt_sel; /* Sync params for selection */
u_char istat_sem; /* Tells the chip to stop (SEM) */
};
#define SCRIPT_BA(np,lbl) (np->script_ba + offsetof(struct sym_scr, lbl))
#define SCRIPTH_BA(np,lbl) (np->scripth_ba + offsetof(struct sym_scrh,lbl))
#define SCRIPTH0_BA(np,lbl) (np->scripth0_ba + offsetof(struct sym_scrh,lbl))
/*
* Scripts for SYMBIOS-Processor
*
* Use sym_fill_scripts() to create the variable parts.
* Use sym_bind_script() to make a copy and bind to
* physical bus addresses.
* We have to know the offsets of all labels before we reach
* them (for forward jumps). Therefore we declare a struct
* here. If you make changes inside the script,
*
* DONT FORGET TO CHANGE THE LENGTHS HERE!
*/
/*
* Script fragments which are loaded into the on-chip RAM
* of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
* Must not exceed 4K bytes.
*/
struct sym_scr {
u32 start [ 14];
u32 getjob_begin [ 4];
u32 getjob_end [ 4];
u32 select [ 8];
u32 wf_sel_done [ 2];
u32 send_ident [ 2];
#ifdef SYMCONF_IARB_SUPPORT
u32 select2 [ 8];
#else
u32 select2 [ 2];
#endif
u32 command [ 2];
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
u32 dispatch [ 18];
#else
u32 dispatch [ 30];
#endif
u32 sel_no_cmd [ 10];
u32 init [ 6];
u32 clrack [ 4];
u32 disp_msg_in [ 2];
u32 disp_status [ 4];
u32 datai_done [ 16];
u32 datao_done [ 10];
u32 ign_i_w_r_msg [ 4];
u32 dataphase [ 2];
u32 msg_in [ 2];
u32 msg_in2 [ 10];
#ifdef SYMCONF_IARB_SUPPORT
u32 status [ 14];
#else
u32 status [ 10];
#endif
u32 complete [ 8];
u32 complete2 [ 12];
u32 complete_error [ 4];
u32 done [ 14];
u32 done_end [ 2];
u32 save_dp [ 8];
u32 restore_dp [ 4];
u32 disconnect [ 20];
#ifdef SYMCONF_IARB_SUPPORT
u32 idle [ 4];
#else
u32 idle [ 2];
#endif
#ifdef SYMCONF_IARB_SUPPORT
u32 ungetjob [ 6];
#else
u32 ungetjob [ 4];
#endif
u32 reselect [ 4];
u32 reselected [ 20];
u32 resel_scntl4 [ 28];
#if SYMCONF_MAX_TASK*4 > 512
u32 resel_tag [ 24];
#elif SYMCONF_MAX_TASK*4 > 256
u32 resel_tag [ 18];
#else
u32 resel_tag [ 14];
#endif
u32 resel_dsa [ 2];
u32 resel_dsa1 [ 6];
u32 resel_no_tag [ 8];
u32 data_in [SYMCONF_MAX_SG * 2];
u32 data_in2 [ 4];
u32 data_out [SYMCONF_MAX_SG * 2];
u32 data_out2 [ 4];
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
u32 pm0_data [ 28];
u32 pm1_data [ 28];
#else
u32 pm0_data [ 16];
u32 pm1_data [ 16];
#endif
};
/*
* Script fragments which stay in main memory for all chips
* except for chips that support 8K on-chip RAM.
*/
struct sym_scrh {
u32 start64 [ 2];
u32 sel_for_abort [ 18];
u32 sel_for_abort_1 [ 2];
u32 select_no_atn [ 8];
u32 wf_sel_done_no_atn [ 4];
u32 msg_in_etc [ 14];
u32 msg_received [ 4];
u32 msg_weird_seen [ 4];
u32 msg_extended [ 20];
u32 msg_bad [ 6];
u32 msg_weird [ 4];
u32 msg_weird1 [ 8];
u32 wdtr_resp [ 6];
u32 send_wdtr [ 4];
u32 sdtr_resp [ 6];
u32 send_sdtr [ 4];
u32 ppr_resp [ 6];
u32 send_ppr [ 4];
u32 nego_bad_phase [ 4];
u32 msg_out [ 4];
u32 msg_out_done [ 4];
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
u32 no_data [ 36];
#else
u32 no_data [ 28];
#endif
u32 abort_resel [ 16];
u32 resend_ident [ 4];
u32 ident_break [ 4];
u32 ident_break_atn [ 4];
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
u32 sdata_in [ 12];
#else
u32 sdata_in [ 6];
#endif
u32 resel_bad_lun [ 4];
u32 bad_i_t_l [ 4];
u32 bad_i_t_l_q [ 4];
u32 bad_status [ 6];
u32 pm_handle [ 20];
u32 pm_handle1 [ 4];
u32 pm_save [ 4];
u32 pm0_save [ 14];
u32 pm1_save [ 14];
/* SWIDE handling */
u32 swide_ma_32 [ 4];
u32 swide_ma_64 [ 6];
u32 swide_scr_64 [ 26];
u32 swide_scr_64_1 [ 12];
u32 swide_com_64 [ 6];
u32 swide_common [ 10];
u32 swide_fin_32 [ 24];
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
u32 dt_data_in [SYMCONF_MAX_SG * 2];
u32 dt_data_in2 [ 4];
u32 dt_data_out [SYMCONF_MAX_SG * 2];
u32 dt_data_out2 [ 4];
#endif
/* Data area */
u32 zero [ 1];
u32 scratch [ 1];
u32 scratch1 [ 1];
u32 pm0_data_addr [ 1];
u32 pm1_data_addr [ 1];
u32 saved_dsa [ 1];
u32 saved_drs [ 1];
u32 done_pos [ 1];
u32 startpos [ 1];
u32 targtbl [ 1];
/* End of data area */
u32 snooptest [ 6];
u32 snoopend [ 2];
};
/*
* Function prototypes.
*/
static void sym_fill_scripts (script_p scr, scripth_p scrh);
static void sym_bind_script (hcb_p np, u32 *src, u32 *dst, int len);
static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
static void sym_put_start_queue (hcb_p np, ccb_p cp);
static void sym_soft_reset (hcb_p np);
static void sym_start_reset (hcb_p np);
static int sym_reset_scsi_bus (hcb_p np, int enab_int);
static int sym_wakeup_done (hcb_p np);
static void sym_flush_busy_queue (hcb_p np, int cam_status);
static void sym_flush_comp_queue (hcb_p np, int cam_status);
static void sym_init (hcb_p np, int reset, char *msg);
static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
u_char *fakp);
static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
u_char div, u_char fak);
static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
u_char per, u_char wide, u_char div, u_char fak);
static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
u_char per, u_char wide, u_char div, u_char fak);
static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
static void sym_intr (void *arg);
static void sym_poll (struct cam_sim *sim);
static void sym_recover_scsi_int (hcb_p np, u_char hsts);
static void sym_int_sto (hcb_p np);
static void sym_int_udc (hcb_p np);
static void sym_int_sbmc (hcb_p np);
static void sym_int_par (hcb_p np, u_short sist);
static void sym_int_ma (hcb_p np);
static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
int task);
static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
static void sym_sir_task_recovery (hcb_p np, int num);
static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
static int sym_compute_residual (hcb_p np, ccb_p cp);
static int sym_show_msg (u_char * msg);
static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
static void sym_int_sir (hcb_p np);
static void sym_free_ccb (hcb_p np, ccb_p cp);
static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
static ccb_p sym_alloc_ccb (hcb_p np);
static ccb_p sym_ccb_from_dsa (hcb_p np, u_long dsa);
static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
static int sym_snooptest (hcb_p np);
static void sym_selectclock(hcb_p np, u_char scntl3);
static void sym_getclock (hcb_p np, int mult);
static int sym_getpciclock (hcb_p np);
static void sym_complete_ok (hcb_p np, ccb_p cp);
static void sym_complete_error (hcb_p np, ccb_p cp);
static void sym_timeout (void *arg);
static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
static void sym_reset_dev (hcb_p np, union ccb *ccb);
static void sym_action (struct cam_sim *sim, union ccb *ccb);
static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
static int sym_setup_data(hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
static int sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr,
vm_size_t len);
static int sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t vaddr,
vm_size_t len);
static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
struct ccb_trans_settings *cts);
static void sym_update_dflags(hcb_p np, u_char *flags,
struct ccb_trans_settings *cts);
#ifdef FreeBSD_4_Bus
static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
static int sym_pci_probe (device_t dev);
static int sym_pci_attach (device_t dev);
#else
static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag);
static const char *sym_pci_probe (pcici_t tag, pcidi_t type);
static void sym_pci_attach (pcici_t tag, int unit);
static int sym_pci_attach2 (pcici_t tag, int unit);
#endif
static void sym_pci_free (hcb_p np);
static int sym_cam_attach (hcb_p np);
static void sym_cam_free (hcb_p np);
static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
/*
* Return the name of the controller.
*/
static __inline char *sym_name(hcb_p np)
{
return np->inst_name;
}
/*
* Scripts for SYMBIOS-Processor
*
* Use sym_bind_script for binding to physical addresses.
*
* NADDR generates a reference to a field of the controller data.
* PADDR generates a reference to another part of the script.
* RADDR generates a reference to a script processor register.
* FADDR generates a reference to a script processor register
* with offset.
*
*/
#define RELOC_SOFTC 0x40000000
#define RELOC_LABEL 0x50000000
#define RELOC_REGISTER 0x60000000
#if 0
#define RELOC_KVAR 0x70000000
#endif
#define RELOC_LABELH 0x80000000
#define RELOC_MASK 0xf0000000
#define NADDR(label) (RELOC_SOFTC | offsetof(struct sym_hcb, label))
#define PADDR(label) (RELOC_LABEL | offsetof(struct sym_scr, label))
#define PADDRH(label) (RELOC_LABELH | offsetof(struct sym_scrh, label))
#define RADDR(label) (RELOC_REGISTER | REG(label))
#define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
#define KVAR(which) (RELOC_KVAR | (which))
#define SCR_DATA_ZERO 0xf00ff00f
#ifdef RELOC_KVAR
#define SCRIPT_KVAR_JIFFIES (0)
#define SCRIPT_KVAR_FIRST SCRIPT_KVAR_XXXXXXX
#define SCRIPT_KVAR_LAST SCRIPT_KVAR_XXXXXXX
/*
* Kernel variables referenced in the scripts.
* THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
*/
static void *script_kvars[] =
{ (void *)&xxxxxxx };
#endif
static struct sym_scr script0 = {
/*--------------------------< START >-----------------------*/ {
/*
* This NOP will be patched with LED ON
* SCR_REG_REG (gpreg, SCR_AND, 0xfe)
*/
SCR_NO_OP,
0,
/*
* Clear SIGP.
*/
SCR_FROM_REG (ctest2),
0,
/*
* Stop here if the C code wants to perform
* some error recovery procedure manually.
* (Indicate this by setting SEM in ISTAT)
*/
SCR_FROM_REG (istat),
0,
/*
* Report to the C code the next position in
* the start queue the SCRIPTS will schedule.
* The C code must not change SCRATCHA.
*/
SCR_LOAD_ABS (scratcha, 4),
PADDRH (startpos),
SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
SIR_SCRIPT_STOPPED,
/*
* Start the next job.
*
* @DSA = start point for this job.
* SCRATCHA = address of this job in the start queue.
*
* We will restore startpos with SCRATCHA if we fails the
* arbitration or if it is the idle job.
*
* The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
* is a critical path. If it is partially executed, it then
* may happen that the job address is not yet in the DSA
* and the the next queue position points to the next JOB.
*/
SCR_LOAD_ABS (dsa, 4),
PADDRH (startpos),
SCR_LOAD_REL (temp, 4),
4,
}/*-------------------------< GETJOB_BEGIN >------------------*/,{
SCR_STORE_ABS (temp, 4),
PADDRH (startpos),
SCR_LOAD_REL (dsa, 4),
0,
}/*-------------------------< GETJOB_END >--------------------*/,{
SCR_LOAD_REL (temp, 4),
0,
SCR_RETURN,
0,
}/*-------------------------< SELECT >----------------------*/,{
/*
* DSA contains the address of a scheduled
* data structure.
*
* SCRATCHA contains the address of the start queue
* entry which points to the next job.
*
* Set Initiator mode.
*
* (Target mode is left as an exercise for the reader)
*/
SCR_CLR (SCR_TRG),
0,
/*
* And try to select this target.
*/
SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
PADDR (ungetjob),
/*
* Now there are 4 possibilities:
*
* (1) The chip looses arbitration.
* This is ok, because it will try again,
* when the bus becomes idle.
* (But beware of the timeout function!)
*
* (2) The chip is reselected.
* Then the script processor takes the jump
* to the RESELECT label.
*
* (3) The chip wins arbitration.
* Then it will execute SCRIPTS instruction until
* the next instruction that checks SCSI phase.
* Then will stop and wait for selection to be
* complete or selection time-out to occur.
*
* After having won arbitration, the SCRIPTS
* processor is able to execute instructions while
* the SCSI core is performing SCSI selection.
*/
/*
* load the savep (saved data pointer) into
* the actual data pointer.
*/
SCR_LOAD_REL (temp, 4),
offsetof (struct sym_ccb, phys.savep),
/*
* Initialize the status registers
*/
SCR_LOAD_REL (scr0, 4),
offsetof (struct sym_ccb, phys.status),
}/*-------------------------< WF_SEL_DONE >----------------------*/,{
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
SIR_SEL_ATN_NO_MSG_OUT,
}/*-------------------------< SEND_IDENT >----------------------*/,{
/*
* Selection complete.
* Send the IDENTIFY and possibly the TAG message
* and negotiation message if present.
*/
SCR_MOVE_TBL ^ SCR_MSG_OUT,
offsetof (struct dsb, smsg),
}/*-------------------------< SELECT2 >----------------------*/,{
#ifdef SYMCONF_IARB_SUPPORT
/*
* Set IMMEDIATE ARBITRATION if we have been given
* a hint to do so. (Some job to do after this one).
*/
SCR_FROM_REG (HF_REG),
0,
SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
8,
SCR_REG_REG (scntl1, SCR_OR, IARB),
0,
#endif
/*
* Anticipate the COMMAND phase.
* This is the PHASE we expect at this point.
*/
SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
PADDR (sel_no_cmd),
}/*-------------------------< COMMAND >--------------------*/,{
/*
* ... and send the command
*/
SCR_MOVE_TBL ^ SCR_COMMAND,
offsetof (struct dsb, cmd),
}/*-----------------------< DISPATCH >----------------------*/,{
/*
* MSG_IN is the only phase that shall be
* entered at least once for each (re)selection.
* So we test it first.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
PADDR (msg_in),
SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
PADDR (dataphase),
SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
PADDR (dataphase),
SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
PADDR (status),
SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
PADDR (command),
SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
PADDRH (msg_out),
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
SCR_JUMP ^ IFTRUE (IF (SCR_DT_DATA_OUT)),
PADDR (dataphase),
SCR_JUMP ^ IFTRUE (IF (SCR_DT_DATA_IN)),
PADDR (dataphase),
#else
/*
* Set the extended error flag.
*/
SCR_REG_REG (HF_REG, SCR_OR, HF_EXT_ERR),
0,
/*
* Discard one illegal phase byte, if required.
*/
SCR_LOAD_REL (scratcha, 1),
offsetof (struct sym_ccb, xerr_status),
SCR_REG_REG (scratcha, SCR_OR, XE_BAD_PHASE),
0,
SCR_STORE_REL (scratcha, 1),
offsetof (struct sym_ccb, xerr_status),
SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
8,
SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
NADDR (scratch),
SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
8,
SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
NADDR (scratch),
#endif /* SYMCONF_BROKEN_U3EN_SUPPORT */
SCR_JUMP,
PADDR (dispatch),
}/*---------------------< SEL_NO_CMD >----------------------*/,{
/*
* The target does not switch to command
* phase after IDENTIFY has been sent.
*
* If it stays in MSG OUT phase send it
* the IDENTIFY again.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
PADDRH (resend_ident),
/*
* If target does not switch to MSG IN phase
* and we sent a negotiation, assert the
* failure immediately.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
SCR_FROM_REG (HS_REG),
0,
SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
SIR_NEGO_FAILED,
/*
* Jump to dispatcher.
*/
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< INIT >------------------------*/,{
/*
* Wait for the SCSI RESET signal to be
* inactive before restarting operations,
* since the chip may hang on SEL_ATN
* if SCSI RESET is active.
*/
SCR_FROM_REG (sstat0),
0,
SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
-16,
SCR_JUMP,
PADDR (start),
}/*-------------------------< CLRACK >----------------------*/,{
/*
* Terminate possible pending message phase.
*/
SCR_CLR (SCR_ACK),
0,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< DISP_MSG_IN >----------------------*/,{
/*
* Anticipate MSG_IN phase then STATUS phase.
*
* May spare 2 SCRIPTS instructions when we have
* completed the OUTPUT of the data and the device
* goes directly to STATUS phase.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
PADDR (msg_in),
}/*-------------------------< DISP_STATUS >----------------------*/,{
/*
* Anticipate STATUS phase.
*
* Does spare 3 SCRIPTS instructions when we have
* completed the INPUT of the data.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
PADDR (status),
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< DATAI_DONE >-------------------*/,{
/*
* If the SWIDE is not full, jump to dispatcher.
* We anticipate a STATUS phase.
* If we get later an IGNORE WIDE RESIDUE, we
* will alias it as a MODIFY DP (-1).
*/
SCR_FROM_REG (scntl2),
0,
SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)),
PADDR (disp_status),
/*
* The SWIDE is full.
* Clear this condition.
*/
SCR_REG_REG (scntl2, SCR_OR, WSR),
0,
/*
* Since the device is required to send any
* IGNORE WIDE RESIDUE message prior to any
* other information, we just snoop the SCSI
* BUS to check for such a message.
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
16,
SCR_FROM_REG (sbdl),
0,
SCR_JUMP ^ IFTRUE (DATA (M_IGN_RESIDUE)),
PADDR (disp_msg_in),
/*
* We have been ODD at the end of the transfer,
* but the device hasn't be so.
* Signal a DATA OVERRUN condition to the C code.
*/
SCR_INT,
SIR_SWIDE_OVERRUN,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< DATAO_DONE >-------------------*/,{
/*
* If the SODL is not full jump to dispatcher.
* We anticipate a MSG IN phase or a STATUS phase.
*/
SCR_FROM_REG (scntl2),
0,
SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)),
PADDR (disp_status),
/*
* The SODL is full, clear this condition.
*/
SCR_REG_REG (scntl2, SCR_OR, WSS),
0,
/*
* And signal a DATA UNDERRUN condition
* to the C code.
*/
SCR_INT,
SIR_SODL_UNDERRUN,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< IGN_I_W_R_MSG >--------------*/,{
/*
* We jump here from the phase mismatch interrupt,
* When we have a SWIDE and the device has presented
* a IGNORE WIDE RESIDUE message on the BUS.
* We just have to throw away this message and then
* to jump to dispatcher.
*/
SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
NADDR (scratch),
/*
* Clear ACK and jump to dispatcher.
*/
SCR_JUMP,
PADDR (clrack),
}/*-------------------------< DATAPHASE >------------------*/,{
SCR_RETURN,
0,
}/*-------------------------< MSG_IN >--------------------*/,{
/*
* Get the first byte of the message.
*
* The script processor doesn't negate the
* ACK signal after this transfer.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[0]),
}/*-------------------------< MSG_IN2 >--------------------*/,{
/*
* Check first against 1 byte messages
* that we handle from SCRIPTS.
*/
SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
PADDR (complete),
SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
PADDR (disconnect),
SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
PADDR (save_dp),
SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
PADDR (restore_dp),
/*
* We handle all other messages from the
* C code, so no need to waste on-chip RAM
* for those ones.
*/
SCR_JUMP,
PADDRH (msg_in_etc),
}/*-------------------------< STATUS >--------------------*/,{
/*
* get the status
*/
SCR_MOVE_ABS (1) ^ SCR_STATUS,
NADDR (scratch),
#ifdef SYMCONF_IARB_SUPPORT
/*
* If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
* since we may have to tamper the start queue from
* the C code.
*/
SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
8,
SCR_REG_REG (scntl1, SCR_AND, ~IARB),
0,
#endif
/*
* save status to scsi_status.
* mark as complete.
*/
SCR_TO_REG (SS_REG),
0,
SCR_LOAD_REG (HS_REG, HS_COMPLETE),
0,
/*
* Anticipate the MESSAGE PHASE for
* the TASK COMPLETE message.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
PADDR (msg_in),
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< COMPLETE >-----------------*/,{
/*
* Complete message.
*
* Copy the data pointer to LASTP.
*/
SCR_STORE_REL (temp, 4),
offsetof (struct sym_ccb, phys.lastp),
/*
* When we terminate the cycle by clearing ACK,
* the target may disconnect immediately.
*
* We don't want to be told of an "unexpected disconnect",
* so we disable this feature.
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
/*
* Terminate cycle ...
*/
SCR_CLR (SCR_ACK|SCR_ATN),
0,
/*
* ... and wait for the disconnect.
*/
SCR_WAIT_DISC,
0,
}/*-------------------------< COMPLETE2 >-----------------*/,{
/*
* Save host status.
*/
SCR_STORE_REL (scr0, 4),
offsetof (struct sym_ccb, phys.status),
/*
* Some bridges may reorder DMA writes to memory.
* We donnot want the CPU to deal with completions
* without all the posted write having been flushed
* to memory. This DUMMY READ should flush posted
* buffers prior to the CPU having to deal with
* completions.
*/
SCR_LOAD_REL (scr0, 4), /* DUMMY READ */
offsetof (struct sym_ccb, phys.status),
/*
* If command resulted in not GOOD status,
* call the C code if needed.
*/
SCR_FROM_REG (SS_REG),
0,
SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
PADDRH (bad_status),
/*
* If we performed an auto-sense, call
* the C code to synchronyze task aborts
* with UNIT ATTENTION conditions.
*/
SCR_FROM_REG (HF_REG),
0,
SCR_JUMPR ^ IFTRUE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
16,
}/*-------------------------< COMPLETE_ERROR >-----------------*/,{
SCR_LOAD_ABS (scratcha, 4),
PADDRH (startpos),
SCR_INT,
SIR_COMPLETE_ERROR,
}/*------------------------< DONE >-----------------*/,{
/*
* Copy the DSA to the DONE QUEUE and
* signal completion to the host.
* If we are interrupted between DONE
* and DONE_END, we must reset, otherwise
* the completed CCB may be lost.
*/
SCR_STORE_ABS (dsa, 4),
PADDRH (saved_dsa),
SCR_LOAD_ABS (dsa, 4),
PADDRH (done_pos),
SCR_LOAD_ABS (scratcha, 4),
PADDRH (saved_dsa),
SCR_STORE_REL (scratcha, 4),
0,
/*
* The instruction below reads the DONE QUEUE next
* free position from memory.
* In addition it ensures that all PCI posted writes
* are flushed and so the DSA value of the done
* CCB is visible by the CPU before INTFLY is raised.
*/
SCR_LOAD_REL (temp, 4),
4,
SCR_INT_FLY,
0,
SCR_STORE_ABS (temp, 4),
PADDRH (done_pos),
}/*------------------------< DONE_END >-----------------*/,{
SCR_JUMP,
PADDR (start),
}/*-------------------------< SAVE_DP >------------------*/,{
/*
* Clear ACK immediately.
* No need to delay it.
*/
SCR_CLR (SCR_ACK),
0,
/*
* Keep track we received a SAVE DP, so
* we will switch to the other PM context
* on the next PM since the DP may point
* to the current PM context.
*/
SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
0,
/*
* SAVE_DP message:
* Copy the data pointer to SAVEP.
*/
SCR_STORE_REL (temp, 4),
offsetof (struct sym_ccb, phys.savep),
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< RESTORE_DP >---------------*/,{
/*
* RESTORE_DP message:
* Copy SAVEP to actual data pointer.
*/
SCR_LOAD_REL (temp, 4),
offsetof (struct sym_ccb, phys.savep),
SCR_JUMP,
PADDR (clrack),
}/*-------------------------< DISCONNECT >---------------*/,{
/*
* DISCONNECTing ...
*
* disable the "unexpected disconnect" feature,
* and remove the ACK signal.
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_CLR (SCR_ACK|SCR_ATN),
0,
/*
* Wait for the disconnect.
*/
SCR_WAIT_DISC,
0,
/*
* Status is: DISCONNECTED.
*/
SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
0,
/*
* Save host status.
*/
SCR_STORE_REL (scr0, 4),
offsetof (struct sym_ccb, phys.status),
/*
* If QUIRK_AUTOSAVE is set,
* do an "save pointer" operation.
*/
SCR_FROM_REG (QU_REG),
0,
SCR_JUMP ^ IFFALSE (MASK (SYM_QUIRK_AUTOSAVE, SYM_QUIRK_AUTOSAVE)),
PADDR (start),
/*
* like SAVE_DP message:
* Remember we saved the data pointer.
* Copy data pointer to SAVEP.
*/
SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
0,
SCR_STORE_REL (temp, 4),
offsetof (struct sym_ccb, phys.savep),
SCR_JUMP,
PADDR (start),
}/*-------------------------< IDLE >------------------------*/,{
/*
* Nothing to do?
* Wait for reselect.
* This NOP will be patched with LED OFF
* SCR_REG_REG (gpreg, SCR_OR, 0x01)
*/
SCR_NO_OP,
0,
#ifdef SYMCONF_IARB_SUPPORT
SCR_JUMPR,
8,
#endif
}/*-------------------------< UNGETJOB >-----------------*/,{
#ifdef SYMCONF_IARB_SUPPORT
/*
* Set IMMEDIATE ARBITRATION, for the next time.
* This will give us better chance to win arbitration
* for the job we just wanted to do.
*/
SCR_REG_REG (scntl1, SCR_OR, IARB),
0,
#endif
/*
* We are not able to restart the SCRIPTS if we are
* interrupted and these instruction haven't been
* all executed. BTW, this is very unlikely to
* happen, but we check that from the C code.
*/
SCR_LOAD_REG (dsa, 0xff),
0,
SCR_STORE_ABS (scratcha, 4),
PADDRH (startpos),
}/*-------------------------< RESELECT >--------------------*/,{
/*
* Make sure we are in initiator mode.
*/
SCR_CLR (SCR_TRG),
0,
/*
* Sleep waiting for a reselection.
*/
SCR_WAIT_RESEL,
PADDR(start),
}/*-------------------------< RESELECTED >------------------*/,{
/*
* This NOP will be patched with LED ON
* SCR_REG_REG (gpreg, SCR_AND, 0xfe)
*/
SCR_NO_OP,
0,
/*
* load the target id into the sdid
*/
SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
0,
SCR_TO_REG (sdid),
0,
/*
* Load the target control block address
*/
SCR_LOAD_ABS (dsa, 4),
PADDRH (targtbl),
SCR_SFBR_REG (dsa, SCR_SHL, 0),
0,
SCR_REG_REG (dsa, SCR_SHL, 0),
0,
SCR_REG_REG (dsa, SCR_AND, 0x3c),
0,
SCR_LOAD_REL (dsa, 4),
0,
/*
* Load the legacy synchronous transfer registers.
*/
SCR_LOAD_REL (scntl3, 1),
offsetof(struct sym_tcb, wval),
SCR_LOAD_REL (sxfer, 1),
offsetof(struct sym_tcb, sval),
}/*-------------------------< RESEL_SCNTL4 >------------------*/,{
/*
* If C1010, patched with the load of SCNTL4 that
* allows a new synchronous timing scheme.
*
* SCR_LOAD_REL (scntl4, 1),
* offsetof(struct tcb, uval),
*/
SCR_NO_OP,
0,
/*
* If MESSAGE IN phase as expected,
* Read the data directly from the BUS DATA lines.
* This helps to support very old SCSI devices that
* may reselect without sending an IDENTIFY.
*/
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
SIR_RESEL_NO_MSG_IN,
SCR_FROM_REG (sbdl),
0,
/*
* If message phase but not an IDENTIFY,
* get some help from the C code.
* Old SCSI device may behave so.
*/
SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
SIR_RESEL_NO_IDENTIFY,
/*
* It is an IDENTIFY message,
* Load the LUN control block address.
* If LUN 0, avoid a PCI BUS ownership by loading
* directly 'lun0_sa' from the TCB.
*/
SCR_JUMPR ^ IFTRUE (MASK (0x0, 0x3f)),
48,
SCR_LOAD_REL (dsa, 4),
offsetof(struct sym_tcb, luntbl_sa),
SCR_SFBR_REG (dsa, SCR_SHL, 0),
0,
SCR_REG_REG (dsa, SCR_SHL, 0),
0,
SCR_REG_REG (dsa, SCR_AND, 0xfc),
0,
SCR_LOAD_REL (dsa, 4),
0,
SCR_JUMPR,
8,
/*
* LUN 0 special case (but usual one :))
*/
SCR_LOAD_REL (dsa, 4),
offsetof(struct sym_tcb, lun0_sa),
/*
* Jump indirectly to the reselect action for this LUN.
*/
SCR_LOAD_REL (temp, 4),
offsetof(struct sym_lcb, resel_sa),
SCR_RETURN,
0,
/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
}/*-------------------------< RESEL_TAG >-------------------*/,{
/*
* It shall be a tagged command.
* Read IDENTIFY+SIMPLE+TAG.
* The C code will deal with errors.
* Agressive optimization, is'nt it? :)
*/
SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
NADDR (msgin),
/*
* Load the pointer to the tagged task
* table for this LUN.
*/
SCR_LOAD_REL (dsa, 4),
offsetof(struct sym_lcb, itlq_tbl_sa),
/*
* The SIDL still contains the TAG value.
* Agressive optimization, isn't it? :):)
*/
SCR_REG_SFBR (sidl, SCR_SHL, 0),
0,
#if SYMCONF_MAX_TASK*4 > 512
SCR_JUMPR ^ IFFALSE (CARRYSET),
8,
SCR_REG_REG (dsa1, SCR_OR, 2),
0,
SCR_REG_REG (sfbr, SCR_SHL, 0),
0,
SCR_JUMPR ^ IFFALSE (CARRYSET),
8,
SCR_REG_REG (dsa1, SCR_OR, 1),
0,
#elif SYMCONF_MAX_TASK*4 > 256
SCR_JUMPR ^ IFFALSE (CARRYSET),
8,
SCR_REG_REG (dsa1, SCR_OR, 1),
0,
#endif
/*
* Retrieve the DSA of this task.
* JUMP indirectly to the restart point of the CCB.
*/
SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
0,
SCR_LOAD_REL (dsa, 4),
0,
SCR_LOAD_REL (temp, 4),
offsetof(struct sym_ccb, phys.go.restart),
SCR_RETURN,
0,
/* In normal situations we branch to RESEL_DSA */
}/*-------------------------< RESEL_DSA >-------------------*/,{
/*
* ACK the IDENTIFY or TAG previously received.
*/
SCR_CLR (SCR_ACK),
0,
}/*-------------------------< RESEL_DSA1 >------------------*/,{
/*
* load the savep (saved pointer) into
* the actual data pointer.
*/
SCR_LOAD_REL (temp, 4),
offsetof (struct sym_ccb, phys.savep),
/*
* Initialize the status registers
*/
SCR_LOAD_REL (scr0, 4),
offsetof (struct sym_ccb, phys.status),
/*
* Jump to dispatcher.
*/
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< RESEL_NO_TAG >-------------------*/,{
/*
* Throw away the IDENTIFY.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin),
/*
* Load the DSA with the unique ITL task.
*/
SCR_LOAD_REL (dsa, 4),
offsetof(struct sym_lcb, itl_task_sa),
/*
* JUMP indirectly to the restart point of the CCB.
*/
SCR_LOAD_REL (temp, 4),
offsetof(struct sym_ccb, phys.go.restart),
SCR_RETURN,
0,
/* In normal situations we branch to RESEL_DSA */
}/*-------------------------< DATA_IN >--------------------*/,{
/*
* Because the size depends on the
* #define SYMCONF_MAX_SG parameter,
* it is filled in at runtime.
*
* ##===========< i=0; i<SYMCONF_MAX_SG >=========
* || SCR_CHMOV_TBL ^ SCR_DATA_IN,
* || offsetof (struct dsb, data[ i]),
* ##==========================================
*/
0
}/*-------------------------< DATA_IN2 >-------------------*/,{
SCR_CALL,
PADDR (datai_done),
SCR_JUMP,
PADDRH (no_data),
}/*-------------------------< DATA_OUT >--------------------*/,{
/*
* Because the size depends on the
* #define SYMCONF_MAX_SG parameter,
* it is filled in at runtime.
*
* ##===========< i=0; i<SYMCONF_MAX_SG >=========
* || SCR_CHMOV_TBL ^ SCR_DATA_OUT,
* || offsetof (struct dsb, data[ i]),
* ##==========================================
*/
0
}/*-------------------------< DATA_OUT2 >-------------------*/,{
SCR_CALL,
PADDR (datao_done),
SCR_JUMP,
PADDRH (no_data),
}/*-------------------------< PM0_DATA >--------------------*/,{
/*
* Keep track we are executing the PM0 DATA
* mini-script.
*/
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
0,
/*
* MOVE the data according to the actual
* DATA direction.
*/
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
16,
SCR_CHMOV_TBL ^ SCR_DATA_IN,
offsetof (struct sym_ccb, phys.pm0.sg),
SCR_JUMPR,
56,
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
16,
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
offsetof (struct sym_ccb, phys.pm0.sg),
SCR_JUMPR,
32,
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DT_DATA_IN)),
16,
SCR_CHMOV_TBL ^ SCR_DT_DATA_IN,
offsetof (struct sym_ccb, phys.pm0.sg),
SCR_JUMPR,
8,
SCR_CHMOV_TBL ^ SCR_DT_DATA_OUT,
offsetof (struct sym_ccb, phys.pm0.sg),
#else
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
16,
SCR_CHMOV_TBL ^ SCR_DATA_IN,
offsetof (struct sym_ccb, phys.pm0.sg),
SCR_JUMPR,
8,
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
offsetof (struct sym_ccb, phys.pm0.sg),
#endif
/*
* Clear the flag that told we were in
* the PM0 DATA mini-script.
*/
SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
0,
/*
* Return to the previous DATA script which
* is guaranteed by design (if no bug) to be
* the main DATA script for this transfer.
*/
SCR_LOAD_REL (temp, 4),
offsetof (struct sym_ccb, phys.pm0.ret),
SCR_RETURN,
0,
}/*-------------------------< PM1_DATA >--------------------*/,{
/*
* Keep track we are executing the PM1 DATA
* mini-script.
*/
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
0,
/*
* MOVE the data according to the actual
* DATA direction.
*/
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
16,
SCR_CHMOV_TBL ^ SCR_DATA_IN,
offsetof (struct sym_ccb, phys.pm1.sg),
SCR_JUMPR,
56,
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
16,
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
offsetof (struct sym_ccb, phys.pm1.sg),
SCR_JUMPR,
32,
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DT_DATA_IN)),
16,
SCR_CHMOV_TBL ^ SCR_DT_DATA_IN,
offsetof (struct sym_ccb, phys.pm1.sg),
SCR_JUMPR,
8,
SCR_CHMOV_TBL ^ SCR_DT_DATA_OUT,
offsetof (struct sym_ccb, phys.pm1.sg),
#else
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
16,
SCR_CHMOV_TBL ^ SCR_DATA_IN,
offsetof (struct sym_ccb, phys.pm1.sg),
SCR_JUMPR,
8,
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
offsetof (struct sym_ccb, phys.pm1.sg),
#endif
/*
* Clear the flag that told we were in
* the PM1 DATA mini-script.
*/
SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
0,
/*
* Return to the previous DATA script which
* is guaranteed by design (if no bug) to be
* the main DATA script for this transfer.
*/
SCR_LOAD_REL (temp, 4),
offsetof (struct sym_ccb, phys.pm1.ret),
SCR_RETURN,
0,
}/*---------------------------------------------------------*/
};
static struct sym_scrh scripth0 = {
/*------------------------< START64 >-----------------------*/{
/*
* SCRIPT entry point for the 895A, 896 and 1010.
* For now, there is no specific stuff for those
* chips at this point, but this may come.
*/
SCR_JUMP,
PADDR (init),
}/*-----------------------< SEL_FOR_ABORT >------------------*/,{
/*
* We are jumped here by the C code, if we have
* some target to reset or some disconnected
* job to abort. Since error recovery is a serious
* busyness, we will really reset the SCSI BUS, if
* case of a SCSI interrupt occuring in this path.
*/
/*
* Set initiator mode.
*/
SCR_CLR (SCR_TRG),
0,
/*
* And try to select this target.
*/
SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
PADDR (reselect),
/*
* Wait for the selection to complete or
* the selection to time out.
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
-8,
/*
* Call the C code.
*/
SCR_INT,
SIR_TARGET_SELECTED,
/*
* The C code should let us continue here.
* Send the 'kiss of death' message.
* We expect an immediate disconnect once
* the target has eaten the message.
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_MOVE_TBL ^ SCR_MSG_OUT,
offsetof (struct sym_hcb, abrt_tbl),
SCR_CLR (SCR_ACK|SCR_ATN),
0,
SCR_WAIT_DISC,
0,
/*
* Tell the C code that we are done.
*/
SCR_INT,
SIR_ABORT_SENT,
}/*-----------------------< SEL_FOR_ABORT_1 >--------------*/,{
/*
* Jump at scheduler.
*/
SCR_JUMP,
PADDR (start),
}/*------------------------< SELECT_NO_ATN >-----------------*/,{
/*
* Set Initiator mode.
* And try to select this target without ATN.
*/
SCR_CLR (SCR_TRG),
0,
SCR_SEL_TBL ^ offsetof (struct dsb, select),
PADDR (ungetjob),
/*
* load the savep (saved pointer) into
* the actual data pointer.
*/
SCR_LOAD_REL (temp, 4),
offsetof (struct sym_ccb, phys.savep),
/*
* Initialize the status registers
*/
SCR_LOAD_REL (scr0, 4),
offsetof (struct sym_ccb, phys.status),
}/*------------------------< WF_SEL_DONE_NO_ATN >-----------------*/,{
/*
* Wait immediately for the next phase or
* the selection to complete or time-out.
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
0,
SCR_JUMP,
PADDR (select2),
}/*-------------------------< MSG_IN_ETC >--------------------*/,{
/*
* If it is an EXTENDED (variable size message)
* Handle it.
*/
SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
PADDRH (msg_extended),
/*
* Let the C code handle any other
* 1 byte message.
*/
SCR_INT ^ IFTRUE (MASK (0x00, 0xf0)),
SIR_MSG_RECEIVED,
SCR_INT ^ IFTRUE (MASK (0x10, 0xf0)),
SIR_MSG_RECEIVED,
/*
* We donnot handle 2 bytes messages from SCRIPTS.
* So, let the C code deal with these ones too.
*/
SCR_INT ^ IFFALSE (MASK (0x20, 0xf0)),
SIR_MSG_WEIRD,
SCR_CLR (SCR_ACK),
0,
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[1]),
SCR_INT,
SIR_MSG_RECEIVED,
}/*-------------------------< MSG_RECEIVED >--------------------*/,{
SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
0,
SCR_INT,
SIR_MSG_RECEIVED,
}/*-------------------------< MSG_WEIRD_SEEN >------------------*/,{
SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
0,
SCR_INT,
SIR_MSG_WEIRD,
}/*-------------------------< MSG_EXTENDED >--------------------*/,{
/*
* Clear ACK and get the next byte
* assumed to be the message length.
*/
SCR_CLR (SCR_ACK),
0,
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[1]),
/*
* Try to catch some unlikely situations as 0 length
* or too large the length.
*/
SCR_JUMP ^ IFTRUE (DATA (0)),
PADDRH (msg_weird_seen),
SCR_TO_REG (scratcha),
0,
SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
0,
SCR_JUMP ^ IFTRUE (CARRYSET),
PADDRH (msg_weird_seen),
/*
* We donnot handle extended messages from SCRIPTS.
* Read the amount of data correponding to the
* message length and call the C code.
*/
SCR_STORE_REL (scratcha, 1),
offsetof (struct dsb, smsg_ext.size),
SCR_CLR (SCR_ACK),
0,
SCR_MOVE_TBL ^ SCR_MSG_IN,
offsetof (struct dsb, smsg_ext),
SCR_JUMP,
PADDRH (msg_received),
}/*-------------------------< MSG_BAD >------------------*/,{
/*
* unimplemented message - reject it.
*/
SCR_INT,
SIR_REJECT_TO_SEND,
SCR_SET (SCR_ATN),
0,
SCR_JUMP,
PADDR (clrack),
}/*-------------------------< MSG_WEIRD >--------------------*/,{
/*
* weird message received
* ignore all MSG IN phases and reject it.
*/
SCR_INT,
SIR_REJECT_TO_SEND,
SCR_SET (SCR_ATN),
0,
}/*-------------------------< MSG_WEIRD1 >--------------------*/,{
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (scratch),
SCR_JUMP,
PADDRH (msg_weird1),
}/*-------------------------< WDTR_RESP >----------------*/,{
/*
* let the target fetch our answer.
*/
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDRH (nego_bad_phase),
}/*-------------------------< SEND_WDTR >----------------*/,{
/*
* Send the M_X_WIDE_REQ
*/
SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_JUMP,
PADDRH (msg_out_done),
}/*-------------------------< SDTR_RESP >-------------*/,{
/*
* let the target fetch our answer.
*/
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDRH (nego_bad_phase),
}/*-------------------------< SEND_SDTR >-------------*/,{
/*
* Send the M_X_SYNC_REQ
*/
SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_JUMP,
PADDRH (msg_out_done),
}/*-------------------------< PPR_RESP >-------------*/,{
/*
* let the target fetch our answer.
*/
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDRH (nego_bad_phase),
}/*-------------------------< SEND_PPR >-------------*/,{
/*
* Send the M_X_PPR_REQ
*/
SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_JUMP,
PADDRH (msg_out_done),
}/*-------------------------< NEGO_BAD_PHASE >------------*/,{
SCR_INT,
SIR_NEGO_PROTO,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< MSG_OUT >-------------------*/,{
/*
* The target requests a message.
* We donnot send messages that may
* require the device to go to bus free.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
NADDR (msgout),
/*
* ... wait for the next phase
* if it's a message out, send it again, ...
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
PADDRH (msg_out),
}/*-------------------------< MSG_OUT_DONE >--------------*/,{
/*
* Let the C code be aware of the
* sent message and clear the message.
*/
SCR_INT,
SIR_MSG_OUT_DONE,
/*
* ... and process the next phase
*/
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< NO_DATA >--------------------*/,{
/*
* The target wants to tranfer too much data
* or in the wrong direction.
* Discard one data byte, if required.
* Count all discarded bytes.
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
8,
SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
NADDR (scratch),
SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
8,
SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
NADDR (scratch),
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
SCR_JUMPR ^ IFFALSE (IF (SCR_DT_DATA_OUT)),
8,
SCR_MOVE_ABS (1) ^ SCR_DT_DATA_OUT,
NADDR (scratch),
SCR_JUMPR ^ IFFALSE (IF (SCR_DT_DATA_IN)),
8,
SCR_MOVE_ABS (1) ^ SCR_DT_DATA_IN,
NADDR (scratch),
#endif
/*
* Set the extended error flag.
*/
SCR_REG_REG (HF_REG, SCR_OR, HF_EXT_ERR),
0,
SCR_LOAD_REL (scratcha, 1),
offsetof (struct sym_ccb, xerr_status),
SCR_REG_REG (scratcha, SCR_OR, XE_EXTRA_DATA),
0,
/*
* Count this byte.
* This will allow to return a positive
* residual to user.
*/
SCR_LOAD_REL (scratcha, 4),
offsetof (struct sym_ccb, phys.extra_bytes),
SCR_REG_REG (scratcha, SCR_ADD, 0x01),
0,
SCR_REG_REG (scratcha1, SCR_ADDC, 0),
0,
SCR_REG_REG (scratcha2, SCR_ADDC, 0),
0,
SCR_STORE_REL (scratcha, 4),
offsetof (struct sym_ccb, phys.extra_bytes),
/*
* .. and repeat as required.
*/
SCR_CALL,
PADDR (dispatch),
SCR_JUMP,
PADDRH (no_data),
}/*-------------------------< ABORT_RESEL >----------------*/,{
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
/*
* send the abort/abortag/reset message
* we expect an immediate disconnect
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_CLR (SCR_ACK|SCR_ATN),
0,
SCR_WAIT_DISC,
0,
SCR_INT,
SIR_RESEL_ABORTED,
SCR_JUMP,
PADDR (start),
}/*-------------------------< RESEND_IDENT >-------------------*/,{
/*
* The target stays in MSG OUT phase after having acked
* Identify [+ Tag [+ Extended message ]]. Targets shall
* behave this way on parity error.
* We must send it again all the messages.
*/
SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
SCR_JUMP,
PADDR (send_ident),
}/*-------------------------< IDENT_BREAK >-------------------*/,{
SCR_CLR (SCR_ATN),
0,
SCR_JUMP,
PADDR (select2),
}/*-------------------------< IDENT_BREAK_ATN >----------------*/,{
SCR_SET (SCR_ATN),
0,
SCR_JUMP,
PADDR (select2),
}/*-------------------------< SDATA_IN >-------------------*/,{
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
16,
SCR_CHMOV_TBL ^ SCR_DATA_IN,
offsetof (struct dsb, sense),
SCR_JUMPR,
8,
SCR_CHMOV_TBL ^ SCR_DT_DATA_IN,
offsetof (struct dsb, sense),
#else
SCR_CHMOV_TBL ^ SCR_DATA_IN,
offsetof (struct dsb, sense),
#endif
SCR_CALL,
PADDR (dispatch),
SCR_JUMP,
PADDRH (no_data),
}/*-------------------------< RESEL_BAD_LUN >---------------*/,{
/*
* Message is an IDENTIFY, but lun is unknown.
* Signal problem to C code for logging the event.
* Send a M_ABORT to clear all pending tasks.
*/
SCR_INT,
SIR_RESEL_BAD_LUN,
SCR_JUMP,
PADDRH (abort_resel),
}/*-------------------------< BAD_I_T_L >------------------*/,{
/*
* We donnot have a task for that I_T_L.
* Signal problem to C code for logging the event.
* Send a M_ABORT message.
*/
SCR_INT,
SIR_RESEL_BAD_I_T_L,
SCR_JUMP,
PADDRH (abort_resel),
}/*-------------------------< BAD_I_T_L_Q >----------------*/,{
/*
* We donnot have a task that matches the tag.
* Signal problem to C code for logging the event.
* Send a M_ABORTTAG message.
*/
SCR_INT,
SIR_RESEL_BAD_I_T_L_Q,
SCR_JUMP,
PADDRH (abort_resel),
}/*-------------------------< BAD_STATUS >-----------------*/,{
/*
* Anything different from INTERMEDIATE
* CONDITION MET should be a bad SCSI status,
* given that GOOD status has already been tested.
* Call the C code.
*/
SCR_LOAD_ABS (scratcha, 4),
PADDRH (startpos),
SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
SIR_BAD_SCSI_STATUS,
SCR_RETURN,
0,
}/*-------------------------< PM_HANDLE >------------------*/,{
/*
* Phase mismatch handling.
*
* Since we have to deal with 2 SCSI data pointers
* (current and saved), we need at least 2 contexts.
* Each context (pm0 and pm1) has a saved area, a
* SAVE mini-script and a DATA phase mini-script.
*/
/*
* Get the PM handling flags.
*/
SCR_FROM_REG (HF_REG),
0,
/*
* If no flags (1rst PM for example), avoid
* all the below heavy flags testing.
* This makes the normal case a bit faster.
*/
SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
PADDRH (pm_handle1),
/*
* If we received a SAVE DP, switch to the
* other PM context since the savep may point
* to the current PM context.
*/
SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
8,
SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
0,
/*
* If we have been interrupt in a PM DATA mini-script,
* we take the return address from the corresponding
* saved area.
* This ensure the return address always points to the
* main DATA script for this transfer.
*/
SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
PADDRH (pm_handle1),
SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
16,
SCR_LOAD_REL (ia, 4),
offsetof(struct sym_ccb, phys.pm0.ret),
SCR_JUMP,
PADDRH (pm_save),
SCR_LOAD_REL (ia, 4),
offsetof(struct sym_ccb, phys.pm1.ret),
SCR_JUMP,
PADDRH (pm_save),
}/*-------------------------< PM_HANDLE1 >-----------------*/,{
/*
* Normal case.
* Update the return address so that it
* will point after the interrupted MOVE.
*/
SCR_REG_REG (ia, SCR_ADD, 8),
0,
SCR_REG_REG (ia1, SCR_ADDC, 0),
0,
}/*-------------------------< PM_SAVE >--------------------*/,{
/*
* Clear all the flags that told us if we were
* interrupted in a PM DATA mini-script and/or
* we received a SAVE DP.
*/
SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
0,
/*
* Choose the current PM context.
*/
SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
PADDRH (pm1_save),
}/*-------------------------< PM0_SAVE >-------------------*/,{
SCR_STORE_REL (ia, 4),
offsetof(struct sym_ccb, phys.pm0.ret),
/*
* If WSR bit is set, either UA and RBC may
* have to be changed whether the device wants
* to ignore this residue ot not.
*/
SCR_FROM_REG (scntl2),
0,
SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
PADDRH (swide_scr_64),
/*
* Save the remaining byte count, the updated
* address and the return address.
*/
SCR_STORE_REL (rbc, 4),
offsetof(struct sym_ccb, phys.pm0.sg.size),
SCR_STORE_REL (ua, 4),
offsetof(struct sym_ccb, phys.pm0.sg.addr),
/*
* Set the current pointer at the PM0 DATA mini-script.
*/
SCR_LOAD_ABS (temp, 4),
PADDRH (pm0_data_addr),
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< PM1_SAVE >-------------------*/,{
SCR_STORE_REL (ia, 4),
offsetof(struct sym_ccb, phys.pm1.ret),
/*
* If WSR bit is set, either UA and RBC may
* have been changed whether the device wants
* to ignore this residue or not.
*/
SCR_FROM_REG (scntl2),
0,
SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
PADDRH (swide_scr_64),
/*
* Save the remaining byte count, the updated
* address and the return address.
*/
SCR_STORE_REL (rbc, 4),
offsetof(struct sym_ccb, phys.pm1.sg.size),
SCR_STORE_REL (ua, 4),
offsetof(struct sym_ccb, phys.pm1.sg.addr),
/*
* Set the current pointer at the PM1 DATA mini-script.
*/
SCR_LOAD_ABS (temp, 4),
PADDRH (pm1_data_addr),
SCR_JUMP,
PADDR (dispatch),
}/*--------------------------< SWIDE_MA_32 >-----------------------*/,{
/*
* Handling of the SWIDE for 32 bit chips.
*
* We jump here from the C code with SCRATCHA
* containing the address to write the SWIDE.
* - Save 32 bit address in <scratch>.
*/
SCR_STORE_ABS (scratcha, 4),
PADDRH (scratch),
SCR_JUMP,
PADDRH (swide_common),
}/*--------------------------< SWIDE_MA_64 >-----------------------*/,{
/*
* Handling of the SWIDE for 64 bit chips when the
* hardware handling of phase mismatch is disabled.
*
* We jump here from the C code with SCRATCHA
* containing the address to write the SWIDE and
* SBR containing bit 32..39 of this address.
* - Save 32 bit address in <scratch>.
* - Move address bit 32..39 to SFBR.
*/
SCR_STORE_ABS (scratcha, 4),
PADDRH (scratch),
SCR_FROM_REG (sbr),
0,
SCR_JUMP,
PADDRH (swide_com_64),
}/*--------------------------< SWIDE_SCR_64 >-----------------------*/,{
/*
* Handling of the SWIDE for 64 bit chips when
* hardware phase mismatch is enabled.
* We are entered with a SCR_CALL from PMO_SAVE
* and PM1_SAVE sub-scripts.
*
* Snoop the SCSI BUS in case of the device
* willing to ignore this residue.
* If it does, we must only increment the RBC,
* since this register does reflect all bytes
* received from the SCSI BUS including the SWIDE.
*/
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDRH (swide_scr_64_1),
SCR_FROM_REG (sbdl),
0,
SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
PADDRH (swide_scr_64_1),
SCR_REG_REG (rbc, SCR_ADD, 1),
0,
SCR_REG_REG (rbc1, SCR_ADDC, 0),
0,
SCR_REG_REG (rbc2, SCR_ADDC, 0),
0,
/*
* Save UA and RBC, since the PM0/1_SAVE
* sub-scripts haven't moved them to the
* context yet and the below MOV may just
* change their value.
*/
SCR_STORE_ABS (ua, 4),
PADDRH (scratch),
SCR_STORE_ABS (rbc, 4),
PADDRH (scratch1),
/*
* Throw away the IGNORE WIDE RESIDUE message.
* since we just did take care of it.
*/
SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
NADDR (scratch),
SCR_CLR (SCR_ACK),
0,
/*
* Restore UA and RBC registers and return.
*/
SCR_LOAD_ABS (ua, 4),
PADDRH (scratch),
SCR_LOAD_ABS (rbc, 4),
PADDRH (scratch1),
SCR_RETURN,
0,
}/*--------------------------< SWIDE_SCR_64_1 >---------------------*/,{
/*
* We must grab the SWIDE and move it to
* memory.
*
* - Save UA (32 bit address) in <scratch>.
* - Move address bit 32..39 to SFBR.
* - Increment UA (updated address).
*/
SCR_STORE_ABS (ua, 4),
PADDRH (scratch),
SCR_FROM_REG (rbc3),
0,
SCR_REG_REG (ua, SCR_ADD, 1),
0,
SCR_REG_REG (ua1, SCR_ADDC, 0),
0,
SCR_REG_REG (ua2, SCR_ADDC, 0),
0,
SCR_REG_REG (ua3, SCR_ADDC, 0),
0,
}/*--------------------------< SWIDE_COM_64 >-----------------------*/,{
/*
* - Save DRS.
* - Load DRS with address bit 32..39 of the
* location to write the SWIDE.
* SFBR has been loaded with these bits.
* (Look above).
*/
SCR_STORE_ABS (drs, 4),
PADDRH (saved_drs),
SCR_LOAD_ABS (drs, 4),
PADDRH (zero),
SCR_TO_REG (drs),
0,
}/*--------------------------< SWIDE_COMMON >-----------------------*/,{
/*
* - Save current DSA
* - Load DSA with bit 0..31 of the memory
* location to write the SWIDE.
*/
SCR_STORE_ABS (dsa, 4),
PADDRH (saved_dsa),
SCR_LOAD_ABS (dsa, 4),
PADDRH (scratch),
/*
* Move the SWIDE to memory.
* Clear the WSR bit.
*/
SCR_STORE_REL (swide, 1),
0,
SCR_REG_REG (scntl2, SCR_OR, WSR),
0,
/*
* Restore the original DSA.
*/
SCR_LOAD_ABS (dsa, 4),
PADDRH (saved_dsa),
}/*--------------------------< SWIDE_FIN_32 >-----------------------*/,{
/*
* For 32 bit chip, the following SCRIPTS
* instruction is patched with a JUMP to dispatcher.
* (Look into the C code).
*/
SCR_LOAD_ABS (drs, 4),
PADDRH (saved_drs),
/*
* 64 bit chip only.
* If PM handling from SCRIPTS, we are just
* a helper for the C code, so jump to
* dispatcher now.
*/
SCR_FROM_REG (ccntl0),
0,
SCR_JUMP ^ IFFALSE (MASK (ENPMJ, ENPMJ)),
PADDR (dispatch),
/*
* 64 bit chip with hardware PM handling enabled.
*
* Since we are paranoid:), we donnot want
* a SWIDE followed by a CHMOV(1) to lead to
* a CHMOV(0) in our PM context.
* We check against such a condition.
* Also does the C code.
*/
SCR_FROM_REG (rbc),
0,
SCR_RETURN ^ IFFALSE (DATA (0)),
0,
SCR_FROM_REG (rbc1),
0,
SCR_RETURN ^ IFFALSE (DATA (0)),
0,
SCR_FROM_REG (rbc2),
0,
SCR_RETURN ^ IFFALSE (DATA (0)),
0,
/*
* If we are there, RBC(0..23) is zero,
* and we just have to load the current
* DATA SCRIPTS address (register TEMP)
* with the IA and go to dispatch.
* No PM context is needed.
*/
SCR_STORE_ABS (ia, 4),
PADDRH (scratch),
SCR_LOAD_ABS (temp, 4),
PADDRH (scratch),
SCR_JUMP,
PADDR (dispatch),
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
}/*-------------------------< DT_DATA_IN >--------------------*/,{
/*
* Because the size depends on the
* #define SYMCONF_MAX_SG parameter,
* it is filled in at runtime.
*
* ##===========< i=0; i<SYMCONF_MAX_SG >=========
* || SCR_CHMOV_TBL ^ SCR_DT_DATA_IN,
* || offsetof (struct dsb, data[ i]),
* ##==========================================
*/
0
}/*-------------------------< DT_DATA_IN2 >-------------------*/,{
SCR_CALL,
PADDR (datai_done),
SCR_JUMP,
PADDRH (no_data),
}/*-------------------------< DT_DATA_OUT >--------------------*/,{
/*
* Because the size depends on the
* #define SYMCONF_MAX_SG parameter,
* it is filled in at runtime.
*
* ##===========< i=0; i<SYMCONF_MAX_SG >=========
* || SCR_CHMOV_TBL ^ SCR_DT_DATA_OUT,
* || offsetof (struct dsb, data[ i]),
* ##==========================================
*/
0
}/*-------------------------< DT_DATA_OUT2 >-------------------*/,{
SCR_CALL,
PADDR (datao_done),
SCR_JUMP,
PADDRH (no_data),
#endif /* SYMCONF_BROKEN_U3EN_SUPPORT */
}/*-------------------------< ZERO >------------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< SCRATCH >---------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< SCRATCH1 >--------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< PM0_DATA_ADDR >---------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< PM1_DATA_ADDR >---------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< SAVED_DSA >-------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< SAVED_DRS >-------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< DONE_POS >--------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< STARTPOS >--------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< TARGTBL >---------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< SNOOPTEST >-------------------*/,{
/*
* Read the variable.
*/
SCR_LOAD_REL (scratcha, 4),
offsetof(struct sym_hcb, cache),
SCR_STORE_REL (temp, 4),
offsetof(struct sym_hcb, cache),
SCR_LOAD_REL (temp, 4),
offsetof(struct sym_hcb, cache),
}/*-------------------------< SNOOPEND >-------------------*/,{
/*
* And stop.
*/
SCR_INT,
99,
}/*--------------------------------------------------------*/
};
/*
* Fill in #define dependent parts of the scripts
*/
static void sym_fill_scripts (script_p scr, scripth_p scrh)
{
int i;
u32 *p;
p = scr->data_in;
for (i=0; i<SYMCONF_MAX_SG; i++) {
*p++ =SCR_CHMOV_TBL ^ SCR_DATA_IN;
*p++ =offsetof (struct dsb, data[i]);
};
assert ((u_long)p == (u_long)&scr->data_in + sizeof (scr->data_in));
p = scr->data_out;
for (i=0; i<SYMCONF_MAX_SG; i++) {
*p++ =SCR_CHMOV_TBL ^ SCR_DATA_OUT;
*p++ =offsetof (struct dsb, data[i]);
};
assert ((u_long)p == (u_long)&scr->data_out + sizeof (scr->data_out));
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
p = scrh->dt_data_in;
for (i=0; i<SYMCONF_MAX_SG; i++) {
*p++ =SCR_CHMOV_TBL ^ SCR_DT_DATA_IN;
*p++ =offsetof (struct dsb, data[i]);
};
assert ((u_long)p ==
(u_long)&scrh->dt_data_in + sizeof (scrh->dt_data_in));
p = scrh->dt_data_out;
for (i=0; i<SYMCONF_MAX_SG; i++) {
*p++ =SCR_CHMOV_TBL ^ SCR_DATA_OUT;
*p++ =offsetof (struct dsb, data[i]);
};
assert ((u_long)p ==
(u_long)&scrh->dt_data_out + sizeof (scrh->dt_data_out));
#endif
}
/*
* Copy and bind a script.
*/
static void sym_bind_script (hcb_p np, u32 *src, u32 *dst, int len)
{
u32 opcode, new, old, tmp1, tmp2;
u32 *start, *end;
int relocs;
int opchanged = 0;
start = src;
end = src + len/4;
while (src < end) {
opcode = *src++;
*dst++ = cpu_to_scr(opcode);
/*
* If we forget to change the length
* in scripts, a field will be
* padded with 0. This is an illegal
* command.
*/
if (opcode == 0) {
printf ("%s: ERROR0 IN SCRIPT at %d.\n",
sym_name(np), (int) (src-start-1));
MDELAY (10000);
continue;
};
/*
* We use the bogus value 0xf00ff00f ;-)
* to reserve data area in SCRIPTS.
*/
if (opcode == SCR_DATA_ZERO) {
dst[-1] = 0;
continue;
}
if (DEBUG_FLAGS & DEBUG_SCRIPT)
printf ("%p: <%x>\n", (src-1), (unsigned)opcode);
/*
* We don't have to decode ALL commands
*/
switch (opcode >> 28) {
case 0xf:
/*
* LOAD / STORE DSA relative, don't relocate.
*/
relocs = 0;
break;
case 0xe:
/*
* LOAD / STORE absolute.
*/
relocs = 1;
break;
case 0xc:
/*
* COPY has TWO arguments.
*/
relocs = 2;
tmp1 = src[0];
tmp2 = src[1];
#ifdef RELOC_KVAR
if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
tmp1 = 0;
if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
tmp2 = 0;
#endif
if ((tmp1 ^ tmp2) & 3) {
printf ("%s: ERROR1 IN SCRIPT at %d.\n",
sym_name(np), (int) (src-start-1));
MDELAY (1000);
}
/*
* If PREFETCH feature not enabled, remove
* the NO FLUSH bit if present.
*/
if ((opcode & SCR_NO_FLUSH) &&
!(np->features & FE_PFEN)) {
dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
++opchanged;
}
break;
case 0x0:
/*
* MOVE/CHMOV (absolute address)
*/
if (!(np->features & FE_WIDE))
dst[-1] = cpu_to_scr(opcode | OPC_MOVE);
relocs = 1;
break;
case 0x1:
/*
* MOVE/CHMOV (table indirect)
*/
if (!(np->features & FE_WIDE))
dst[-1] = cpu_to_scr(opcode | OPC_MOVE);
relocs = 0;
break;
case 0x8:
/*
* JUMP / CALL
* dont't relocate if relative :-)
*/
if (opcode & 0x00800000)
relocs = 0;
else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
relocs = 2;
else
relocs = 1;
break;
case 0x4:
case 0x5:
case 0x6:
case 0x7:
relocs = 1;
break;
default:
relocs = 0;
break;
};
if (!relocs) {
*dst++ = cpu_to_scr(*src++);
continue;
}
while (relocs--) {
old = *src++;
switch (old & RELOC_MASK) {
case RELOC_REGISTER:
new = (old & ~RELOC_MASK) + np->mmio_ba;
break;
case RELOC_LABEL:
new = (old & ~RELOC_MASK) + np->script_ba;
break;
case RELOC_LABELH:
new = (old & ~RELOC_MASK) + np->scripth_ba;
break;
case RELOC_SOFTC:
new = (old & ~RELOC_MASK) + vtobus(np);
break;
#ifdef RELOC_KVAR
case RELOC_KVAR:
if (((old & ~RELOC_MASK) < SCRIPT_KVAR_FIRST) ||
((old & ~RELOC_MASK) > SCRIPT_KVAR_LAST))
panic("KVAR out of range");
new = vtobus(script_kvars[old & ~RELOC_MASK]);
#endif
break;
case 0:
/* Don't relocate a 0 address. */
if (old == 0) {
new = old;
break;
}
/* fall through */
default:
new = 0; /* For 'cc' not to complain */
panic("sym_bind_script: "
"weird relocation %x\n", old);
break;
}
*dst++ = cpu_to_scr(new);
}
};
}
/*
* Print something which allows to retrieve the controler type,
* unit, target, lun concerned by a kernel message.
*/
static void PRINT_TARGET (hcb_p np, int target)
{
printf ("%s:%d:", sym_name(np), target);
}
static void PRINT_LUN(hcb_p np, int target, int lun)
{
printf ("%s:%d:%d:", sym_name(np), target, lun);
}
static void PRINT_ADDR (ccb_p cp)
{
if (cp && cp->cam_ccb)
xpt_print_path(cp->cam_ccb->ccb_h.path);
}
/*
* Take into account this ccb in the freeze count.
* The flag that tells user about avoids doing that
* more than once for a ccb.
*/
static void sym_freeze_cam_ccb(union ccb *ccb)
{
if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, 1);
}
}
}
/*
* Set the status field of a CAM CCB.
*/
static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
{
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= status;
}
/*
* Get the status field of a CAM CCB.
*/
static __inline int sym_get_cam_status(union ccb *ccb)
{
return ccb->ccb_h.status & CAM_STATUS_MASK;
}
/*
* Enqueue a CAM CCB.
*/
static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
{
assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
ccb->ccb_h.status = CAM_REQ_INPROG;
ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb,
ccb->ccb_h.timeout*hz/1000);
ccb->ccb_h.status |= CAM_SIM_QUEUED;
ccb->ccb_h.sym_hcb_ptr = np;
sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
}
/*
* Complete a pending CAM CCB.
*/
static void sym_xpt_done(hcb_p np, union ccb *ccb)
{
if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch);
sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ccb->ccb_h.sym_hcb_ptr = 0;
}
if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
sym_freeze_cam_ccb(ccb);
xpt_done(ccb);
}
static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
{
sym_set_cam_status(ccb, cam_status);
sym_xpt_done(np, ccb);
}
/*
* SYMBIOS chip clock divisor table.
*
* Divisors are multiplied by 10,000,000 in order to make
* calculations more simple.
*/
#define _5M 5000000
static u_long div_10M[] =
{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
/*
* SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
* 128 transfers. All chips support at least 16 transfers
* bursts. The 825A, 875 and 895 chips support bursts of up
* to 128 transfers and the 895A and 896 support bursts of up
* to 64 transfers. All other chips support up to 16
* transfers bursts.
*
* For PCI 32 bit data transfers each transfer is a DWORD.
* It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
* Only the 896 is able to perform 64 bit data transfers.
*
* We use log base 2 (burst length) as internal code, with
* value 0 meaning "burst disabled".
*/
/*
* Burst length from burst code.
*/
#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
/*
* Burst code from io register bits.
*/
#define burst_code(dmode, ctest4, ctest5) \
(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
/*
* Set initial io register bits from burst code.
*/
static __inline void sym_init_burst(hcb_p np, u_char bc)
{
np->rv_ctest4 &= ~0x80;
np->rv_dmode &= ~(0x3 << 6);
np->rv_ctest5 &= ~0x4;
if (!bc) {
np->rv_ctest4 |= 0x80;
}
else {
--bc;
np->rv_dmode |= ((bc & 0x3) << 6);
np->rv_ctest5 |= (bc & 0x4);
}
}
/*
* Print out the list of targets that have some flag disabled by user.
*/
static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
{
int cnt;
int i;
for (cnt = 0, i = 0 ; i < SYMCONF_MAX_TARGET ; i++) {
if (i == np->myaddr)
continue;
if (np->target[i].usrflags & mask) {
if (!cnt++)
printf("%s: %s disabled for targets",
sym_name(np), msg);
printf(" %d", i);
}
}
if (cnt)
printf(".\n");
}
/*
* Prepare io register values used by sym_init() according
* to selected and supported features.
*/
static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
{
u_char burst_max;
u_long period;
int i;
/*
* Save assumed BIOS setting
*/
np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
np->sv_scntl3 = INB(nc_scntl3) & 0x07;
np->sv_dmode = INB(nc_dmode) & 0xce;
np->sv_dcntl = INB(nc_dcntl) & 0xa8;
np->sv_ctest3 = INB(nc_ctest3) & 0x01;
np->sv_ctest4 = INB(nc_ctest4) & 0x80;
np->sv_gpcntl = INB(nc_gpcntl);
np->sv_stest2 = INB(nc_stest2) & 0x20;
np->sv_stest4 = INB(nc_stest4);
if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
np->sv_scntl4 = INB(nc_scntl4);
np->sv_ctest5 = INB(nc_ctest5) & 0x04;
}
else
np->sv_ctest5 = INB(nc_ctest5) & 0x24;
/*
* Wide ?
*/
np->maxwide = (np->features & FE_WIDE)? 1 : 0;
/*
* Get the frequency of the chip's clock.
*/
if (np->features & FE_QUAD)
np->multiplier = 4;
else if (np->features & FE_DBLR)
np->multiplier = 2;
else
np->multiplier = 1;
np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000;
np->clock_khz *= np->multiplier;
if (np->clock_khz != 40000)
sym_getclock(np, np->multiplier);
/*
* Divisor to be used for async (timer pre-scaler).
*/
i = np->clock_divn - 1;
while (--i >= 0) {
if (10ul * SYMCONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
++i;
break;
}
}
np->rv_scntl3 = i+1;
/*
* The C1010 uses hardwired divisors for async.
* So, we just throw away, the async. divisor.:-)
*/
if (np->features & FE_C10)
np->rv_scntl3 = 0;
/*
* Minimum synchronous period factor supported by the chip.
* Btw, 'period' is in tenths of nanoseconds.
*/
period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
if (period <= 250) np->minsync = 10;
else if (period <= 303) np->minsync = 11;
else if (period <= 500) np->minsync = 12;
else np->minsync = (period + 40 - 1) / 40;
/*
* Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
*/
if (np->minsync < 25 &&
!(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
np->minsync = 25;
else if (np->minsync < 12 &&
!(np->features & (FE_ULTRA2|FE_ULTRA3)))
np->minsync = 12;
/*
* Maximum synchronous period factor supported by the chip.
*/
period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
np->maxsync = period > 2540 ? 254 : period / 10;
/*
* If chip is a C1010, guess the sync limits in DT mode.
*/
if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
if (np->clock_khz == 160000) {
np->minsync_dt = 9;
np->maxsync_dt = 50;
}
}
/*
* 64 bit (53C895A or 53C896) ?
*/
if (np->features & FE_64BIT)
#if BITS_PER_LONG > 32
np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
#else
np->rv_ccntl1 |= (DDAC);
#endif
/*
* Phase mismatch handled by SCRIPTS (895A/896/1010) ?
*/
if (np->features & FE_NOPM)
np->rv_ccntl0 |= (ENPMJ);
/*
* C1010 Errata.
* In dual channel mode, contention occurs if internal cycles
* are used. Disable internal cycles.
*/
if (np->device_id == PCI_ID_LSI53C1010 && np->revision_id < 0x45)
np->rv_ccntl0 |= DILS;
/*
* Prepare initial value of other IO registers
*/
#if defined SYMCONF_TRUST_BIOS_SETTING
np->rv_scntl0 = np->sv_scntl0;
np->rv_dmode = np->sv_dmode;
np->rv_dcntl = np->sv_dcntl;
np->rv_ctest3 = np->sv_ctest3;
np->rv_ctest4 = np->sv_ctest4;
np->rv_ctest5 = np->sv_ctest5;
burst_max = burst_code(np->sv_dmode, np->sv_ctest4,np->sv_ctest5);
#else
/*
* Select burst length (dwords)
*/
burst_max = SYMSETUP_BURST_ORDER;
if (burst_max == 255)
burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
np->sv_ctest5);
if (burst_max > 7)
burst_max = 7;
if (burst_max > np->maxburst)
burst_max = np->maxburst;
/*
* DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
* This chip and the 860 Rev 1 may wrongly use PCI cache line
* based transactions on LOAD/STORE instructions. So we have
* to prevent these chips from using such PCI transactions in
* this driver. The generic ncr driver that does not use
* LOAD/STORE instructions does not need this work-around.
*/
if ((np->device_id == PCI_ID_SYM53C810 &&
np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
(np->device_id == PCI_ID_SYM53C860 &&
np->revision_id <= 0x1))
np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
/*
* Select all supported special features.
* If we are using on-board RAM for scripts, prefetch (PFEN)
* does not help, but burst op fetch (BOF) does.
* Disabling PFEN makes sure BOF will be used.
*/
if (np->features & FE_ERL)
np->rv_dmode |= ERL; /* Enable Read Line */
if (np->features & FE_BOF)
np->rv_dmode |= BOF; /* Burst Opcode Fetch */
if (np->features & FE_ERMP)
np->rv_dmode |= ERMP; /* Enable Read Multiple */
#if 1
if ((np->features & FE_PFEN) && !np->ram_ba)
#else
if (np->features & FE_PFEN)
#endif
np->rv_dcntl |= PFEN; /* Prefetch Enable */
if (np->features & FE_CLSE)
np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
if (np->features & FE_WRIE)
np->rv_ctest3 |= WRIE; /* Write and Invalidate */
if (np->features & FE_DFS)
np->rv_ctest5 |= DFS; /* Dma Fifo Size */
/*
* Select some other
*/
if (SYMSETUP_PCI_PARITY)
np->rv_ctest4 |= MPEE; /* Master parity checking */
if (SYMSETUP_SCSI_PARITY)
np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
/*
* Get parity checking, host ID and verbose mode from NVRAM
*/
np->myaddr = 255;
sym_nvram_setup_host (np, nvram);
/*
* Get SCSI addr of host adapter (set by bios?).
*/
if (np->myaddr == 255) {
np->myaddr = INB(nc_scid) & 0x07;
if (!np->myaddr)
np->myaddr = SYMSETUP_HOST_ID;
}
#endif /* SYMCONF_TRUST_BIOS_SETTING */
/*
* Prepare initial io register bits for burst length
*/
sym_init_burst(np, burst_max);
/*
* Set SCSI BUS mode.
* - LVD capable chips (895/895A/896/1010) report the
* current BUS mode through the STEST4 IO register.
* - For previous generation chips (825/825A/875),
* user has to tell us how to check against HVD,
* since a 100% safe algorithm is not possible.
*/
np->scsi_mode = SMODE_SE;
if (np->features & (FE_ULTRA2|FE_ULTRA3))
np->scsi_mode = (np->sv_stest4 & SMODE);
else if (np->features & FE_DIFF) {
if (SYMSETUP_SCSI_DIFF == 1) {
if (np->sv_scntl3) {
if (np->sv_stest2 & 0x20)
np->scsi_mode = SMODE_HVD;
}
else if (nvram->type == SYM_SYMBIOS_NVRAM) {
if (INB(nc_gpreg) & 0x08)
np->scsi_mode = SMODE_HVD;
}
}
else if (SYMSETUP_SCSI_DIFF == 2)
np->scsi_mode = SMODE_HVD;
}
if (np->scsi_mode == SMODE_HVD)
np->rv_stest2 |= 0x20;
/*
* Set LED support from SCRIPTS.
* Ignore this feature for boards known to use a
* specific GPIO wiring and for the 895A or 896
* that drive the LED directly.
*/
if ((SYMSETUP_SCSI_LED || nvram->type == SYM_SYMBIOS_NVRAM) &&
!(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
np->features |= FE_LED0;
/*
* Set irq mode.
*/
switch(SYMSETUP_IRQ_MODE & 3) {
case 2:
np->rv_dcntl |= IRQM;
break;
case 1:
np->rv_dcntl |= (np->sv_dcntl & IRQM);
break;
default:
break;
}
/*
* Configure targets according to driver setup.
* If NVRAM present get targets setup from NVRAM.
*/
for (i = 0 ; i < SYMCONF_MAX_TARGET ; i++) {
tcb_p tp = &np->target[i];
tp->tinfo.user.period = np->minsync;
tp->tinfo.user.offset = np->maxoffs;
tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
tp->usrtags = SYMSETUP_MAX_TAG;
sym_nvram_setup_target (np, i, nvram);
if (!tp->usrtags)
tp->usrflags &= ~SYM_TAGS_ENABLED;
}
/*
* Let user know about the settings.
*/
i = nvram->type;
printf("%s: %s NVRAM, ID %d, Fast-%d, %s%s\n", sym_name(np),
i == SYM_SYMBIOS_NVRAM ? "Symbios" :
(i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"),
np->myaddr,
np->minsync < 10 ? 80 : (np->minsync < 12 ? 40 :
(np->minsync < 25 ? 20 : 10)),
(np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity",
np->scsi_mode == SMODE_HVD ? ", HVD" : "");
/*
* Tell him more on demand.
*/
if (sym_verbose)
printf("%s: %s IRQ line driver%s\n",
sym_name(np),
np->rv_dcntl & IRQM ? "totem pole" : "open drain",
np->ram_ba ? ", using on-chip SRAM" : "");
/*
* And still more.
*/
if (sym_verbose > 1) {
printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
}
/*
* Let user be aware of targets that have some disable flags set.
*/
sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
if (sym_verbose)
sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
"SCAN FOR LUNS");
return 0;
}
/*
* Prepare the next negotiation message if needed.
*
* Fill in the part of message buffer that contains the
* negotiation and the nego_status field of the CCB.
* Returns the size of the message in bytes.
*/
static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
{
tcb_p tp = &np->target[cp->target];
int msglen = 0;
#if 1
/*
* For now, only use PPR with DT option if period factor = 9.
*/
if (tp->tinfo.goal.period == 9) {
nego = NS_PPR;
tp->tinfo.goal.options = PPR_OPT_DT;
}
#endif
#ifndef SYMCONF_BROKEN_U3EN_SUPPORT
if (!(np->features & FE_U3EN))
tp->tinfo.goal.options = 0;
#endif
/*
* negotiate using PPR ?
*/
if (tp->tinfo.goal.options & PPR_OPT_MASK)
nego = NS_PPR;
/*
* negotiate wide transfers ?
*/
else if (tp->tinfo.current.width != tp->tinfo.goal.width)
nego = NS_WIDE;
/*
* negotiate synchronous transfers?
*/
else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
tp->tinfo.current.offset != tp->tinfo.goal.offset)
nego = NS_SYNC;
switch (nego) {
case NS_SYNC:
msgptr[msglen++] = M_EXTENDED;
msgptr[msglen++] = 3;
msgptr[msglen++] = M_X_SYNC_REQ;
msgptr[msglen++] = tp->tinfo.goal.period;
msgptr[msglen++] = tp->tinfo.goal.offset;
break;
case NS_WIDE:
msgptr[msglen++] = M_EXTENDED;
msgptr[msglen++] = 2;
msgptr[msglen++] = M_X_WIDE_REQ;
msgptr[msglen++] = tp->tinfo.goal.width;
break;
case NS_PPR:
msgptr[msglen++] = M_EXTENDED;
msgptr[msglen++] = 6;
msgptr[msglen++] = M_X_PPR_REQ;
msgptr[msglen++] = tp->tinfo.goal.period;
msgptr[msglen++] = 0;
msgptr[msglen++] = tp->tinfo.goal.offset;
msgptr[msglen++] = tp->tinfo.goal.width;
msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
break;
};
cp->nego_status = nego;
if (nego) {
tp->nego_cp = cp; /* Keep track a nego will be performed */
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "nego msgout:", msgptr);
};
};
return msglen;
}
/*
* Insert a job into the start queue.
*/
static void sym_put_start_queue(hcb_p np, ccb_p cp)
{
u_short qidx;
#ifdef SYMCONF_IARB_SUPPORT
/*
* If the previously queued CCB is not yet done,
* set the IARB hint. The SCRIPTS will go with IARB
* for this job when starting the previous one.
* We leave devices a chance to win arbitration by
* not using more than 'iarb_max' consecutive
* immediate arbitrations.
*/
if (np->last_cp && np->iarb_count < np->iarb_max) {
np->last_cp->host_flags |= HF_HINT_IARB;
++np->iarb_count;
}
else
np->iarb_count = 0;
np->last_cp = cp;
#endif
/*
* Insert first the idle task and then our job.
* The MB should ensure proper ordering.
*/
qidx = np->squeueput + 2;
if (qidx >= MAX_QUEUE*2) qidx = 0;
np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
MEMORY_BARRIER();
np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
np->squeueput = qidx;
if (DEBUG_FLAGS & DEBUG_QUEUE)
printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
/*
* Script processor may be waiting for reselect.
* Wake it up.
*/
MEMORY_BARRIER();
OUTB (nc_istat, SIGP|np->istat_sem);
}
/*
* Soft reset the chip.
*
* Some 896 and 876 chip revisions may hang-up if we set
* the SRST (soft reset) bit at the wrong time when SCRIPTS
* are running.
* So, we need to abort the current operation prior to
* soft resetting the chip.
*/
static void sym_soft_reset (hcb_p np)
{
u_char istat;
int i;
OUTB (nc_istat, CABRT);
for (i = 1000000 ; i ; --i) {
istat = INB (nc_istat);
if (istat & SIP) {
INW (nc_sist);
continue;
}
if (istat & DIP) {
OUTB (nc_istat, 0);
INB (nc_dstat);
break;
}
}
if (!i)
printf("%s: unable to abort current chip operation.\n",
sym_name(np));
OUTB (nc_istat, SRST);
UDELAY(10);
OUTB (nc_istat, 0);
}
/*
* Start reset process.
*
* The interrupt handler will reinitialize the chip.
*/
static void sym_start_reset(hcb_p np)
{
(void) sym_reset_scsi_bus(np, 1);
}
static int sym_reset_scsi_bus(hcb_p np, int enab_int)
{
u32 term;
int retv = 0;
sym_soft_reset(np); /* Soft reset the chip */
UDELAY (2000); /* The 895/6 need time for the bus mode to settle */
if (enab_int)
OUTW (nc_sien, RST);
/*
* Enable Tolerant, reset IRQD if present and
* properly set IRQ mode, prior to resetting the bus.
*/
OUTB (nc_stest3, TE);
OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
OUTB (nc_scntl1, CRST);
UDELAY (200);
if (!SYMSETUP_SCSI_BUS_CHECK)
goto out;
/*
* Check for no terminators or SCSI bus shorts to ground.
* Read SCSI data bus, data parity bits and control signals.
* We are expecting RESET to be TRUE and other signals to be
* FALSE.
*/
term = INB(nc_sstat0); /* rst, sdp0 */
term = ((term & 2) << 7) + ((term & 1) << 16);
term |= ((INB(nc_sstat2) & 0x01) << 25) | /* sdp1 */
(INW(nc_sbdl) << 9) | /* d15-0 */
INB(nc_sbcl); /* req, ack, bsy, sel, atn, msg, cd, io */
if (!(np->features & FE_WIDE))
term &= 0x3ffff;
if (term != (2<<7)) {
printf("%s: suspicious SCSI data while resetting the BUS.\n",
sym_name(np));
printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
"0x%lx, expecting 0x%lx\n",
sym_name(np),
(np->features & FE_WIDE) ? "dp1,d15-8," : "",
(u_long)term, (u_long)(2<<7));
if (SYMSETUP_SCSI_BUS_CHECK == 1)
retv = 1;
}
out:
OUTB (nc_scntl1, 0);
/* MDELAY(100); */
return retv;
}
/*
* The chip may have completed jobs. Look at the DONE QUEUE.
*/
static int sym_wakeup_done (hcb_p np)
{
ccb_p cp;
int i, n;
u_long dsa;
n = 0;
i = np->dqueueget;
while (1) {
dsa = scr_to_cpu(np->dqueue[i]);
if (!dsa)
break;
np->dqueue[i] = 0;
if ((i = i+2) >= MAX_QUEUE*2)
i = 0;
cp = sym_ccb_from_dsa(np, dsa);
if (cp) {
sym_complete_ok (np, cp);
++n;
}
else
printf ("%s: bad DSA (%lx) in done queue.\n",
sym_name(np), dsa);
}
np->dqueueget = i;
return n;
}
/*
* Complete all active CCBs with error.
* Used on CHIP/SCSI RESET.
*/
static void sym_flush_busy_queue (hcb_p np, int cam_status)
{
/*
* Move all active CCBs to the COMP queue
* and flush this queue.
*/
sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
sym_que_init(&np->busy_ccbq);
sym_flush_comp_queue(np, cam_status);
}
/*
* Start chip.
*/
static void sym_init (hcb_p np, int reset, char *msg)
{
int i;
u_long phys;
/*
* Reset chip if asked, otherwise just clear fifos.
*/
if (reset)
sym_soft_reset(np);
else {
OUTB (nc_stest3, TE|CSF);
OUTONB (nc_ctest3, CLF);
}
/*
* Message.
*/
if (msg) printf ("%s: restart (%s).\n", sym_name (np), msg);
/*
* Clear Start Queue
*/
phys = vtobus(np->squeue);
for (i = 0; i < MAX_QUEUE*2; i += 2) {
np->squeue[i] = cpu_to_scr(np->idletask_ba);
np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
}
np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
/*
* Start at first entry.
*/
np->squeueput = 0;
np->scripth0->startpos[0] = cpu_to_scr(phys);
/*
* Clear Done Queue
*/
phys = vtobus(np->dqueue);
for (i = 0; i < MAX_QUEUE*2; i += 2) {
np->dqueue[i] = 0;
np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
}
np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
/*
* Start at first entry.
*/
np->scripth0->done_pos[0] = cpu_to_scr(phys);
np->dqueueget = 0;
/*
* Wakeup all pending jobs.
*/
sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
/*
* Init chip.
*/
OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */
UDELAY (2000); /* The 895 needs time for the bus mode to settle */
OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
/* full arb., ena parity, par->ATN */
OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
OUTB (nc_istat , SIGP ); /* Signal Process */
OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
/* Extended Sreq/Sack filtering not supported on the C10 */
if (np->features & FE_C10)
OUTB (nc_stest2, np->rv_stest2);
else
OUTB (nc_stest2, EXT|np->rv_stest2);
OUTB (nc_stest3, TE); /* TolerANT enable */
OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
/*
* C10101 Errata.
* Errant SGE's when in narrow. Write bits 4 & 5 of
* STEST1 register to disable SGE. We probably should do
* that from SCRIPTS for each selection/reselection, but
* I just don't want. :)
*/
if (np->device_id == PCI_ID_LSI53C1010 && np->revision_id < 0x45)
OUTB (nc_stest1, INB(nc_stest1) | 0x30);
/*
* DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
* Disable overlapped arbitration for some dual function devices,
* regardless revision id (kind of post-chip-design feature. ;-))
*/
if (np->device_id == PCI_ID_SYM53C875)
OUTB (nc_ctest0, (1<<5));
else if (np->device_id == PCI_ID_SYM53C896)
np->rv_ccntl0 |= DPR;
/*
* If 64 bit (895A/896/1010) write CCNTL1 to enable 40 bit
* address table indirect addressing for MOVE.
* Also write CCNTL0 if 64 bit chip, since this register seems
* to only be used by 64 bit cores.
*/
if (np->features & FE_64BIT) {
OUTB (nc_ccntl0, np->rv_ccntl0);
OUTB (nc_ccntl1, np->rv_ccntl1);
}
/*
* If phase mismatch handled by scripts (895A/896/1010),
* set PM jump addresses.
*/
if (np->features & FE_NOPM) {
if (sym_verbose)
printf("%s: handling phase mismatch from SCRIPTS.\n",
sym_name(np));
OUTL (nc_pmjad1, SCRIPTH_BA (np, pm_handle));
OUTL (nc_pmjad2, SCRIPTH_BA (np, pm_handle));
}
/*
* Enable GPIO0 pin for writing if LED support from SCRIPTS.
* Also set GPIO5 and clear GPIO6 if hardware LED control.
*/
if (np->features & FE_LED0)
OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
else if (np->features & FE_LEDC)
OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
/*
* enable ints
*/
OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
/*
* For 895/6 enable SBMC interrupt and save current SCSI bus mode.
*/
if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
OUTONW (nc_sien, SBMC);
np->scsi_mode = INB (nc_stest4) & SMODE;
}
/*
* Fill in target structure.
* Reinitialize usrsync.
* Reinitialize usrwide.
* Prepare sync negotiation according to actual SCSI bus mode.
*/
for (i=0;i<SYMCONF_MAX_TARGET;i++) {
tcb_p tp = &np->target[i];
tp->to_reset = 0;
tp->sval = 0;
tp->wval = np->rv_scntl3;
tp->uval = 0;
tp->tinfo.current.period = 0;
tp->tinfo.current.offset = 0;
tp->tinfo.current.width = BUS_8_BIT;
tp->tinfo.current.options = 0;
}
/*
* Download SCSI SCRIPTS to on-chip RAM if present,
* and start script processor.
*/
if (np->ram_ba) {
if (sym_verbose)
printf ("%s: Downloading SCSI SCRIPTS.\n",
sym_name(np));
if (np->ram_ws == 8192) {
memcpy_to_pci(np->ram_va + 4096,
np->scripth0, sizeof(struct sym_scrh));
OUTL (nc_mmws, np->scr_ram_seg);
OUTL (nc_mmrs, np->scr_ram_seg);
OUTL (nc_sfs, np->scr_ram_seg);
phys = SCRIPTH_BA (np, start64);
}
else
phys = SCRIPT_BA (np, init);
memcpy_to_pci(np->ram_va,np->script0,sizeof(struct sym_scr));
}
else
phys = SCRIPT_BA (np, init);
np->istat_sem = 0;
MEMORY_BARRIER();
OUTL (nc_dsa, vtobus(np));
OUTL (nc_dsp, phys);
/*
* Notify the XPT of the event.
*/
xpt_async(AC_BUS_RESET, np->path, NULL);
}
/*
* Get clock factor and sync divisor for a given
* synchronous factor period.
*/
static int
sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
{
u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
int div = np->clock_divn; /* Number of divisors supported */
u32 fak; /* Sync factor in sxfer */
u32 per; /* Period in tenths of ns */
u32 kpc; /* (per * clk) */
int ret;
/*
* Compute the synchronous period in tenths of nano-seconds
*/
if (dt && sfac <= 9) per = 125;
else if (sfac <= 10) per = 250;
else if (sfac == 11) per = 303;
else if (sfac == 12) per = 500;
else per = 40 * sfac;
ret = per;
kpc = per * clk;
if (dt)
kpc <<= 1;
/*
* For earliest C10, the extra clocks does not apply
* to CRC cycles, so it may be safe not to use them.
* Note that this limits the lowest sync data transfer
* to 5 Mega-transfers per second and may result in
* using higher clock divisors.
*/
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
/*
* Look for the lowest clock divisor that allows an
* output speed not faster than the period.
*/
while (--div >= 0) {
if (kpc > (div_10M[div] << 2)) {
++div;
break;
}
}
fak = 0; /* No extra clocks */
if (div == np->clock_divn) { /* Are we too fast ? */
ret = -1;
}
*divp = div;
*fakp = fak;
return ret;
}
#endif
/*
* Look for the greatest clock divisor that allows an
* input speed faster than the period.
*/
while (--div >= 0)
if (kpc >= (div_10M[div] << 2)) break;
/*
* Calculate the lowest clock factor that allows an output
* speed not faster than the period, and the max output speed.
* If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
* If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
*/
if (dt) {
fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
}
else {
fak = (kpc - 1) / div_10M[div] + 1 - 4;
/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
}
/*
* Check against our hardware limits, or bugs :).
*/
if (fak < 0) {fak = 0; ret = -1;}
if (fak > 2) {fak = 2; ret = -1;}
/*
* Compute and return sync parameters.
*/
*divp = div;
*fakp = fak;
return ret;
}
/*
* We received a WDTR.
* Let everything be aware of the changes.
*/
static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
{
struct ccb_trans_settings neg;
union ccb *ccb = cp->cam_ccb;
tcb_p tp = &np->target[cp->target];
sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
/*
* Tell the SCSI layer about the new transfer parameters.
*/
tp->tinfo.goal.width = tp->tinfo.current.width = wide;
neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT;
neg.sync_period = 0;
neg.sync_offset = 0;
neg.valid = CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID;
xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg);
}
/*
* We received a SDTR.
* Let everything be aware of the changes.
*/
static void
sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
{
struct ccb_trans_settings neg;
union ccb *ccb = cp->cam_ccb;
tcb_p tp = &np->target[cp->target];
u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
/*
* Tell the SCSI layer about the new transfer parameters.
*/
tp->tinfo.goal.period = tp->tinfo.current.period = per;
tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
tp->tinfo.goal.options = tp->tinfo.current.options = 0;
neg.sync_period = tp->tinfo.current.period;
neg.sync_offset = tp->tinfo.current.offset;
neg.valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID;
xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg);
}
/*
* We received a PPR.
* Let everything be aware of the changes.
*/
static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
u_char per, u_char wide, u_char div, u_char fak)
{
struct ccb_trans_settings neg;
union ccb *ccb = cp->cam_ccb;
tcb_p tp = &np->target[cp->target];
sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
/*
* Tell the SCSI layer about the new transfer parameters.
*/
tp->tinfo.goal.width = tp->tinfo.current.width = wide;
tp->tinfo.goal.period = tp->tinfo.current.period = per;
tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
tp->tinfo.current.offset= dt ? PPR_OPT_DT : 0;
tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
neg.sync_period = tp->tinfo.current.period;
neg.sync_offset = tp->tinfo.current.offset;
neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT;
neg.valid = CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID;
xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg);
}
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
/*
* Patch a script address if it points to a data script to
* the same position within another data script.
* Accept up to endp + 8, due to the SCR_CALL
* after end data script that moves to goalp.
*/
static u32 sym_chgp(u32 scrp, u32 old_endp, u32 new_endp)
{
scrp = scr_to_cpu(scrp);
if (old_endp != new_endp &&
old_endp + 8 - scrp <= SYMCONF_MAX_SG*8 + 8)
scrp = new_endp + 8 - (old_endp + 8 - scrp);
return cpu_to_scr(scrp);
}
/*
* Called on negotiation, since the device may have
* changed mind about DT versus ST data transfers.
* Patches all data scripts address for a CCB, to fit
* the new data script, if needed.
*/
static u32 sym_chg_ccb_scrp(hcb_p np, u_char dt, ccb_p cp, u32 scrp)
{
u32 old_endp = scr_to_cpu(cp->phys.goalp) - 8;
u32 new_endp = 0;
/*
* Locate the data script we have to move to:
* Given the end data script pointer value (old)
* and the new type of transfert (DT/ST) deduce
* the new end data script pointer(s).
*/
if (dt) {
if (old_endp == SCRIPT_BA(np, data_in2))
new_endp = SCRIPTH_BA(np, dt_data_in2);
else if (old_endp == SCRIPT_BA(np, data_out2))
new_endp = SCRIPTH_BA(np, dt_data_out2);
}
else {
if (old_endp == SCRIPTH_BA(np, dt_data_in2))
new_endp = SCRIPT_BA(np, data_in2);
else if (old_endp == SCRIPTH_BA(np, dt_data_out2))
new_endp = SCRIPT_BA(np, data_out2);
}
/*
* If the end data script pointer was not
* inside a data script or if we must stay
* in the same data script, we are done.
*/
if (!new_endp || new_endp == old_endp)
goto out;
/*
* Move to new data script all data script pointers
* that point inside the previous data script.
*/
cp->phys.savep = sym_chgp(cp->phys.savep, old_endp, new_endp);
cp->phys.lastp = sym_chgp(cp->phys.lastp, old_endp, new_endp);
cp->phys.goalp = sym_chgp(cp->phys.goalp, old_endp, new_endp);
cp->phys.pm0.ret = sym_chgp(cp->phys.pm0.ret, old_endp, new_endp);
cp->phys.pm1.ret = sym_chgp(cp->phys.pm1.ret, old_endp, new_endp);
cp->startp = sym_chgp(cp->startp, old_endp, new_endp);
/*
* Also move an additionnal script pointer
* if passed by user. For the current CCB,
* this is useful to know the new value for
* TEMP register (current data script address).
*/
if (scrp)
scrp = scr_to_cpu(sym_chgp(scrp, old_endp, new_endp));
out:
return scrp;
}
#endif /* SYMCONF_BROKEN_U3EN_SUPPORT */
/*
* Switch trans mode for current job and it's target.
*/
static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
u_char per, u_char wide, u_char div, u_char fak)
{
union ccb *ccb;
tcb_p tp;
u_char target = INB (nc_sdid) & 0x0f;
u_char sval, wval, uval;
assert (cp);
if (!cp) return;
ccb = cp->cam_ccb;
assert (ccb);
if (!ccb) return;
assert (target == (cp->target & 0xf));
tp = &np->target[target];
sval = tp->sval;
wval = tp->wval;
uval = tp->uval;
#if 0
printf("XXXXX sval=%x wval=%x uval=%x (%x)\n",
sval, wval, uval, np->rv_scntl3);
#endif
/*
* Set the offset.
*/
if (!(np->features & FE_C10))
sval = (sval & ~0x1f) | ofs;
else
sval = (sval & ~0x3f) | ofs;
/*
* Set the sync divisor and extra clock factor.
*/
if (ofs != 0) {
wval = (wval & ~0x70) | ((div+1) << 4);
if (!(np->features & FE_C10))
sval = (sval & ~0xe0) | (fak << 5);
else {
uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
}
}
/*
* Set the bus width.
*/
wval = wval & ~EWS;
if (wide != 0)
wval |= EWS;
/*
* Set misc. ultra enable bits.
*/
if (np->features & FE_C10) {
uval = uval & ~U3EN;
if (dt) {
#ifndef SYMCONF_BROKEN_U3EN_SUPPORT
assert(np->features & FE_U3EN);
#else
uval |= U3EN;
#endif
}
}
else {
wval = wval & ~ULTRA;
if (per <= 12) wval |= ULTRA;
}
/*
* Stop there if sync parameters are unchanged.
*/
if (tp->sval == sval && tp->wval == wval && tp->uval == uval) return;
tp->sval = sval;
tp->wval = wval;
tp->uval = uval;
/*
* Disable extended Sreq/Sack filtering if per < 50.
* Not supported on the C1010.
*/
if (per < 50 && !(np->features & FE_C10))
OUTOFFB (nc_stest2, EXT);
/*
* set actual value and sync_status
*/
OUTB (nc_sxfer, tp->sval);
OUTB (nc_scntl3, tp->wval);
if (np->features & FE_C10) {
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
if (!(np->features & FE_U3EN)) {
u32 temp = INL (nc_temp);
temp = sym_chg_ccb_scrp(np, dt, cp, temp);
OUTL (nc_temp, temp);
}
#endif
OUTB (nc_scntl4, tp->uval);
}
/*
* patch ALL ccbs of this target.
*/
for (cp = np->ccbc; cp; cp = cp->link_ccb) {
if (cp->host_status == HS_IDLE)
continue;
if (cp->target != target)
continue;
cp->phys.select.sel_scntl3 = tp->wval;
cp->phys.select.sel_sxfer = tp->sval;
if (np->features & FE_C10) {
cp->phys.select.sel_scntl4 = tp->uval;
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
if (!(np->features & FE_U3EN))
(void) sym_chg_ccb_scrp(np, dt, cp, 0);
#endif
}
}
}
/*
* log message for real hard errors
*
* sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
* reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
*
* exception register:
* ds: dstat
* si: sist
*
* SCSI bus lines:
* so: control lines as driven by chip.
* si: control lines as seen by chip.
* sd: scsi data lines as seen by chip.
*
* wide/fastmode:
* sxfer: (see the manual)
* scntl3: (see the manual)
*
* current script command:
* dsp: script adress (relative to start of script).
* dbc: first word of script command.
*
* First 24 register of the chip:
* r0..rf
*/
static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
{
u32 dsp;
int script_ofs;
int script_size;
char *script_name;
u_char *script_base;
int i;
dsp = INL (nc_dsp);
if (dsp > np->script_ba &&
dsp <= np->script_ba + sizeof(struct sym_scr)) {
script_ofs = dsp - np->script_ba;
script_size = sizeof(struct sym_scr);
script_base = (u_char *) np->script0;
script_name = "script";
}
else if (np->scripth_ba < dsp &&
dsp <= np->scripth_ba + sizeof(struct sym_scrh)) {
script_ofs = dsp - np->scripth_ba;
script_size = sizeof(struct sym_scrh);
script_base = (u_char *) np->scripth0;
script_name = "scripth";
} else {
script_ofs = dsp;
script_size = 0;
script_base = 0;
script_name = "mem";
}
printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
(unsigned)INB (nc_scntl3), script_name, script_ofs,
(unsigned)INL (nc_dbc));
if (((script_ofs & 3) == 0) &&
(unsigned)script_ofs < script_size) {
printf ("%s: script cmd = %08x\n", sym_name(np),
scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
}
printf ("%s: regdump:", sym_name(np));
for (i=0; i<24;i++)
printf (" %02x", (unsigned)INB_OFF(i));
printf (".\n");
/*
* PCI BUS error, read the PCI ststus register.
*/
if (dstat & (MDPE|BF)) {
u_short pci_sts;
#ifdef FreeBSD_4_Bus
pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
#else
pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2);
#endif
if (pci_sts & 0xf900) {
#ifdef FreeBSD_4_Bus
pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
#else
pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2);
#endif
printf("%s: PCI STATUS = 0x%04x\n",
sym_name(np), pci_sts & 0xf900);
}
}
}
/*
* chip interrupt handler
*
* In normal situations, interrupt conditions occur one at
* a time. But when something bad happens on the SCSI BUS,
* the chip may raise several interrupt flags before
* stopping and interrupting the CPU. The additionnal
* interrupt flags are stacked in some extra registers
* after the SIP and/or DIP flag has been raised in the
* ISTAT. After the CPU has read the interrupt condition
* flag from SIST or DSTAT, the chip unstacks the other
* interrupt flags and sets the corresponding bits in
* SIST or DSTAT. Since the chip starts stacking once the
* SIP or DIP flag is set, there is a small window of time
* where the stacking does not occur.
*
* Typically, multiple interrupt conditions may happen in
* the following situations:
*
* - SCSI parity error + Phase mismatch (PAR|MA)
* When an parity error is detected in input phase
* and the device switches to msg-in phase inside a
* block MOV.
* - SCSI parity error + Unexpected disconnect (PAR|UDC)
* When a stupid device does not want to handle the
* recovery of an SCSI parity error.
* - Some combinations of STO, PAR, UDC, ...
* When using non compliant SCSI stuff, when user is
* doing non compliant hot tampering on the BUS, when
* something really bad happens to a device, etc ...
*
* The heuristic suggested by SYMBIOS to handle
* multiple interrupts is to try unstacking all
* interrupts conditions and to handle them on some
* priority based on error severity.
* This will work when the unstacking has been
* successful, but we cannot be 100 % sure of that,
* since the CPU may have been faster to unstack than
* the chip is able to stack. Hmmm ... But it seems that
* such a situation is very unlikely to happen.
*
* If this happen, for example STO caught by the CPU
* then UDC happenning before the CPU have restarted
* the SCRIPTS, the driver may wrongly complete the
* same command on UDC, since the SCRIPTS didn't restart
* and the DSA still points to the same command.
* We avoid this situation by setting the DSA to an
* invalid value when the CCB is completed and before
* restarting the SCRIPTS.
*
* Another issue is that we need some section of our
* recovery procedures to be somehow uninterruptible but
* the SCRIPTS processor does not provides such a
* feature. For this reason, we handle recovery preferently
* from the C code and check against some SCRIPTS critical
* sections from the C code.
*
* Hopefully, the interrupt handling of the driver is now
* able to resist to weird BUS error conditions, but donnot
* ask me for any guarantee that it will never fail. :-)
* Use at your own decision and risk.
*/
static void sym_intr1 (hcb_p np)
{
u_char istat, istatc;
u_char dstat;
u_short sist;
/*
* interrupt on the fly ?
*/
istat = INB (nc_istat);
if (istat & INTF) {
OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
#if 1
istat = INB (nc_istat); /* DUMMY READ */
#endif
if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
(void)sym_wakeup_done (np);
};
if (!(istat & (SIP|DIP)))
return;
#if 0 /* We should never get this one */
if (istat & CABRT)
OUTB (nc_istat, CABRT);
#endif
/*
* PAR and MA interrupts may occur at the same time,
* and we need to know of both in order to handle
* this situation properly. We try to unstack SCSI
* interrupts for that reason. BTW, I dislike a LOT
* such a loop inside the interrupt routine.
* Even if DMA interrupt stacking is very unlikely to
* happen, we also try unstacking these ones, since
* this has no performance impact.
*/
sist = 0;
dstat = 0;
istatc = istat;
do {
if (istatc & SIP)
sist |= INW (nc_sist);
if (istatc & DIP)
dstat |= INB (nc_dstat);
istatc = INB (nc_istat);
istat |= istatc;
} while (istatc & (SIP|DIP));
if (DEBUG_FLAGS & DEBUG_TINY)
printf ("<%d|%x:%x|%x:%x>",
(int)INB(nc_scr0),
dstat,sist,
(unsigned)INL(nc_dsp),
(unsigned)INL(nc_dbc));
/*
* First, interrupts we want to service cleanly.
*
* Phase mismatch (MA) is the most frequent interrupt
* for chip earlier than the 896 and so we have to service
* it as quickly as possible.
* A SCSI parity error (PAR) may be combined with a phase
* mismatch condition (MA).
* Programmed interrupts (SIR) are used to call the C code
* from SCRIPTS.
* The single step interrupt (SSI) is not used in this
* driver.
*/
if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
!(dstat & (MDPE|BF|ABRT|IID))) {
if (sist & PAR) sym_int_par (np, sist);
else if (sist & MA) sym_int_ma (np);
else if (dstat & SIR) sym_int_sir (np);
else if (dstat & SSI) OUTONB (nc_dcntl, (STD|NOCOM));
else goto unknown_int;
return;
};
/*
* Now, interrupts that donnot happen in normal
* situations and that we may need to recover from.
*
* On SCSI RESET (RST), we reset everything.
* On SCSI BUS MODE CHANGE (SBMC), we complete all
* active CCBs with RESET status, prepare all devices
* for negotiating again and restart the SCRIPTS.
* On STO and UDC, we complete the CCB with the corres-
* ponding status and restart the SCRIPTS.
*/
if (sist & RST) {
sym_init (np, 1, sym_verbose ? "scsi reset" : NULL);
return;
};
OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
if (!(sist & (GEN|HTH|SGE)) &&
!(dstat & (MDPE|BF|ABRT|IID))) {
if (sist & SBMC) sym_int_sbmc (np);
else if (sist & STO) sym_int_sto (np);
else if (sist & UDC) sym_int_udc (np);
else goto unknown_int;
return;
};
/*
* Now, interrupts we are not able to recover cleanly.
*
* Log message for hard errors.
* Reset everything.
*/
sym_log_hard_error(np, sist, dstat);
if ((sist & (GEN|HTH|SGE)) ||
(dstat & (MDPE|BF|ABRT|IID))) {
sym_start_reset(np);
return;
};
unknown_int:
/*
* We just miss the cause of the interrupt. :(
* Print a message. The timeout will do the real work.
*/
printf( "%s: unknown interrupt(s) ignored, "
"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
sym_name(np), istat, dstat, sist);
}
static void sym_intr(void *arg)
{
if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
sym_intr1((hcb_p) arg);
if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
return;
}
static void sym_poll(struct cam_sim *sim)
{
int s = splcam();
sym_intr(cam_sim_softc(sim));
splx(s);
}
/*
* generic recovery from scsi interrupt
*
* The doc says that when the chip gets an SCSI interrupt,
* it tries to stop in an orderly fashion, by completing
* an instruction fetch that had started or by flushing
* the DMA fifo for a write to memory that was executing.
* Such a fashion is not enough to know if the instruction
* that was just before the current DSP value has been
* executed or not.
*
* There are some small SCRIPTS sections that deal with
* the start queue and the done queue that may break any
* assomption from the C code if we are interrupted
* inside, so we reset if this happens. Btw, since these
* SCRIPTS sections are executed while the SCRIPTS hasn't
* started SCSI operations, it is very unlikely to happen.
*
* All the driver data structures are supposed to be
* allocated from the same 4 GB memory window, so there
* is a 1 to 1 relationship between DSA and driver data
* structures. Since we are careful :) to invalidate the
* DSA when we complete a command or when the SCRIPTS
* pushes a DSA into a queue, we can trust it when it
* points to a CCB.
*/
static void sym_recover_scsi_int (hcb_p np, u_char hsts)
{
u32 dsp = INL (nc_dsp);
u32 dsa = INL (nc_dsa);
ccb_p cp = sym_ccb_from_dsa(np, dsa);
/*
* If we haven't been interrupted inside the SCRIPTS
* critical pathes, we can safely restart the SCRIPTS
* and trust the DSA value if it matches a CCB.
*/
if ((!(dsp > SCRIPT_BA (np, getjob_begin) &&
dsp < SCRIPT_BA (np, getjob_end) + 1)) &&
(!(dsp > SCRIPT_BA (np, ungetjob) &&
dsp < SCRIPT_BA (np, reselect) + 1)) &&
(!(dsp > SCRIPTH_BA (np, sel_for_abort) &&
dsp < SCRIPTH_BA (np, sel_for_abort_1) + 1)) &&
(!(dsp > SCRIPT_BA (np, done) &&
dsp < SCRIPT_BA (np, done_end) + 1))) {
OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
/*
* If we have a CCB, let the SCRIPTS call us back for
* the handling of the error with SCRATCHA filled with
* STARTPOS. This way, we will be able to freeze the
* device queue and requeue awaiting IOs.
*/
if (cp) {
cp->host_status = hsts;
OUTL (nc_dsp, SCRIPT_BA (np, complete_error));
}
/*
* Otherwise just restart the SCRIPTS.
*/
else {
OUTL (nc_dsa, 0xffffff);
OUTL (nc_dsp, SCRIPT_BA (np, start));
}
}
else
goto reset_all;
return;
reset_all:
sym_start_reset(np);
}
/*
* chip exception handler for selection timeout
*/
void sym_int_sto (hcb_p np)
{
u32 dsp = INL (nc_dsp);
if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
if (dsp == SCRIPT_BA (np, wf_sel_done) + 8)
sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
else
sym_start_reset(np);
}
/*
* chip exception handler for unexpected disconnect
*/
void sym_int_udc (hcb_p np)
{
printf ("%s: unexpected disconnect\n", sym_name(np));
sym_recover_scsi_int(np, HS_UNEXPECTED);
}
/*
* chip exception handler for SCSI bus mode change
*
* spi2-r12 11.2.3 says a transceiver mode change must
* generate a reset event and a device that detects a reset
* event shall initiate a hard reset. It says also that a
* device that detects a mode change shall set data transfer
* mode to eight bit asynchronous, etc...
* So, just reinitializing all except chip should be enough.
*/
static void sym_int_sbmc (hcb_p np)
{
u_char scsi_mode = INB (nc_stest4) & SMODE;
printf("%s: SCSI bus mode change from %x to %x.\n",
sym_name(np), np->scsi_mode, scsi_mode);
np->scsi_mode = scsi_mode;
/*
* Should suspend command processing for 1 second and
* reinitialize all except the chip.
*/
sym_init (np, 0, sym_verbose ? "scsi mode change" : NULL);
}
/*
* chip exception handler for SCSI parity error.
*
* When the chip detects a SCSI parity error and is
* currently executing a (CH)MOV instruction, it does
* not interrupt immediately, but tries to finish the
* transfer of the current scatter entry before
* interrupting. The following situations may occur:
*
* - The complete scatter entry has been transferred
* without the device having changed phase.
* The chip will then interrupt with the DSP pointing
* to the instruction that follows the MOV.
*
* - A phase mismatch occurs before the MOV finished
* and phase errors are to be handled by the C code.
* The chip will then interrupt with both PAR and MA
* conditions set.
*
* - A phase mismatch occurs before the MOV finished and
* phase errors are to be handled by SCRIPTS.
* The chip will load the DSP with the phase mismatch
* JUMP address and interrupt the host processor.
*/
static void sym_int_par (hcb_p np, u_short sist)
{
u_char hsts = INB (HS_PRT);
u32 dsp = INL (nc_dsp);
u32 dbc = INL (nc_dbc);
u32 dsa = INL (nc_dsa);
u_char sbcl = INB (nc_sbcl);
u_char cmd = dbc >> 24;
int phase = cmd & 7;
ccb_p cp = sym_ccb_from_dsa(np, dsa);
printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
sym_name(np), hsts, dbc, sbcl);
/*
* Check that the chip is connected to the SCSI BUS.
*/
if (!(INB (nc_scntl1) & ISCON)) {
sym_recover_scsi_int(np, HS_UNEXPECTED);
return;
}
/*
* If the nexus is not clearly identified, reset the bus.
* We will try to do better later.
*/
if (!cp)
goto reset_all;
/*
* Check instruction was a MOV, direction was INPUT and
* ATN is asserted.
*/
if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
goto reset_all;
/*
* Keep track of the parity error.
*/
OUTONB (HF_PRT, HF_EXT_ERR);
cp->xerr_status |= XE_PARITY_ERR;
/*
* Prepare the message to send to the device.
*/
np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
/*
* If the old phase was DATA IN phase, we have to deal with
* the 3 situations described above.
* For other input phases (MSG IN and STATUS), the device
* must resend the whole thing that failed parity checking
* or signal error. So, jumping to dispatcher should be OK.
*/
if (phase == 1) {
/* Phase mismatch handled by SCRIPTS */
if (dsp == SCRIPTH_BA (np, pm_handle))
OUTL (nc_dsp, dsp);
/* Phase mismatch handled by the C code */
else if (sist & MA)
sym_int_ma (np);
/* No phase mismatch occurred */
else {
OUTL (nc_temp, dsp);
OUTL (nc_dsp, SCRIPT_BA (np, dispatch));
}
}
else
OUTL (nc_dsp, SCRIPT_BA (np, clrack));
return;
reset_all:
sym_start_reset(np);
return;
}
/*
* chip exception handler for phase errors.
*
* We have to construct a new transfer descriptor,
* to transfer the rest of the current block.
*/
static void sym_int_ma (hcb_p np)
{
u32 dbc;
u32 rest;
u32 dsp;
u32 dsa;
u32 nxtdsp;
u32 *vdsp;
u32 oadr, olen;
u32 *tblp;
u32 newcmd;
u_int delta;
u_char cmd;
u_char hflags, hflags0;
struct sym_pmc *pm;
ccb_p cp;
dsp = INL (nc_dsp);
dbc = INL (nc_dbc);
dsa = INL (nc_dsa);
cmd = dbc >> 24;
rest = dbc & 0xffffff;
delta = 0;
/*
* locate matching cp if any.
*/
cp = sym_ccb_from_dsa(np, dsa);
/*
* Donnot take into account dma fifo and various buffers in
* INPUT phase since the chip flushes everything before
* raising the MA interrupt for interrupted INPUT phases.
* For DATA IN phase, we will check for the SWIDE later.
*/
if ((cmd & 7) != 1) {
u_char ss0, ss2;
if (np->features & FE_DFBC)
delta = INW (nc_dfbc);
else {
u32 dfifo;
/*
* Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
*/
dfifo = INL(nc_dfifo);
/*
* Calculate remaining bytes in DMA fifo.
* (CTEST5 = dfifo >> 16)
*/
if (dfifo & (DFS << 16))
delta = ((((dfifo >> 8) & 0x300) |
(dfifo & 0xff)) - rest) & 0x3ff;
else
delta = ((dfifo & 0xff) - rest) & 0x7f;
}
/*
* The data in the dma fifo has not been transfered to
* the target -> add the amount to the rest
* and clear the data.
* Check the sstat2 register in case of wide transfer.
*/
rest += delta;
ss0 = INB (nc_sstat0);
if (ss0 & OLF) rest++;
if (!(np->features & FE_C10))
if (ss0 & ORF) rest++;
if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
ss2 = INB (nc_sstat2);
if (ss2 & OLF1) rest++;
if (!(np->features & FE_C10))
if (ss2 & ORF1) rest++;
};
/*
* Clear fifos.
*/
OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
OUTB (nc_stest3, TE|CSF); /* scsi fifo */
}
/*
* log the information
*/
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
(unsigned) rest, (unsigned) delta);
/*
* try to find the interrupted script command,
* and the address at which to continue.
*/
vdsp = 0;
nxtdsp = 0;
if (dsp > np->script_ba &&
dsp <= np->script_ba + sizeof(struct sym_scr)) {
vdsp = (u32 *)((char*)np->script0 + (dsp-np->script_ba-8));
nxtdsp = dsp;
}
else if (dsp > np->scripth_ba &&
dsp <= np->scripth_ba + sizeof(struct sym_scrh)) {
vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->scripth_ba-8));
nxtdsp = dsp;
}
/*
* log the information
*/
if (DEBUG_FLAGS & DEBUG_PHASE) {
printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
};
if (!vdsp) {
printf ("%s: interrupted SCRIPT address not found.\n",
sym_name (np));
goto reset_all;
}
if (!cp) {
printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
sym_name (np));
goto reset_all;
}
/*
* get old startaddress and old length.
*/
oadr = scr_to_cpu(vdsp[1]);
if (cmd & 0x10) { /* Table indirect */
tblp = (u32 *) ((char*) &cp->phys + oadr);
olen = scr_to_cpu(tblp[0]);
oadr = scr_to_cpu(tblp[1]);
} else {
tblp = (u32 *) 0;
olen = scr_to_cpu(vdsp[0]) & 0xffffff;
};
if (DEBUG_FLAGS & DEBUG_PHASE) {
printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
tblp,
(unsigned) olen,
(unsigned) oadr);
};
/*
* check cmd against assumed interrupted script command.
*/
if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
PRINT_ADDR(cp);
printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
goto reset_all;
};
/*
* if old phase not dataphase, leave here.
*/
if ((cmd & 5) != (cmd & 7)) {
PRINT_ADDR(cp);
printf ("phase change %x-%x %d@%08x resid=%d.\n",
cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
(unsigned)oadr, (unsigned)rest);
goto unexpected_phase;
};
/*
* Choose the correct PM save area.
*
* Look at the PM_SAVE SCRIPT if you want to understand
* this stuff. The equivalent code is implemented in
* SCRIPTS for the 895A and 896 that are able to handle
* PM from the SCRIPTS processor.
*/
hflags0 = INB (HF_PRT);
hflags = hflags0;
if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
if (hflags & HF_IN_PM0)
nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
else if (hflags & HF_IN_PM1)
nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
if (hflags & HF_DP_SAVED)
hflags ^= HF_ACT_PM;
}
if (!(hflags & HF_ACT_PM)) {
pm = &cp->phys.pm0;
newcmd = SCRIPT_BA(np, pm0_data);
}
else {
pm = &cp->phys.pm1;
newcmd = SCRIPT_BA(np, pm1_data);
}
hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
if (hflags != hflags0)
OUTB (HF_PRT, hflags);
/*
* fillin the phase mismatch context
*/
pm->sg.addr = cpu_to_scr(oadr + olen - rest);
pm->sg.size = cpu_to_scr(rest);
pm->ret = cpu_to_scr(nxtdsp);
/*
* If we have a SWIDE,
* - prepare the address to write the SWIDE from SCRIPTS,
* - compute the SCRIPTS address to restart from,
* - move current data pointer context by one byte.
*/
nxtdsp = SCRIPT_BA (np, dispatch);
if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
(INB (nc_scntl2) & WSR)) {
/*
* Hmmm... The device may want to also ignore
* this residue but it must send immediately the
* appropriate message. We snoop the SCSI BUS
* and will just throw away this message from
* SCRIPTS if the SWIDE is to be ignored.
*/
if ((INB (nc_sbcl) & 7) == 7 &&
INB (nc_sbdl) == M_IGN_RESIDUE) {
nxtdsp = SCRIPT_BA (np, ign_i_w_r_msg);
}
/*
* We must grab the SWIDE.
* We will use some complex SCRIPTS for that.
*/
else {
OUTL (nc_scratcha, pm->sg.addr);
nxtdsp = SCRIPTH_BA (np, swide_ma_32);
if (np->features & FE_64BIT) {
OUTB (nc_sbr, (pm->sg.size >> 24));
nxtdsp = SCRIPTH_BA (np, swide_ma_64);
}
/*
* Adjust our data pointer context.
*/
++pm->sg.addr;
--pm->sg.size;
/*
* Hmmm... Could it be possible that a SWIDE that
* is followed by a 1 byte CHMOV would lead to
* a CHMOV(0). Anyway, we handle it by just
* skipping context that would attempt a CHMOV(0).
*/
if (!pm->sg.size)
newcmd = pm->ret;
}
}
if (DEBUG_FLAGS & DEBUG_PHASE) {
PRINT_ADDR(cp);
printf ("PM %x %x %x / %x %x %x.\n",
hflags0, hflags, newcmd,
(unsigned)scr_to_cpu(pm->sg.addr),
(unsigned)scr_to_cpu(pm->sg.size),
(unsigned)scr_to_cpu(pm->ret));
}
/*
* Restart the SCRIPTS processor.
*/
OUTL (nc_temp, newcmd);
OUTL (nc_dsp, nxtdsp);
return;
/*
* Unexpected phase changes that occurs when the current phase
* is not a DATA IN or DATA OUT phase are due to error conditions.
* Such event may only happen when the SCRIPTS is using a
* multibyte SCSI MOVE.
*
* Phase change Some possible cause
*
* COMMAND --> MSG IN SCSI parity error detected by target.
* COMMAND --> STATUS Bad command or refused by target.
* MSG OUT --> MSG IN Message rejected by target.
* MSG OUT --> COMMAND Bogus target that discards extended
* negotiation messages.
*
* The code below does not care of the new phase and so
* trusts the target. Why to annoy it ?
* If the interrupted phase is COMMAND phase, we restart at
* dispatcher.
* If a target does not get all the messages after selection,
* the code assumes blindly that the target discards extended
* messages and clears the negotiation status.
* If the target does not want all our response to negotiation,
* we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
* bloat for such a should_not_happen situation).
* In all other situation, we reset the BUS.
* Are these assumptions reasonnable ? (Wait and see ...)
*/
unexpected_phase:
dsp -= 8;
nxtdsp = 0;
switch (cmd & 7) {
case 2: /* COMMAND phase */
nxtdsp = SCRIPT_BA (np, dispatch);
break;
#if 0
case 3: /* STATUS phase */
nxtdsp = SCRIPT_BA (np, dispatch);
break;
#endif
case 6: /* MSG OUT phase */
/*
* If the device may want to use untagged when we want
* tagged, we prepare an IDENTIFY without disc. granted,
* since we will not be able to handle reselect.
* Otherwise, we just don't care.
*/
if (dsp == SCRIPT_BA (np, send_ident)) {
if (cp->tag != NO_TAG && olen - rest <= 3) {
cp->host_status = HS_BUSY;
np->msgout[0] = M_IDENTIFY | cp->lun;
nxtdsp = SCRIPTH_BA (np, ident_break_atn);
}
else
nxtdsp = SCRIPTH_BA (np, ident_break);
}
else if (dsp == SCRIPTH_BA (np, send_wdtr) ||
dsp == SCRIPTH_BA (np, send_sdtr) ||
dsp == SCRIPTH_BA (np, send_ppr)) {
nxtdsp = SCRIPTH_BA (np, nego_bad_phase);
}
break;
#if 0
case 7: /* MSG IN phase */
nxtdsp = SCRIPT_BA (np, clrack);
break;
#endif
}
if (nxtdsp) {
OUTL (nc_dsp, nxtdsp);
return;
}
reset_all:
sym_start_reset(np);
}
/*
* Dequeue from the START queue all CCBs that match
* a given target/lun/task condition (-1 means all),
* and move them from the BUSY queue to the COMP queue
* with CAM_REQUEUE_REQ status condition.
* This function is used during error handling/recovery.
* It is called with SCRIPTS not running.
*/
static int
sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
{
int j;
ccb_p cp;
/*
* Make sure the starting index is within range.
*/
assert((i >= 0) && (i < 2*MAX_QUEUE));
/*
* Walk until end of START queue and dequeue every job
* that matches the target/lun/task condition.
*/
j = i;
while (i != np->squeueput) {
cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
assert(cp);
#ifdef SYMCONF_IARB_SUPPORT
/* Forget hints for IARB, they may be no longer relevant */
cp->host_flags &= ~HF_HINT_IARB;
#endif
if ((target == -1 || cp->target == target) &&
(lun == -1 || cp->lun == lun) &&
(task == -1 || cp->tag == task)) {
sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
sym_remque(&cp->link_ccbq);
sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
}
else {
if (i != j)
np->squeue[j] = np->squeue[i];
if ((j += 2) >= MAX_QUEUE*2) j = 0;
}
if ((i += 2) >= MAX_QUEUE*2) i = 0;
}
if (i != j) /* Copy back the idle task if needed */
np->squeue[j] = np->squeue[i];
np->squeueput = j; /* Update our current start queue pointer */
return (i - j) / 2;
}
/*
* Complete all CCBs queued to the COMP queue.
*
* These CCBs are assumed:
* - Not to be referenced either by devices or
* SCRIPTS-related queues and datas.
* - To have to be completed with an error condition
* or requeued.
*
* The device queue freeze count is incremented
* for each CCB that does not prevent this.
* This function is called when all CCBs involved
* in error handling/recovery have been reaped.
*/
static void
sym_flush_comp_queue(hcb_p np, int cam_status)
{
SYM_QUEHEAD *qp;
ccb_p cp;
while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
union ccb *ccb;
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
ccb = cp->cam_ccb;
if (cam_status)
sym_set_cam_status(ccb, cam_status);
sym_free_ccb(np, cp);
sym_freeze_cam_ccb(ccb);
sym_xpt_done(np, ccb);
}
}
/*
* chip handler for bad SCSI status condition
*
* In case of bad SCSI status, we unqueue all the tasks
* currently queued to the controller but not yet started
* and then restart the SCRIPTS processor immediately.
*
* QUEUE FULL and BUSY conditions are handled the same way.
* Basically all the not yet started tasks are requeued in
* device queue and the queue is frozen until a completion.
*
* For CHECK CONDITION and COMMAND TERMINATED status, we use
* the CCB of the failed command to prepare a REQUEST SENSE
* SCSI command and queue it to the controller queue.
*
* SCRATCHA is assumed to have been loaded with STARTPOS
* before the SCRIPTS called the C code.
*/
static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
{
tcb_p tp = &np->target[cp->target];
u32 startp;
u_char s_status = cp->ssss_status;
u_char h_flags = cp->host_flags;
int msglen;
int nego;
int i;
/*
* Compute the index of the next job to start from SCRIPTS.
*/
i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4;
/*
* The last CCB queued used for IARB hint may be
* no longer relevant. Forget it.
*/
#ifdef SYMCONF_IARB_SUPPORT
if (np->last_cp)
np->last_cp = 0;
#endif
/*
* Now deal with the SCSI status.
*/
switch(s_status) {
case S_BUSY:
case S_QUEUE_FULL:
if (sym_verbose >= 2) {
PRINT_ADDR(cp);
printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
}
default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
sym_complete_error (np, cp);
break;
case S_TERMINATED:
case S_CHECK_COND:
/*
* If we get an SCSI error when requesting sense, give up.
*/
if (h_flags & HF_SENSE) {
sym_complete_error (np, cp);
break;
}
/*
* Dequeue all queued CCBs for that device not yet started,
* and restart the SCRIPTS processor immediately.
*/
(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
OUTL (nc_dsp, SCRIPT_BA (np, start));
/*
* Save some info of the actual IO.
* Compute the data residual.
*/
cp->sv_scsi_status = cp->ssss_status;
cp->sv_xerr_status = cp->xerr_status;
cp->sv_resid = sym_compute_residual(np, cp);
/*
* Prepare all needed data structures for
* requesting sense data.
*/
/*
* identify message
*/
cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
msglen = 1;
/*
* If we are currently using anything different from
* async. 8 bit data transfers with that target,
* start a negotiation, since the device may want
* to report us a UNIT ATTENTION condition due to
* a cause we currently ignore, and we donnot want
* to be stuck with WIDE and/or SYNC data transfer.
*
* cp->nego_status is filled by sym_prepare_nego().
*/
cp->nego_status = 0;
nego = 0;
if (tp->tinfo.current.options & PPR_OPT_MASK)
nego = NS_PPR;
else if (tp->tinfo.current.width != BUS_8_BIT)
nego = NS_WIDE;
else if (tp->tinfo.current.offset != 0)
nego = NS_SYNC;
if (nego)
msglen +=
sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
/*
* Message table indirect structure.
*/
cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
cp->phys.smsg.size = cpu_to_scr(msglen);
/*
* sense command
*/
cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd));
cp->phys.cmd.size = cpu_to_scr(6);
/*
* patch requested size into sense command
*/
cp->sensecmd[0] = 0x03;
cp->sensecmd[1] = cp->lun << 5;
cp->sensecmd[4] = cp->cam_ccb->csio.sense_len;
cp->data_len = cp->cam_ccb->csio.sense_len;
/*
* sense data
*/
cp->phys.sense.addr =
cpu_to_scr(vtobus(&cp->cam_ccb->csio.sense_data));
cp->phys.sense.size =
cpu_to_scr(cp->cam_ccb->csio.sense_len);
/*
* requeue the command.
*/
startp = SCRIPTH_BA (np, sdata_in);
cp->phys.savep = cpu_to_scr(startp);
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
cp->phys.goalp = cpu_to_scr(startp + 40);
#else
cp->phys.goalp = cpu_to_scr(startp + 16);
#endif
cp->phys.lastp = cpu_to_scr(startp);
cp->startp = cpu_to_scr(startp);
cp->actualquirks = SYM_QUIRK_AUTOSAVE;
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
cp->ssss_status = S_ILLEGAL;
cp->host_flags = HF_SENSE;
cp->xerr_status = 0;
cp->phys.extra_bytes = 0;
cp->phys.go.start =
cpu_to_scr(SCRIPT_BA (np, select));
/*
* Requeue the command.
*/
sym_put_start_queue(np, cp);
/*
* Give back to upper layer everything we have dequeued.
*/
sym_flush_comp_queue(np, 0);
break;
}
}
/*
* After a device has accepted some management message
* as BUS DEVICE RESET, ABORT TASK, etc ..., or when
* a device signals a UNIT ATTENTION condition, some
* tasks are thrown away by the device. We are required
* to reflect that on our tasks list since the device
* will never complete these tasks.
*
* This function move from the BUSY queue to the COMP
* queue all disconnected CCBs for a given target that
* match the following criteria:
* - lun=-1 means any logical UNIT otherwise a given one.
* - task=-1 means any task, otherwise a given one.
*/
static int
sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
{
SYM_QUEHEAD qtmp, *qp;
int i = 0;
ccb_p cp;
/*
* Move the entire BUSY queue to our temporary queue.
*/
sym_que_init(&qtmp);
sym_que_splice(&np->busy_ccbq, &qtmp);
sym_que_init(&np->busy_ccbq);
/*
* Put all CCBs that matches our criteria into
* the COMP queue and put back other ones into
* the BUSY queue.
*/
while ((qp = sym_remque_head(&qtmp)) != 0) {
union ccb *ccb;
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
ccb = cp->cam_ccb;
if (cp->host_status != HS_DISCONNECT ||
cp->target != target ||
(lun != -1 && cp->lun != lun) ||
(task != -1 &&
(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
continue;
}
sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
/* Preserve the software timeout condition */
if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
sym_set_cam_status(ccb, cam_status);
++i;
#if 0
printf("XXXXX TASK @%p CLEARED\n", cp);
#endif
}
return i;
}
/*
* chip handler for TASKS recovery
*
* We cannot safely abort a command, while the SCRIPTS
* processor is running, since we just would be in race
* with it.
*
* As long as we have tasks to abort, we keep the SEM
* bit set in the ISTAT. When this bit is set, the
* SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
* each time it enters the scheduler.
*
* If we have to reset a target, clear tasks of a unit,
* or to perform the abort of a disconnected job, we
* restart the SCRIPTS for selecting the target. Once
* selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
* If it loses arbitration, the SCRIPTS will interrupt again
* the next time it will enter its scheduler, and so on ...
*
* On SIR_TARGET_SELECTED, we scan for the more
* appropriate thing to do:
*
* - If nothing, we just sent a M_ABORT message to the
* target to get rid of the useless SCSI bus ownership.
* According to the specs, no tasks shall be affected.
* - If the target is to be reset, we send it a M_RESET
* message.
* - If a logical UNIT is to be cleared , we send the
* IDENTIFY(lun) + M_ABORT.
* - If an untagged task is to be aborted, we send the
* IDENTIFY(lun) + M_ABORT.
* - If a tagged task is to be aborted, we send the
* IDENTIFY(lun) + task attributes + M_ABORT_TAG.
*
* Once our 'kiss of death' :) message has been accepted
* by the target, the SCRIPTS interrupts again
* (SIR_ABORT_SENT). On this interrupt, we complete
* all the CCBs that should have been aborted by the
* target according to our message.
*/
static void sym_sir_task_recovery(hcb_p np, int num)
{
SYM_QUEHEAD *qp;
ccb_p cp;
tcb_p tp;
int target=-1, lun=-1, task;
int i, k;
switch(num) {
/*
* The SCRIPTS processor stopped before starting
* the next command in order to allow us to perform
* some task recovery.
*/
case SIR_SCRIPT_STOPPED:
/*
* Do we have any target to reset or unit to clear ?
*/
for (i = 0 ; i < SYMCONF_MAX_TARGET ; i++) {
tp = &np->target[i];
if (tp->to_reset ||
(tp->lun0p && tp->lun0p->to_clear)) {
target = i;
break;
}
if (!tp->lunmp)
continue;
for (k = 1 ; k < SYMCONF_MAX_LUN ; k++) {
if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
target = i;
break;
}
}
if (target != -1)
break;
}
/*
* If not, walk the busy queue for any
* disconnected CCB to be aborted.
*/
if (target == -1) {
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
if (cp->host_status != HS_DISCONNECT)
continue;
if (cp->to_abort) {
target = cp->target;
break;
}
}
}
/*
* If some target is to be selected,
* prepare and start the selection.
*/
if (target != -1) {
tp = &np->target[target];
np->abrt_sel.sel_id = target;
np->abrt_sel.sel_scntl3 = tp->wval;
np->abrt_sel.sel_sxfer = tp->sval;
OUTL(nc_dsa, vtobus(np));
OUTL (nc_dsp, SCRIPTH_BA (np, sel_for_abort));
return;
}
/*
* Now look for a CCB to abort that haven't started yet.
* Btw, the SCRIPTS processor is still stopped, so
* we are not in race.
*/
i = 0;
cp = 0;
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
if (cp->host_status != HS_BUSY &&
cp->host_status != HS_NEGOTIATE)
continue;
if (!cp->to_abort)
continue;
#ifdef SYMCONF_IARB_SUPPORT
/*
* If we are using IMMEDIATE ARBITRATION, we donnot
* want to cancel the last queued CCB, since the
* SCRIPTS may have anticipated the selection.
*/
if (cp == np->last_cp) {
cp->to_abort = 0;
continue;
}
#endif
i = 1; /* Means we have found some */
break;
}
if (!i) {
/*
* We are done, so we donnot need
* to synchronize with the SCRIPTS anylonger.
* Remove the SEM flag from the ISTAT.
*/
np->istat_sem = 0;
OUTB (nc_istat, SIGP);
break;
}
/*
* Compute index of next position in the start
* queue the SCRIPTS intends to start and dequeue
* all CCBs for that device that haven't been started.
*/
i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4;
i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
/*
* Make sure at least our IO to abort has been dequeued.
*/
assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
/*
* Keep track in cam status of the reason of the abort.
*/
if (cp->to_abort == 2)
sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
else
sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
/*
* Complete with error everything that we have dequeued.
*/
sym_flush_comp_queue(np, 0);
break;
/*
* The SCRIPTS processor has selected a target
* we may have some manual recovery to perform for.
*/
case SIR_TARGET_SELECTED:
target = (INB (nc_sdid) & 0xf);
tp = &np->target[target];
np->abrt_tbl.addr = vtobus(np->abrt_msg);
/*
* If the target is to be reset, prepare a
* M_RESET message and clear the to_reset flag
* since we donnot expect this operation to fail.
*/
if (tp->to_reset) {
np->abrt_msg[0] = M_RESET;
np->abrt_tbl.size = 1;
tp->to_reset = 0;
break;
}
/*
* Otherwise, look for some logical unit to be cleared.
*/
if (tp->lun0p && tp->lun0p->to_clear)
lun = 0;
else if (tp->lunmp) {
for (k = 1 ; k < SYMCONF_MAX_LUN ; k++) {
if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
lun = k;
break;
}
}
}
/*
* If a logical unit is to be cleared, prepare
* an IDENTIFY(lun) + ABORT MESSAGE.
*/
if (lun != -1) {
lcb_p lp = sym_lp(np, tp, lun);
lp->to_clear = 0; /* We donnot expect to fail here */
np->abrt_msg[0] = M_IDENTIFY | lun;
np->abrt_msg[1] = M_ABORT;
np->abrt_tbl.size = 2;
break;
}
/*
* Otherwise, look for some disconnected job to
* abort for this target.
*/
i = 0;
cp = 0;
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
if (cp->host_status != HS_DISCONNECT)
continue;
if (cp->target != target)
continue;
if (!cp->to_abort)
continue;
i = 1; /* Means we have some */
break;
}
/*
* If we have none, probably since the device has
* completed the command before we won abitration,
* send a M_ABORT message without IDENTIFY.
* According to the specs, the device must just
* disconnect the BUS and not abort any task.
*/
if (!i) {
np->abrt_msg[0] = M_ABORT;
np->abrt_tbl.size = 1;
break;
}
/*
* We have some task to abort.
* Set the IDENTIFY(lun)
*/
np->abrt_msg[0] = M_IDENTIFY | cp->lun;
/*
* If we want to abort an untagged command, we
* will send a IDENTIFY + M_ABORT.
* Otherwise (tagged command), we will send
* a IDENTITFY + task attributes + ABORT TAG.
*/
if (cp->tag == NO_TAG) {
np->abrt_msg[1] = M_ABORT;
np->abrt_tbl.size = 2;
}
else {
np->abrt_msg[1] = cp->scsi_smsg[1];
np->abrt_msg[2] = cp->scsi_smsg[2];
np->abrt_msg[3] = M_ABORT_TAG;
np->abrt_tbl.size = 4;
}
/*
* Keep track of software timeout condition, since the
* peripheral driver may not count retries on abort
* conditions not due to timeout.
*/
if (cp->to_abort == 2)
sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
cp->to_abort = 0; /* We donnot expect to fail here */
break;
/*
* The target has accepted our message and switched
* to BUS FREE phase as we expected.
*/
case SIR_ABORT_SENT:
target = (INB (nc_sdid) & 0xf);
tp = &np->target[target];
/*
** If we didn't abort anything, leave here.
*/
if (np->abrt_msg[0] == M_ABORT)
break;
/*
* If we sent a M_RESET, then a hardware reset has
* been performed by the target.
* - Reset everything to async 8 bit
* - Tell ourself to negotiate next time :-)
* - Prepare to clear all disconnected CCBs for
* this target from our task list (lun=task=-1)
*/
lun = -1;
task = -1;
if (np->abrt_msg[0] == M_RESET) {
tp->sval = 0;
tp->wval = np->rv_scntl3;
tp->uval = 0;
tp->tinfo.current.period = 0;
tp->tinfo.current.offset = 0;
tp->tinfo.current.width = BUS_8_BIT;
tp->tinfo.current.options = 0;
}
/*
* Otherwise, check for the LUN and TASK(s)
* concerned by the cancelation.
* If it is not ABORT_TAG then it is CLEAR_QUEUE
* or an ABORT message :-)
*/
else {
lun = np->abrt_msg[0] & 0x3f;
if (np->abrt_msg[1] == M_ABORT_TAG)
task = np->abrt_msg[2];
}
/*
* Complete all the CCBs the device should have
* aborted due to our 'kiss of death' message.
*/
i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4;
(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
sym_flush_comp_queue(np, 0);
/*
* If we sent a BDR, make uper layer aware of that.
*/
if (np->abrt_msg[0] == M_RESET)
xpt_async(AC_SENT_BDR, np->path, NULL);
break;
}
/*
* Print to the log the message we intend to send.
*/
if (num == SIR_TARGET_SELECTED) {
PRINT_TARGET(np, target);
sym_printl_hex("control msgout:", np->abrt_msg,
np->abrt_tbl.size);
np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
}
/*
* Let the SCRIPTS processor continue.
*/
OUTONB (nc_dcntl, (STD|NOCOM));
}
/*
* Gerard's alchemy:) that deals with with the data
* pointer for both MDP and the residual calculation.
*
* I didn't want to bloat the code by more than 200
* lignes for the handling of both MDP and the residual.
* This has been achieved by using a data pointer
* representation consisting in an index in the data
* array (dp_sg) and a negative offset (dp_ofs) that
* have the following meaning:
*
* - dp_sg = SYMCONF_MAX_SG
* we are at the end of the data script.
* - dp_sg < SYMCONF_MAX_SG
* dp_sg points to the next entry of the scatter array
* we want to transfer.
* - dp_ofs < 0
* dp_ofs represents the residual of bytes of the
* previous entry scatter entry we will send first.
* - dp_ofs = 0
* no residual to send first.
*
* The function sym_evaluate_dp() accepts an arbitray
* offset (basically from the MDP message) and returns
* the corresponding values of dp_sg and dp_ofs.
*/
static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
{
u32 dp_scr;
int dp_ofs, dp_sg, dp_sgmin;
int tmp;
struct sym_pmc *pm;
/*
* Compute the resulted data pointer in term of a script
* address within some DATA script and a signed byte offset.
*/
dp_scr = scr;
dp_ofs = *ofs;
if (dp_scr == SCRIPT_BA (np, pm0_data))
pm = &cp->phys.pm0;
else if (dp_scr == SCRIPT_BA (np, pm1_data))
pm = &cp->phys.pm1;
else
pm = 0;
if (pm) {
dp_scr = scr_to_cpu(pm->ret);
dp_ofs -= scr_to_cpu(pm->sg.size);
}
/*
* If we are auto-sensing, then we are done.
*/
if (cp->host_flags & HF_SENSE) {
*ofs = dp_ofs;
return 0;
}
/*
* Deduce the index of the sg entry.
* Keep track of the index of the first valid entry.
* If result is dp_sg = SYMCONF_MAX_SG, then we are at the
* end of the data.
*/
tmp = scr_to_cpu(cp->phys.goalp);
dp_sg = SYMCONF_MAX_SG - (tmp - 8 - (int)dp_scr) / (2*4);
dp_sgmin = SYMCONF_MAX_SG - cp->segments;
/*
* Move to the sg entry the data pointer belongs to.
*
* If we are inside the data area, we expect result to be:
*
* Either,
* dp_ofs = 0 and dp_sg is the index of the sg entry
* the data pointer belongs to (or the end of the data)
* Or,
* dp_ofs < 0 and dp_sg is the index of the sg entry
* the data pointer belongs to + 1.
*/
if (dp_ofs < 0) {
int n;
while (dp_sg > dp_sgmin) {
--dp_sg;
tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
n = dp_ofs + (tmp & 0xffffff);
if (n > 0) {
++dp_sg;
break;
}
dp_ofs = n;
}
}
else if (dp_ofs > 0) {
while (dp_sg < SYMCONF_MAX_SG) {
++dp_sg;
tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
dp_ofs -= (tmp & 0xffffff);
if (dp_ofs <= 0)
break;
}
}
/*
* Make sure the data pointer is inside the data area.
* If not, return some error.
*/
if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
goto out_err;
else if (dp_sg > SYMCONF_MAX_SG ||
(dp_sg == SYMCONF_MAX_SG && dp_ofs > 0))
goto out_err;
/*
* Save the extreme pointer if needed.
*/
if (dp_sg > cp->ext_sg ||
(dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
cp->ext_sg = dp_sg;
cp->ext_ofs = dp_ofs;
}
/*
* Return data.
*/
*ofs = dp_ofs;
return dp_sg;
out_err:
return -1;
}
/*
* chip handler for MODIFY DATA POINTER MESSAGE
*
* We also call this function on IGNORE WIDE RESIDUE
* messages that do not match a SWIDE full condition.
* Btw, we assume in that situation that such a message
* is equivalent to a MODIFY DATA POINTER (offset=-1).
*/
static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
{
int dp_ofs = ofs;
u32 dp_scr = INL (nc_temp);
u32 dp_ret;
u_char hflags;
int dp_sg;
struct sym_pmc *pm;
/*
* Not supported for auto-sense.
*/
if (cp->host_flags & HF_SENSE)
goto out_reject;
/*
* Apply our alchemy:) (see comments in sym_evaluate_dp()),
* to the resulted data pointer.
*/
dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
if (dp_sg < 0)
goto out_reject;
/*
* And our alchemy:) allows to easily calculate the data
* script address we want to return for the next data phase.
*/
dp_ret = cpu_to_scr(cp->phys.goalp);
dp_ret = dp_ret - 8 - (SYMCONF_MAX_SG - dp_sg) * (2*4);
/*
* If offset / scatter entry is zero we donnot need
* a context for the new current data pointer.
*/
if (dp_ofs == 0) {
dp_scr = dp_ret;
goto out_ok;
}
/*
* Get a context for the new current data pointer.
*/
hflags = INB (HF_PRT);
if (hflags & HF_DP_SAVED)
hflags ^= HF_ACT_PM;
if (!(hflags & HF_ACT_PM)) {
pm = &cp->phys.pm0;
dp_scr = SCRIPT_BA (np, pm0_data);
}
else {
pm = &cp->phys.pm1;
dp_scr = SCRIPT_BA (np, pm1_data);
}
hflags &= ~(HF_DP_SAVED);
OUTB (HF_PRT, hflags);
/*
* Set up the new current data pointer.
* ofs < 0 there, and for the next data phase, we
* want to transfer part of the data of the sg entry
* corresponding to index dp_sg-1 prior to returning
* to the main data script.
*/
pm->ret = cpu_to_scr(dp_ret);
pm->sg.addr = cp->phys.data[dp_sg-1].addr + dp_ofs;
pm->sg.size = cp->phys.data[dp_sg-1].size - dp_ofs;
out_ok:
OUTL (nc_temp, dp_scr);
OUTL (nc_dsp, SCRIPT_BA (np, clrack));
return;
out_reject:
OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad));
}
/*
* chip calculation of the data residual.
*
* As I used to say, the requirement of data residual
* in SCSI is broken, useless and cannot be achieved
* without huge complexity.
* But most OSes and even the official CAM require it.
* When stupidity happens to be so widely spread inside
* a community, it gets hard to convince.
*
* Anyway, I don't care, since I am not going to use
* any software that considers this data residual as
* a relevant information. :)
*/
static int sym_compute_residual(hcb_p np, ccb_p cp)
{
int dp_sg, dp_sgmin, resid;
int dp_ofs = 0;
/*
* Check for some data lost or just thrown away.
* We are not required to be quite accurate in this
* situation. Btw, if we are odd for output and the
* device claims some more data, it may well happen
* than our residual be zero. :-)
*/
if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
resid = 0;
if (cp->xerr_status & XE_EXTRA_DATA)
resid -= scr_to_cpu(cp->phys.extra_bytes);
if (cp->xerr_status & XE_SODL_UNRUN)
++resid;
if (cp->xerr_status & XE_SWIDE_OVRUN)
--resid;
}
/*
* If all data has been transferred,
* there is no residual.
*/
if (cp->phys.lastp == cp->phys.goalp)
return 0;
/*
* If no data transfer occurs, or if the data
* pointer is weird, return full residual.
*/
if (cp->startp == cp->phys.lastp ||
sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.lastp), &dp_ofs) < 0) {
return cp->data_len;
}
/*
* If we were auto-sensing, then we are done.
*/
if (cp->host_flags & HF_SENSE) {
return -dp_ofs;
}
/*
* We are now full comfortable in the computation
* of the data residual (2's complement).
*/
dp_sgmin = SYMCONF_MAX_SG - cp->segments;
resid = -cp->ext_ofs;
for (dp_sg = cp->ext_sg; dp_sg < SYMCONF_MAX_SG; ++dp_sg) {
u_long tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
resid += (tmp & 0xffffff);
}
/*
* Hopefully, the result is not too wrong.
*/
return resid;
}
/*
* Print out the containt of a SCSI message.
*/
static int sym_show_msg (u_char * msg)
{
u_char i;
printf ("%x",*msg);
if (*msg==M_EXTENDED) {
for (i=1;i<8;i++) {
if (i-1>msg[1]) break;
printf ("-%x",msg[i]);
};
return (i+1);
} else if ((*msg & 0xf0) == 0x20) {
printf ("-%x",msg[1]);
return (2);
};
return (1);
}
static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
{
PRINT_ADDR(cp);
if (label)
printf ("%s: ", label);
(void) sym_show_msg (msg);
printf (".\n");
}
/*
* Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
*
* We try to negotiate sync and wide transfer only after
* a successfull inquire command. We look at byte 7 of the
* inquire data to determine the capabilities of the target.
*
* When we try to negotiate, we append the negotiation message
* to the identify and (maybe) simple tag message.
* The host status field is set to HS_NEGOTIATE to mark this
* situation.
*
* If the target doesn't answer this message immediately
* (as required by the standard), the SIR_NEGO_FAILED interrupt
* will be raised eventually.
* The handler removes the HS_NEGOTIATE status, and sets the
* negotiated value to the default (async / nowide).
*
* If we receive a matching answer immediately, we check it
* for validity, and set the values.
*
* If we receive a Reject message immediately, we assume the
* negotiation has failed, and fall back to standard values.
*
* If we receive a negotiation message while not in HS_NEGOTIATE
* state, it's a target initiated negotiation. We prepare a
* (hopefully) valid answer, set our parameters, and send back
* this answer to the target.
*
* If the target doesn't fetch the answer (no message out phase),
* we assume the negotiation has failed, and fall back to default
* settings (SIR_NEGO_PROTO interrupt).
*
* When we set the values, we adjust them in all ccbs belonging
* to this target, in the controller's register, and in the "phys"
* field of the controller's struct sym_hcb.
*/
/*
* chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
*/
static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
{
u_char chg, ofs, per, fak, div;
int req = 1;
/*
* Synchronous request message received.
*/
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "sync msg in", np->msgin);
};
/*
* request or answer ?
*/
if (INB (HS_PRT) == HS_NEGOTIATE) {
OUTB (HS_PRT, HS_BUSY);
if (cp->nego_status && cp->nego_status != NS_SYNC)
goto reject_it;
req = 0;
}
/*
* get requested values.
*/
chg = 0;
per = np->msgin[3];
ofs = np->msgin[4];
/*
* check values against our limits.
*/
if (ofs) {
if (ofs > np->maxoffs)
{chg = 1; ofs = np->maxoffs;}
if (req) {
if (ofs > tp->tinfo.user.offset)
{chg = 1; ofs = tp->tinfo.user.offset;}
}
}
if (ofs) {
if (per < np->minsync)
{chg = 1; per = np->minsync;}
if (req) {
if (per < tp->tinfo.user.period)
{chg = 1; per = tp->tinfo.user.period;}
}
}
div = fak = 0;
if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
goto reject_it;
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp);
printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
ofs, per, div, fak, chg);
}
/*
* This was an answer message
*/
if (req == 0) {
if (chg) /* Answer wasn't acceptable. */
goto reject_it;
sym_setsync (np, cp, ofs, per, div, fak);
OUTL (nc_dsp, SCRIPT_BA (np, clrack));
return;
}
/*
* It was a request. Set value and
* prepare an answer message
*/
sym_setsync (np, cp, ofs, per, div, fak);
np->msgout[0] = M_EXTENDED;
np->msgout[1] = 3;
np->msgout[2] = M_X_SYNC_REQ;
np->msgout[3] = per;
np->msgout[4] = ofs;
cp->nego_status = NS_SYNC;
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "sync msgout", np->msgout);
}
np->msgin [0] = M_NOOP;
OUTL (nc_dsp, SCRIPTH_BA (np, sdtr_resp));
return;
reject_it:
sym_setsync (np, cp, 0, 0, 0, 0);
OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad));
}
/*
* chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
*/
static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
{
u_char chg, ofs, per, fak, dt, div, wide;
int req = 1;
/*
* Synchronous request message received.
*/
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "sync msg in", np->msgin);
};
/*
* request or answer ?
*/
if (INB (HS_PRT) == HS_NEGOTIATE) {
OUTB (HS_PRT, HS_BUSY);
if (cp->nego_status && cp->nego_status != NS_PPR)
goto reject_it;
req = 0;
}
/*
* get requested values.
*/
chg = 0;
per = np->msgin[3];
ofs = np->msgin[5];
wide = np->msgin[6];
dt = np->msgin[7] & PPR_OPT_DT;
/*
* check values against our limits.
*/
if (wide > np->maxwide)
{chg = 1; wide = np->maxwide;}
if (!wide || !(np->features & FE_ULTRA3))
dt &= ~PPR_OPT_DT;
if (req) {
if (wide > tp->tinfo.user.width)
{chg = 1; wide = tp->tinfo.user.width;}
}
#ifndef SYMCONF_BROKEN_U3EN_SUPPORT
if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */
dt &= ~PPR_OPT_DT;
#endif
if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
if (ofs) {
if (ofs > np->maxoffs)
{chg = 1; ofs = np->maxoffs;}
if (req) {
if (ofs > tp->tinfo.user.offset)
{chg = 1; ofs = tp->tinfo.user.offset;}
}
}
if (ofs) {
if (dt && per < np->minsync_dt)
{chg = 1; per = np->minsync_dt;}
else if (per < np->minsync)
{chg = 1; per = np->minsync;}
if (req) {
if (per < tp->tinfo.user.period)
{chg = 1; per = tp->tinfo.user.period;}
}
}
div = fak = 0;
if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
goto reject_it;
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp);
printf ("ppr: "
"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
dt, ofs, per, wide, div, fak, chg);
}
/*
* It was an answer.
*/
if (req == 0) {
if (chg) /* Answer wasn't acceptable */
goto reject_it;
sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
OUTL (nc_dsp, SCRIPT_BA (np, clrack));
return;
}
/*
* It was a request. Set value and
* prepare an answer message
*/
sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
np->msgout[0] = M_EXTENDED;
np->msgout[1] = 6;
np->msgout[2] = M_X_PPR_REQ;
np->msgout[3] = per;
np->msgout[4] = 0;
np->msgout[5] = ofs;
np->msgout[6] = wide;
np->msgout[7] = dt;
cp->nego_status = NS_PPR;
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "sync msgout", np->msgout);
}
np->msgin [0] = M_NOOP;
OUTL (nc_dsp, SCRIPTH_BA (np, ppr_resp));
return;
reject_it:
sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad));
}
/*
* chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
*/
static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
{
u_char chg, wide;
int req = 1;
/*
* Wide request message received.
*/
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "wide msgin", np->msgin);
};
/*
* Is it an request from the device?
*/
if (INB (HS_PRT) == HS_NEGOTIATE) {
OUTB (HS_PRT, HS_BUSY);
if (cp->nego_status && cp->nego_status != NS_WIDE)
goto reject_it;
req = 0;
}
/*
* get requested values.
*/
chg = 0;
wide = np->msgin[3];
/*
* check values against driver limits.
*/
if (wide > np->maxoffs)
{chg = 1; wide = np->maxoffs;}
if (req) {
if (wide > tp->tinfo.user.width)
{chg = 1; wide = tp->tinfo.user.width;}
}
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp);
printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
}
/*
* This was an answer message
*/
if (req == 0) {
if (chg) /* Answer wasn't acceptable. */
goto reject_it;
sym_setwide (np, cp, wide);
OUTL (nc_dsp, SCRIPT_BA (np, clrack));
return;
};
/*
* It was a request, set value and
* prepare an answer message
*/
sym_setwide (np, cp, wide);
np->msgout[0] = M_EXTENDED;
np->msgout[1] = 2;
np->msgout[2] = M_X_WIDE_REQ;
np->msgout[3] = wide;
np->msgin [0] = M_NOOP;
cp->nego_status = NS_WIDE;
if (DEBUG_FLAGS & DEBUG_NEGO) {
sym_print_msg(cp, "wide msgout", np->msgout);
}
OUTL (nc_dsp, SCRIPTH_BA (np, wdtr_resp));
return;
reject_it:
OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad));
}
/*
* Reset SYNC or WIDE to default settings.
*
* Called when a negotiation does not succeed either
* on rejection or on protocol error.
*/
static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
{
/*
* any error in negotiation:
* fall back to default mode.
*/
switch (cp->nego_status) {
case NS_PPR:
sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
break;
case NS_SYNC:
sym_setsync (np, cp, 0, 0, 0, 0);
break;
case NS_WIDE:
sym_setwide (np, cp, 0);
break;
};
np->msgin [0] = M_NOOP;
np->msgout[0] = M_NOOP;
cp->nego_status = 0;
}
/*
* chip handler for MESSAGE REJECT received in response to
* a WIDE or SYNCHRONOUS negotiation.
*/
static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
{
sym_nego_default(np, tp, cp);
OUTB (HS_PRT, HS_BUSY);
}
/*
* chip exception handler for programmed interrupts.
*/
void sym_int_sir (hcb_p np)
{
u_char num = INB (nc_dsps);
u_long dsa = INL (nc_dsa);
ccb_p cp = sym_ccb_from_dsa(np, dsa);
u_char target = INB (nc_sdid) & 0x0f;
tcb_p tp = &np->target[target];
int tmp;
if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
switch (num) {
/*
* Command has been completed with error condition
* or has been auto-sensed.
*/
case SIR_COMPLETE_ERROR:
sym_complete_error(np, cp);
return;
/*
* The C code is currently trying to recover from something.
* Typically, user want to abort some command.
*/
case SIR_SCRIPT_STOPPED:
case SIR_TARGET_SELECTED:
case SIR_ABORT_SENT:
sym_sir_task_recovery(np, num);
return;
/*
* The device didn't go to MSG OUT phase after having
* been selected with ATN. We donnot want to handle
* that.
*/
case SIR_SEL_ATN_NO_MSG_OUT:
printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
sym_name (np), target);
goto out_stuck;
/*
* The device didn't switch to MSG IN phase after
* having reseleted the initiator.
*/
case SIR_RESEL_NO_MSG_IN:
/*
* After reselection, the device sent a message that wasn't
* an IDENTIFY.
*/
case SIR_RESEL_NO_IDENTIFY:
/*
* If devices reselecting without sending an IDENTIFY
* message still exist, this should help.
* We just assume lun=0, 1 CCB, no tag.
*/
if (tp->lun0p) {
OUTL (nc_dsa, scr_to_cpu(tp->lun0p->itl_task_sa));
OUTL (nc_dsp, SCRIPT_BA (np, resel_dsa1));
return;
}
/*
* The device reselected a LUN we donnot know about.
*/
case SIR_RESEL_BAD_LUN:
np->msgout[0] = M_RESET;
goto out;
/*
* The device reselected for an untagged nexus and we
* haven't any.
*/
case SIR_RESEL_BAD_I_T_L:
np->msgout[0] = M_ABORT;
goto out;
/*
* The device reselected for a tagged nexus that we donnot
* have.
*/
case SIR_RESEL_BAD_I_T_L_Q:
np->msgout[0] = M_ABORT_TAG;
goto out;
/*
* The SCRIPTS let us know that the device has grabbed
* our message and will abort the job.
*/
case SIR_RESEL_ABORTED:
np->lastmsg = np->msgout[0];
np->msgout[0] = M_NOOP;
printf ("%s:%d: message %x sent on bad reselection.\n",
sym_name (np), target, np->lastmsg);
goto out;
/*
* The SCRIPTS let us know that a message has been
* successfully sent to the device.
*/
case SIR_MSG_OUT_DONE:
np->lastmsg = np->msgout[0];
np->msgout[0] = M_NOOP;
/* Should we really care of that */
if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
if (cp) {
cp->xerr_status &= ~XE_PARITY_ERR;
if (!cp->xerr_status)
OUTOFFB (HF_PRT, HF_EXT_ERR);
}
}
goto out;
/*
* The device didn't send a GOOD SCSI status.
* We may have some work to do prior to allow
* the SCRIPTS processor to continue.
*/
case SIR_BAD_SCSI_STATUS:
if (!cp)
goto out;
sym_sir_bad_scsi_status(np, num, cp);
return;
/*
* We are asked by the SCRIPTS to prepare a
* REJECT message.
*/
case SIR_REJECT_TO_SEND:
sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
np->msgout[0] = M_REJECT;
goto out;
/*
* We have been ODD at the end of a DATA IN
* transfer and the device didn't send a
* IGNORE WIDE RESIDUE message.
* It is a data overrun condition.
*/
case SIR_SWIDE_OVERRUN:
if (cp) {
OUTONB (HF_PRT, HF_EXT_ERR);
cp->xerr_status |= XE_SWIDE_OVRUN;
}
goto out;
/*
* We have been ODD at the end of a DATA OUT
* transfer.
* It is a data underrun condition.
*/
case SIR_SODL_UNDERRUN:
if (cp) {
OUTONB (HF_PRT, HF_EXT_ERR);
cp->xerr_status |= XE_SODL_UNRUN;
}
goto out;
/*
* We received a message.
*/
case SIR_MSG_RECEIVED:
if (!cp)
goto out_stuck;
switch (np->msgin [0]) {
/*
* We received an extended message.
* We handle MODIFY DATA POINTER, SDTR, WDTR
* and reject all other extended messages.
*/
case M_EXTENDED:
switch (np->msgin [2]) {
case M_X_MODIFY_DP:
if (DEBUG_FLAGS & DEBUG_POINTER)
sym_print_msg(cp,"modify DP",np->msgin);
tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
(np->msgin[5]<<8) + (np->msgin[6]);
sym_modify_dp(np, tp, cp, tmp);
return;
case M_X_SYNC_REQ:
sym_sync_nego(np, tp, cp);
return;
case M_X_PPR_REQ:
sym_ppr_nego(np, tp, cp);
return;
case M_X_WIDE_REQ:
sym_wide_nego(np, tp, cp);
return;
default:
goto out_reject;
}
break;
/*
* We received a 1/2 byte message not handled from SCRIPTS.
* We are only expecting MESSAGE REJECT and IGNORE WIDE
* RESIDUE messages that haven't been anticipated by
* SCRIPTS on SWIDE full condition. Unanticipated IGNORE
* WIDE RESIDUE messages are aliased as MODIFY DP (-1).
*/
case M_IGN_RESIDUE:
if (DEBUG_FLAGS & DEBUG_POINTER)
sym_print_msg(cp,"ign wide residue", np->msgin);
sym_modify_dp(np, tp, cp, -1);
return;
case M_REJECT:
if (INB (HS_PRT) == HS_NEGOTIATE)
sym_nego_rejected(np, tp, cp);
else {
PRINT_ADDR(cp);
printf ("M_REJECT received (%x:%x).\n",
scr_to_cpu(np->lastmsg), np->msgout[0]);
}
goto out_clrack;
break;
default:
goto out_reject;
}
break;
/*
* We received an unknown message.
* Ignore all MSG IN phases and reject it.
*/
case SIR_MSG_WEIRD:
sym_print_msg(cp, "WEIRD message received", np->msgin);
OUTL (nc_dsp, SCRIPTH_BA (np, msg_weird));
return;
/*
* Negotiation failed.
* Target does not send us the reply.
* Remove the HS_NEGOTIATE status.
*/
case SIR_NEGO_FAILED:
OUTB (HS_PRT, HS_BUSY);
/*
* Negotiation failed.
* Target does not want answer message.
*/
case SIR_NEGO_PROTO:
sym_nego_default(np, tp, cp);
goto out;
};
out:
OUTONB (nc_dcntl, (STD|NOCOM));
return;
out_reject:
OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad));
return;
out_clrack:
OUTL (nc_dsp, SCRIPT_BA (np, clrack));
return;
out_stuck:
}
/*
* Acquire a control block
*/
static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
{
tcb_p tp = &np->target[tn];
lcb_p lp = sym_lp(np, tp, ln);
u_short tag = NO_TAG;
SYM_QUEHEAD *qp;
ccb_p cp = (ccb_p) 0;
/*
* Look for a free CCB
*/
if (sym_que_empty(&np->free_ccbq))
(void) sym_alloc_ccb(np);
qp = sym_remque_head(&np->free_ccbq);
if (!qp)
goto out;
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
/*
* If the LCB is not yet available and the LUN
* has been probed ok, try to allocate the LCB.
*/
if (!lp && sym_is_bit(tp->lun_map, ln)) {
lp = sym_alloc_lcb(np, tn, ln);
if (!lp)
goto out_free;
}
/*
* If the LCB is not available here, then the
* logical unit is not yet discovered. For those
* ones only accept 1 SCSI IO per logical unit,
* since we cannot allow disconnections.
*/
if (!lp) {
if (!sym_is_bit(tp->busy0_map, ln))
sym_set_bit(tp->busy0_map, ln);
else
goto out_free;
} else {
/*
* If we have been asked for a tagged command.
*/
if (tag_order) {
/*
* Debugging purpose.
*/
assert(lp->busy_itl == 0);
/*
* Allocate resources for tags if not yet.
*/
if (!lp->cb_tags) {
sym_alloc_lcb_tags(np, tn, ln);
if (!lp->cb_tags)
goto out_free;
}
/*
* Get a tag for this SCSI IO and set up
* the CCB bus address for reselection,
* and count it for this LUN.
* Toggle reselect patch to tagged.
*/
if (lp->busy_itlq < SYMCONF_MAX_TASK) {
tag = lp->cb_tags[lp->ia_tag];
if (++lp->ia_tag == SYMCONF_MAX_TASK)
lp->ia_tag = 0;
lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
++lp->busy_itlq;
lp->resel_sa =
cpu_to_scr(SCRIPT_BA (np, resel_tag));
}
else
goto out_free;
}
/*
* This command will not be tagged.
* If we already have either a tagged or untagged
* one, refuse to overlap this untagged one.
*/
else {
/*
* Debugging purpose.
*/
assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
/*
* Count this nexus for this LUN.
* Set up the CCB bus address for reselection.
* Toggle reselect path to untagged.
*/
if (++lp->busy_itl == 1) {
lp->itl_task_sa = cpu_to_scr(cp->ccb_ba);
lp->resel_sa =
cpu_to_scr(SCRIPT_BA (np,resel_no_tag));
}
else
goto out_free;
}
}
/*
* Put the CCB into the busy queue.
*/
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
/*
* Remember all informations needed to free this CCB.
*/
cp->to_abort = 0;
cp->tag = tag;
cp->target = tn;
cp->lun = ln;
if (DEBUG_FLAGS & DEBUG_TAGS) {
PRINT_LUN(np, tn, ln);
printf ("ccb @%p using tag %d.\n", cp, tag);
}
out:
return cp;
out_free:
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
return (ccb_p) 0;
}
/*
* Release one control block
*/
static void sym_free_ccb (hcb_p np, ccb_p cp)
{
tcb_p tp = &np->target[cp->target];
lcb_p lp = sym_lp(np, tp, cp->lun);
if (DEBUG_FLAGS & DEBUG_TAGS) {
PRINT_LUN(np, cp->target, cp->lun);
printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
}
/*
* If LCB available,
*/
if (lp) {
/*
* If tagged, release the tag, set the relect path
*/
if (cp->tag != NO_TAG) {
/*
* Free the tag value.
*/
lp->cb_tags[lp->if_tag] = cp->tag;
if (++lp->if_tag == SYMCONF_MAX_TASK)
lp->if_tag = 0;
/*
* Make the reselect path invalid,
* and uncount this CCB.
*/
lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
--lp->busy_itlq;
} else { /* Untagged */
/*
* Make the reselect path invalid,
* and uncount this CCB.
*/
lp->itl_task_sa = cpu_to_scr(np->bad_itl_ba);
--lp->busy_itl;
}
/*
* If no JOB active, make the LUN reselect path invalid.
*/
if (lp->busy_itlq == 0 && lp->busy_itl == 0)
lp->resel_sa = cpu_to_scr(SCRIPTH_BA(np,resel_bad_lun));
}
/*
* Otherwise, we only accept 1 IO per LUN.
* Clear the bit that keeps track of this IO.
*/
else
sym_clr_bit(tp->busy0_map, cp->lun);
/*
* We donnot queue more than 1 ccb per target
* with negotiation at any time. If this ccb was
* used for negotiation, clear this info in the tcb.
*/
if (cp == tp->nego_cp)
tp->nego_cp = 0;
#ifdef SYMCONF_IARB_SUPPORT
/*
* If we just complete the last queued CCB,
* clear this info that is no longer relevant.
*/
if (cp == np->last_cp)
np->last_cp = 0;
#endif
/*
* Make this CCB available.
*/
cp->cam_ccb = 0;
cp->host_status = HS_IDLE;
sym_remque(&cp->link_ccbq);
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
}
/*
* Allocate a CCB from memory and initialize its fixed part.
*/
static ccb_p sym_alloc_ccb(hcb_p np)
{
ccb_p cp = 0;
int hcode;
/*
* Prevent from allocating more CCBs than we can
* queue to the controller.
*/
if (np->actccbs >= SYMCONF_MAX_START)
return 0;
/*
* Allocate memory for this CCB.
*/
cp = sym_calloc(sizeof(struct sym_ccb), "CCB");
if (!cp)
return 0;
/*
* Count it.
*/
np->actccbs++;
/*
* Compute the bus address of this ccb.
*/
cp->ccb_ba = vtobus(cp);
/*
* Insert this ccb into the hashed list.
*/
hcode = CCB_HASH_CODE(cp->ccb_ba);
cp->link_ccbh = np->ccbh[hcode];
np->ccbh[hcode] = cp;
/*
* Initialyze the start and restart actions.
*/
cp->phys.go.start = cpu_to_scr(SCRIPT_BA (np, idle));
cp->phys.go.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l));
/*
* Initilialyze some other fields.
*/
cp->phys.smsg_ext.addr = cpu_to_scr(vtobus(&np->msgin[2]));
/*
* Chain into wakeup list and into free ccb queue.
*/
cp->link_ccb = np->ccbc;
np->ccbc = cp;
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
return cp;
}
/*
* Look up a CCB from a DSA value.
*/
static ccb_p sym_ccb_from_dsa(hcb_p np, u_long dsa)
{
int hcode;
ccb_p cp;
hcode = CCB_HASH_CODE(dsa);
cp = np->ccbh[hcode];
while (cp) {
if (cp->ccb_ba == dsa)
break;
cp = cp->link_ccbh;
}
return cp;
}
/*
* Target control block initialisation.
* Nothing important to do at the moment.
*/
static void sym_init_tcb (hcb_p np, u_char tn)
{
/*
* Check some alignments required by the chip.
*/
assert (((offsetof(struct sym_reg, nc_sxfer) ^
offsetof(struct sym_tcb, sval)) &3) == 0);
assert (((offsetof(struct sym_reg, nc_scntl3) ^
offsetof(struct sym_tcb, wval)) &3) == 0);
}
/*
* Lun control block allocation and initialization.
*/
static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
{
tcb_p tp = &np->target[tn];
lcb_p lp = sym_lp(np, tp, ln);
/*
* Already done, just return.
*/
if (lp)
return lp;
/*
* Check against some race.
*/
assert(!sym_is_bit(tp->busy0_map, ln));
/*
* Initialize the target control block if not yet.
*/
sym_init_tcb (np, tn);
/*
* Allocate the LCB bus address array.
* Compute the bus address of this table.
*/
if (ln && !tp->luntbl) {
int i;
tp->luntbl = sym_calloc(256, "LUNTBL");
if (!tp->luntbl)
goto fail;
for (i = 0 ; i < 64 ; i++)
tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
tp->luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
}
/*
* Allocate the table of pointers for LUN(s) > 0, if needed.
*/
if (ln && !tp->lunmp) {
tp->lunmp = sym_calloc(SYMCONF_MAX_LUN * sizeof(lcb_p),
"LUNMP");
if (!tp->lunmp)
goto fail;
}
/*
* Allocate the lcb.
* Make it available to the chip.
*/
lp = sym_calloc(sizeof(struct sym_lcb), "LCB");
if (!lp)
goto fail;
if (ln) {
tp->lunmp[ln] = lp;
tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
}
else {
tp->lun0p = lp;
tp->lun0_sa = cpu_to_scr(vtobus(lp));
}
/*
* Let the itl task point to error handling.
*/
lp->itl_task_sa = cpu_to_scr(np->bad_itl_ba);
/*
* Set the reselect pattern to our default. :)
*/
lp->resel_sa = cpu_to_scr(SCRIPTH_BA(np, resel_bad_lun));
/*
* Set user capabilities.
*/
lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
fail:
return lp;
}
/*
* Allocate LCB resources for tagged command queuing.
*/
static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
{
tcb_p tp = &np->target[tn];
lcb_p lp = sym_lp(np, tp, ln);
int i;
/*
* If LCB not available, try to allocate it.
*/
if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
goto fail;
/*
* Allocate the task table and and the tag allocation
* circular buffer. We want both or none.
*/
lp->itlq_tbl = sym_calloc(SYMCONF_MAX_TASK*4, "ITLQ_TBL");
if (!lp->itlq_tbl)
goto fail;
lp->cb_tags = sym_calloc(SYMCONF_MAX_TASK, "CB_TAGS");
if (!lp->cb_tags) {
sym_mfree(lp->itlq_tbl, SYMCONF_MAX_TASK*4, "ITLQ_TBL");
lp->itlq_tbl = 0;
goto fail;
}
/*
* Initialize the task table with invalid entries.
*/
for (i = 0 ; i < SYMCONF_MAX_TASK ; i++)
lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
/*
* Fill up the tag buffer with tag numbers.
*/
for (i = 0 ; i < SYMCONF_MAX_TASK ; i++)
lp->cb_tags[i] = i;
/*
* Make the task table available to SCRIPTS,
* And accept tagged commands now.
*/
lp->itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
return;
fail:
}
/*
* Test the pci bus snoop logic :-(
*
* Has to be called with interrupts disabled.
*/
#ifndef SYMCONF_IOMAPPED
static int sym_regtest (hcb_p np)
{
register volatile u32 data;
/*
* chip registers may NOT be cached.
* write 0xffffffff to a read only register area,
* and try to read it back.
*/
data = 0xffffffff;
OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
#if 1
if (data == 0xffffffff) {
#else
if ((data & 0xe2f0fffd) != 0x02000080) {
#endif
printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
(unsigned) data);
return (0x10);
};
return (0);
}
#endif
static int sym_snooptest (hcb_p np)
{
u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc;
int i, err=0;
#ifndef SYMCONF_IOMAPPED
err |= sym_regtest (np);
if (err) return (err);
#endif
/*
* init
*/
pc = SCRIPTH0_BA (np, snooptest);
host_wr = 1;
sym_wr = 2;
/*
* Set memory and register.
*/
np->cache = cpu_to_scr(host_wr);
OUTL (nc_temp, sym_wr);
/*
* Start script (exchange values)
*/
OUTL (nc_dsa, vtobus(np));
OUTL (nc_dsp, pc);
/*
* Wait 'til done (with timeout)
*/
for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
if (INB(nc_istat) & (INTF|SIP|DIP))
break;
/*
* Save termination position.
*/
pc = INL (nc_dsp);
/*
* Read memory and register.
*/
host_rd = scr_to_cpu(np->cache);
sym_rd = INL (nc_scratcha);
sym_bk = INL (nc_temp);
/*
* check for timeout
*/
if (i>=SYM_SNOOP_TIMEOUT) {
printf ("CACHE TEST FAILED: timeout.\n");
return (0x20);
};
/*
* Check termination position.
*/
if (pc != SCRIPTH0_BA (np, snoopend)+8) {
printf ("CACHE TEST FAILED: script execution failed.\n");
printf ("start=%08lx, pc=%08lx, end=%08lx\n",
(u_long) SCRIPTH0_BA (np, snooptest), (u_long) pc,
(u_long) SCRIPTH0_BA (np, snoopend) +8);
return (0x40);
};
/*
* Show results.
*/
if (host_wr != sym_rd) {
printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
(int) host_wr, (int) sym_rd);
err |= 1;
};
if (host_rd != sym_wr) {
printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
(int) sym_wr, (int) host_rd);
err |= 2;
};
if (sym_bk != sym_wr) {
printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
(int) sym_wr, (int) sym_bk);
err |= 4;
};
return (err);
}
/*
* Determine the chip's clock frequency.
*
* This is essential for the negotiation of the synchronous
* transfer rate.
*
* Note: we have to return the correct value.
* THERE IS NO SAFE DEFAULT VALUE.
*
* Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
* 53C860 and 53C875 rev. 1 support fast20 transfers but
* do not have a clock doubler and so are provided with a
* 80 MHz clock. All other fast20 boards incorporate a doubler
* and so should be delivered with a 40 MHz clock.
* The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
* clock and provide a clock quadrupler (160 Mhz).
*/
/*
* Select SCSI clock frequency
*/
static void sym_selectclock(hcb_p np, u_char scntl3)
{
/*
* If multiplier not present or not selected, leave here.
*/
if (np->multiplier <= 1) {
OUTB(nc_scntl3, scntl3);
return;
}
if (sym_verbose >= 2)
printf ("%s: enabling clock multiplier\n", sym_name(np));
OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
/*
* Wait for the LCKFRQ bit to be set if supported by the chip.
* Otherwise wait 20 micro-seconds.
*/
if (np->features & FE_LCKFRQ) {
int i = 20;
while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
UDELAY (20);
if (!i)
printf("%s: the chip cannot lock the frequency\n",
sym_name(np));
} else
UDELAY (20);
OUTB(nc_stest3, HSC); /* Halt the scsi clock */
OUTB(nc_scntl3, scntl3);
OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
OUTB(nc_stest3, 0x00); /* Restart scsi clock */
}
/*
* calculate SCSI clock frequency (in KHz)
*/
static unsigned getfreq (hcb_p np, int gen)
{
unsigned int ms = 0;
unsigned int f;
/*
* Measure GEN timer delay in order
* to calculate SCSI clock frequency
*
* This code will never execute too
* many loop iterations (if DELAY is
* reasonably correct). It could get
* too low a delay (too high a freq.)
* if the CPU is slow executing the
* loop for some reason (an NMI, for
* example). For this reason we will
* if multiple measurements are to be
* performed trust the higher delay
* (lower frequency returned).
*/
OUTW (nc_sien , 0); /* mask all scsi interrupts */
(void) INW (nc_sist); /* clear pending scsi interrupt */
OUTB (nc_dien , 0); /* mask all dma interrupts */
(void) INW (nc_sist); /* another one, just to be sure :) */
OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
OUTB (nc_stime1, 0); /* disable general purpose timer */
OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
while (!(INW(nc_sist) & GEN) && ms++ < 100000)
UDELAY (1000); /* count ms */
OUTB (nc_stime1, 0); /* disable general purpose timer */
/*
* set prescaler to divide by whatever 0 means
* 0 ought to choose divide by 2, but appears
* to set divide by 3.5 mode in my 53c810 ...
*/
OUTB (nc_scntl3, 0);
/*
* adjust for prescaler, and convert into KHz
*/
f = ms ? ((1 << gen) * 4340) / ms : 0;
if (sym_verbose >= 2)
printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
sym_name(np), gen, ms, f);
return f;
}
static unsigned sym_getfreq (hcb_p np)
{
u_int f1, f2;
int gen = 11;
(void) getfreq (np, gen); /* throw away first result */
f1 = getfreq (np, gen);
f2 = getfreq (np, gen);
if (f1 > f2) f1 = f2; /* trust lower result */
return f1;
}
/*
* Get/probe chip SCSI clock frequency
*/
static void sym_getclock (hcb_p np, int mult)
{
unsigned char scntl3 = INB(nc_scntl3);
unsigned char stest1 = INB(nc_stest1);
unsigned f1;
/*
* For the C10 core, assume 40 MHz.
*/
if (np->features & FE_C10) {
np->multiplier = mult;
np->clock_khz = 40000 * mult;
return;
}
np->multiplier = 1;
f1 = 40000;
/*
* True with 875/895/896/895A with clock multiplier selected
*/
if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
if (sym_verbose >= 2)
printf ("%s: clock multiplier found\n", sym_name(np));
np->multiplier = mult;
}
/*
* If multiplier not found or scntl3 not 7,5,3,
* reset chip and get frequency from general purpose timer.
* Otherwise trust scntl3 BIOS setting.
*/
if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
OUTB (nc_stest1, 0); /* make sure doubler is OFF */
f1 = sym_getfreq (np);
if (sym_verbose)
printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
if (f1 < 45000) f1 = 40000;
else if (f1 < 55000) f1 = 50000;
else f1 = 80000;
if (f1 < 80000 && mult > 1) {
if (sym_verbose >= 2)
printf ("%s: clock multiplier assumed\n",
sym_name(np));
np->multiplier = mult;
}
} else {
if ((scntl3 & 7) == 3) f1 = 40000;
else if ((scntl3 & 7) == 5) f1 = 80000;
else f1 = 160000;
f1 /= np->multiplier;
}
/*
* Compute controller synchronous parameters.
*/
f1 *= np->multiplier;
np->clock_khz = f1;
}
/*
* Get/probe PCI clock frequency
*/
static int sym_getpciclock (hcb_p np)
{
static int f = 0;
/* For the C10, this will not work */
if (!f && !(np->features & FE_C10)) {
OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
f = (int) sym_getfreq (np);
OUTB (nc_stest1, 0);
}
return f;
}
/*============= DRIVER ACTION/COMPLETION ====================*/
/*
* Print something that tells about extended errors.
*/
static void sym_print_xerr(ccb_p cp, int x_status)
{
if (x_status & XE_PARITY_ERR) {
PRINT_ADDR(cp);
printf ("unrecovered SCSI parity error.\n");
}
if (x_status & XE_EXTRA_DATA) {
PRINT_ADDR(cp);
printf ("extraneous data discarded.\n");
}
if (x_status & XE_BAD_PHASE) {
PRINT_ADDR(cp);
printf ("illegal scsi phase (4/5).\n");
}
if (x_status & XE_SODL_UNRUN) {
PRINT_ADDR(cp);
printf ("ODD transfer in DATA OUT phase.\n");
}
if (x_status & XE_SWIDE_OVRUN) {
PRINT_ADDR(cp);
printf ("ODD transfer in DATA IN phase.\n");
}
}
/*
* Choose the more appropriate CAM status if
* the IO encountered an extended error.
*/
static int sym_xerr_cam_status(int cam_status, int x_status)
{
if (x_status) {
if (x_status & XE_PARITY_ERR)
cam_status = CAM_UNCOR_PARITY;
else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
cam_status = CAM_DATA_RUN_ERR;
else if (x_status & XE_BAD_PHASE)
cam_status = CAM_REQ_CMP_ERR;
else
cam_status = CAM_REQ_CMP_ERR;
}
return cam_status;
}
/*
* Complete execution of a SCSI command with extented
* error, SCSI status error, or having been auto-sensed.
*
* The SCRIPTS processor is not running there, so we
* can safely access IO registers and remove JOBs from
* the START queue.
* SCRATCHA is assumed to have been loaded with STARTPOS
* before the SCRIPTS called the C code.
*/
static void sym_complete_error (hcb_p np, ccb_p cp)
{
struct ccb_scsiio *csio;
u_int cam_status;
int i;
/*
* Paranoid check. :)
*/
if (!cp || !cp->cam_ccb)
return;
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
cp->host_status, cp->ssss_status, cp->host_flags,
cp->target, cp->lun);
MDELAY(100);
}
/*
* Get command, target and lun pointers.
*/
csio = &cp->cam_ccb->csio;
/*
* Check for extended errors.
*/
if (cp->xerr_status) {
if (sym_verbose)
sym_print_xerr(cp, cp->xerr_status);
if (cp->host_status == HS_COMPLETE)
cp->host_status = HS_COMP_ERR;
}
/*
* Calculate the residual.
*/
csio->sense_resid = 0;
csio->resid = sym_compute_residual(np, cp);
if (!SYMCONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
csio->resid = 0; /* throw them away. :) */
cp->sv_resid = 0;
}
if (cp->host_flags & HF_SENSE) { /* Auto sense */
csio->scsi_status = cp->sv_scsi_status; /* Restore status */
csio->sense_resid = csio->resid; /* Swap residuals */
csio->resid = cp->sv_resid;
cp->sv_resid = 0;
if (sym_verbose && cp->sv_xerr_status)
sym_print_xerr(cp, cp->sv_xerr_status);
if (cp->host_status == HS_COMPLETE &&
cp->ssss_status == S_GOOD &&
cp->xerr_status == 0) {
cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
cp->sv_xerr_status);
cam_status |= CAM_AUTOSNS_VALID;
#if 0
/*
* If the device reports a UNIT ATTENTION condition
* due to a RESET condition, we should consider all
* disconnect CCBs for this unit as aborted.
*/
if (1) {
u_char *p;
p = (u_char *) &cp->cam_ccb->csio.sense_data;
if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
sym_clear_tasks(np, CAM_REQ_ABORTED,
cp->target,cp->lun, -1);
}
#endif
}
else
cam_status = CAM_AUTOSENSE_FAIL;
}
else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */
csio->scsi_status = cp->ssss_status;
cam_status = CAM_SCSI_STATUS_ERROR;
}
else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
cam_status = CAM_SEL_TIMEOUT;
else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
cam_status = CAM_UNEXP_BUSFREE;
else { /* Extended error */
if (sym_verbose) {
PRINT_ADDR(cp);
printf ("COMMAND FAILED (%x %x %x).\n",
cp->host_status, cp->ssss_status,
cp->xerr_status);
}
csio->scsi_status = cp->ssss_status;
/*
* Set the most appropriate value for CAM status.
*/
cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
cp->xerr_status);
}
/*
* Dequeue all queued CCBs for that device
* not yet started by SCRIPTS.
*/
i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4;
(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
/*
* Restart the SCRIPTS processor.
*/
OUTL (nc_dsp, SCRIPT_BA (np, start));
/*
* Add this one to the COMP queue.
* Complete all those commands with either error
* or requeue condition.
*/
sym_set_cam_status((union ccb *) csio, cam_status);
sym_remque(&cp->link_ccbq);
sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
sym_flush_comp_queue(np, 0);
}
/*
* Complete execution of a successful SCSI command.
*
* Only successful commands go to the DONE queue,
* since we need to have the SCRIPTS processor
* stopped on any error condition.
* The SCRIPTS processor is running while we are
* completing successful commands.
*/
static void sym_complete_ok (hcb_p np, ccb_p cp)
{
struct ccb_scsiio *csio;
tcb_p tp;
lcb_p lp;
/*
* Paranoid check. :)
*/
if (!cp || !cp->cam_ccb)
return;
assert (cp->host_status == HS_COMPLETE);
/*
* Get command, target and lun pointers.
*/
csio = &cp->cam_ccb->csio;
tp = &np->target[cp->target];
lp = sym_lp(np, tp, cp->lun);
/*
* Assume device discovered on first success.
*/
if (!lp)
sym_set_bit(tp->lun_map, cp->lun);
/*
* If all data have been transferred, given than no
* extended error did occur, there is no residual.
*/
csio->resid = 0;
if (cp->phys.lastp != cp->phys.goalp)
csio->resid = sym_compute_residual(np, cp);
/*
* Wrong transfer residuals may be worse than just always
* returning zero. User can disable this feature from
* sym_conf.h. Residual support is enabled by default.
*/
if (!SYMCONF_RESIDUAL_SUPPORT)
csio->resid = 0;
/*
* Set status and complete the command.
*/
csio->scsi_status = cp->ssss_status;
sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
sym_free_ccb (np, cp);
sym_xpt_done(np, (union ccb *) csio);
}
/*
* Our timeout handler.
*/
static void sym_timeout1(void *arg)
{
union ccb *ccb = (union ccb *) arg;
hcb_p np = ccb->ccb_h.sym_hcb_ptr;
/*
* Check that the CAM CCB is still queued.
*/
if (!np)
return;
switch(ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
(void) sym_abort_scsiio(np, ccb, 1);
break;
default:
break;
}
}
static void sym_timeout(void *arg)
{
int s = splcam();
sym_timeout1(arg);
splx(s);
}
/*
* Abort an SCSI IO.
*/
static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
{
ccb_p cp;
/*
* Look up our CCB control block.
*/
for (cp=np->ccbc; cp; cp=cp->link_ccb) {
if (cp->host_status != HS_IDLE && cp->cam_ccb == ccb)
break;
}
if (!cp)
return -1;
/*
* If a previous abort didn't succeed in time,
* perform a BUS reset.
*/
if (cp->to_abort) {
sym_reset_scsi_bus(np, 1);
return 0;
}
/*
* Mark the CCB for abort and allow time for.
*/
cp->to_abort = timed_out ? 2 : 1;
ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz);
/*
* Tell the SCRIPTS processor to stop and synchronize with us.
*/
np->istat_sem = SEM;
OUTB (nc_istat, SIGP|SEM);
return 0;
}
/*
* Reset a SCSI device (all LUNs of a target).
*/
static void sym_reset_dev(hcb_p np, union ccb *ccb)
{
tcb_p tp;
struct ccb_hdr *ccb_h = &ccb->ccb_h;
if (ccb_h->target_id == np->myaddr ||
ccb_h->target_id >= SYMCONF_MAX_TARGET ||
ccb_h->target_lun >= SYMCONF_MAX_LUN) {
sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
return;
}
tp = &np->target[ccb_h->target_id];
tp->to_reset = 1;
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
np->istat_sem = SEM;
OUTB (nc_istat, SIGP|SEM);
return;
}
/*
* SIM action entry point.
*/
static void sym_action(struct cam_sim *sim, union ccb *ccb)
{
int s = splcam();
sym_action1(sim, ccb);
splx(s);
}
static void sym_action1(struct cam_sim *sim, union ccb *ccb)
{
hcb_p np;
tcb_p tp;
lcb_p lp;
ccb_p cp;
int tmp;
u_char idmsg, *msgptr;
u_int msglen;
struct ccb_scsiio *csio;
struct ccb_hdr *ccb_h;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
/*
* Retrieve our controller data structure.
*/
np = (hcb_p) cam_sim_softc(sim);
/*
* The common case is SCSI IO.
* We deal with other ones elsewhere.
*/
if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
sym_action2(sim, ccb);
return;
}
csio = &ccb->csio;
ccb_h = &csio->ccb_h;
/*
* Work around races.
*/
if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
xpt_done(ccb);
return;
}
/*
* Minimal checkings, so that we will not
* go outside our tables.
*/
if (ccb_h->target_id == np->myaddr ||
ccb_h->target_id >= SYMCONF_MAX_TARGET ||
ccb_h->target_lun >= SYMCONF_MAX_LUN) {
sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
return;
}
/*
* Retreive the target and lun descriptors.
*/
tp = &np->target[ccb_h->target_id];
lp = sym_lp(np, tp, ccb_h->target_lun);
/*
* Complete the 1st INQUIRY command with error
* condition if the device is flagged NOSCAN
* at BOOT in the NVRAM. This may speed up
* the boot and maintain coherency with BIOS
* device numbering. Clearing the flag allows
* user to rescan skipped devices later.
* We also return error for devices not flagged
* for SCAN LUNS in the NVRAM since some mono-lun
* devices behave badly when asked for some non
* zero LUN. Btw, this is an absolute hack.:-)
*/
if (!(ccb_h->flags & CAM_CDB_PHYS) &&
(0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
ccb_h->target_lun != 0)) {
tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
return;
}
}
/*
* Get a control block for this IO.
*/
tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
if (!cp) {
sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
return;
}
/*
* Enqueue this IO in our pending queue.
*/
cp->cam_ccb = ccb;
sym_enqueue_cam_ccb(np, ccb);
/*
* Build the IDENTIFY message.
*/
idmsg = M_IDENTIFY | cp->lun;
if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
idmsg |= 0x40;
msgptr = cp->scsi_smsg;
msglen = 0;
msgptr[msglen++] = idmsg;
/*
* Build the tag message if present.
*/
if (cp->tag != NO_TAG) {
u_char order = csio->tag_action;
switch(order) {
case M_ORDERED_TAG:
break;
case M_HEAD_TAG:
break;
default:
order = M_SIMPLE_TAG;
}
msgptr[msglen++] = order;
/*
* For less than 128 tags, actual tags are numbered
* 1,3,5,..2*MAXTAGS+1,since we may have to deal
* with devices that have problems with #TAG 0 or too
* great #TAG numbers. For more tags (up to 256),
* we use directly our tag number.
*/
#if SYMCONF_MAX_TASK > (512/4)
msgptr[msglen++] = cp->tag;
#else
msgptr[msglen++] = (cp->tag << 1) + 1;
#endif
}
/*
* Build a negotiation message if needed.
* (nego_status is filled by sym_prepare_nego())
*/
cp->nego_status = 0;
if (tp->tinfo.current.width != tp->tinfo.goal.width ||
tp->tinfo.current.period != tp->tinfo.goal.period ||
tp->tinfo.current.offset != tp->tinfo.goal.offset ||
#if 0 /* For now only renegotiate, based on width, period and offset */
tp->tinfo.current.options != tp->tinfo.goal.options) {
#else
0) {
#endif
if (!tp->nego_cp && lp)
msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
}
/*
* Fill in our ccb
*/
/*
* Startqueue
*/
cp->phys.go.start = cpu_to_scr(SCRIPT_BA (np, select));
cp->phys.go.restart = cpu_to_scr(SCRIPT_BA (np, resel_dsa));
/*
* select
*/
cp->phys.select.sel_id = cp->target;
cp->phys.select.sel_scntl3 = tp->wval;
cp->phys.select.sel_sxfer = tp->sval;
cp->phys.select.sel_scntl4 = tp->uval;
/*
* message
*/
cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
cp->phys.smsg.size = cpu_to_scr(msglen);
/*
* command
*/
if (sym_setup_cdb(np, csio, cp) < 0) {
sym_free_ccb(np, cp);
sym_xpt_done(np, ccb);
return;
}
/*
* status
*/
#if 0 /* Provision */
cp->actualquirks = tp->quirks;
#endif
cp->actualquirks = SYM_QUIRK_AUTOSAVE;
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
cp->ssss_status = S_ILLEGAL;
cp->xerr_status = 0;
cp->host_flags = 0;
cp->phys.extra_bytes = 0;
/*
* extreme data pointer.
* shall be positive, so -1 is lower than lowest.:)
*/
cp->ext_sg = -1;
cp->ext_ofs = 0;
/*
* Build the data descriptor block
* and start the IO.
*/
if (sym_setup_data(np, csio, cp) < 0) {
sym_free_ccb(np, cp);
sym_xpt_done(np, ccb);
return;
}
}
/*
* How complex it gets to deal with the CDB in CAM.
* I bet, physical CDBs will never be used on the planet.
*/
static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
{
struct ccb_hdr *ccb_h;
u32 cmd_ba;
int cmd_len;
ccb_h = &csio->ccb_h;
/*
* CDB is 16 bytes max.
*/
if (csio->cdb_len > 16) {
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
return -1;
}
cmd_len = csio->cdb_len;
if (ccb_h->flags & CAM_CDB_POINTER) {
/* CDB is a pointer */
if (!(ccb_h->flags & CAM_CDB_PHYS)) {
/* CDB pointer is virtual */
cmd_ba = vtobus(csio->cdb_io.cdb_ptr);
} else {
/* CDB pointer is physical */
#if 0
cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
#else
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
return -1;
#endif
}
} else {
/* CDB is in the ccb (buffer) */
cmd_ba = vtobus(csio->cdb_io.cdb_bytes);
}
cp->phys.cmd.addr = cpu_to_scr(cmd_ba);
cp->phys.cmd.size = cpu_to_scr(cmd_len);
return 0;
}
/*
* How complex it gets to deal with the data in CAM.
* I bet physical data will never be used in our galaxy.
*/
static int sym_setup_data(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
{
struct ccb_hdr *ccb_h;
int dir, retv;
u32 lastp, goalp;
ccb_h = &csio->ccb_h;
/*
* Now deal with the data.
*/
cp->data_len = 0;
cp->segments = 0;
/*
* No direction means no data.
*/
dir = (ccb_h->flags & CAM_DIR_MASK);
if (dir == CAM_DIR_NONE)
goto end_scatter;
if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
/* Single buffer */
if (!(ccb_h->flags & CAM_DATA_PHYS)) {
/* Buffer is virtual */
retv = sym_scatter_virtual(np, cp,
(vm_offset_t) csio->data_ptr,
(vm_size_t) csio->dxfer_len);
} else {
/* Buffer is physical */
retv = sym_scatter_physical(np, cp,
(vm_offset_t) csio->data_ptr,
(vm_size_t) csio->dxfer_len);
}
if (retv < 0)
goto too_big;
} else {
/* Scatter/gather list */
int i;
struct bus_dma_segment *segs;
segs = (struct bus_dma_segment *)csio->data_ptr;
if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
/* The SG list pointer is physical */
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
return -1;
}
retv = 0;
if (!(ccb_h->flags & CAM_DATA_PHYS)) {
/* SG buffer pointers are virtual */
for (i = csio->sglist_cnt - 1 ; i >= 0 ; --i) {
retv = sym_scatter_virtual(np, cp,
segs[i].ds_addr,
segs[i].ds_len);
if (retv < 0)
break;
}
} else {
/* SG buffer pointers are physical */
for (i = csio->sglist_cnt - 1 ; i >= 0 ; --i) {
retv = sym_scatter_physical(np, cp,
segs[i].ds_addr,
segs[i].ds_len);
if (retv < 0)
break;
}
}
if (retv < 0)
goto too_big;
}
end_scatter:
/*
* No segments means no data.
*/
if (!cp->segments)
dir = CAM_DIR_NONE;
/*
* Set the data pointer.
*/
switch(dir) {
case CAM_DIR_OUT:
goalp = SCRIPT_BA (np, data_out2) + 8;
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
tcb_p tp = &np->target[cp->target];
if (tp->tinfo.current.options & PPR_OPT_DT)
goalp = SCRIPTH_BA (np, dt_data_out2) + 8;
}
#endif
lastp = goalp - 8 - (cp->segments * (2*4));
break;
case CAM_DIR_IN:
goalp = SCRIPT_BA (np, data_in2) + 8;
#ifdef SYMCONF_BROKEN_U3EN_SUPPORT
if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
tcb_p tp = &np->target[cp->target];
if (tp->tinfo.current.options & PPR_OPT_DT)
goalp = SCRIPTH_BA (np, dt_data_in2) + 8;
}
#endif
lastp = goalp - 8 - (cp->segments * (2*4));
break;
case CAM_DIR_NONE:
default:
lastp = goalp = SCRIPTH_BA (np, no_data);
break;
}
cp->phys.lastp = cpu_to_scr(lastp);
cp->phys.goalp = cpu_to_scr(goalp);
cp->phys.savep = cpu_to_scr(lastp);
cp->startp = cp->phys.savep;
/*
* Activate this job.
* If we have awaiting commands for that unit, 2 max
* at a time is enough to flush the CCB wait queue.
*/
sym_put_start_queue(np, cp);
/*
* Command is successfully queued.
*/
return 0;
too_big:
sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
return -1;
}
/*
* Scatter a virtual buffer into bus addressable chunks.
*/
static int
sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len)
{
u_long pe, pn;
u_long n, k;
int s;
cp->data_len += len;
pe = vaddr + len;
n = len;
s = SYMCONF_MAX_SG - 1 - cp->segments;
while (n && s >= 0) {
pn = (pe - 1) & ~PAGE_MASK;
k = pe - pn;
if (k > n) {
k = n;
pn = pe - n;
}
if (DEBUG_FLAGS & DEBUG_SCATTER) {
printf ("%s scatter: va=%lx pa=%lx siz=%lx\n",
sym_name(np), pn, (u_long) vtobus(pn), k);
}
cp->phys.data[s].addr = cpu_to_scr(vtobus(pn));
cp->phys.data[s].size = cpu_to_scr(k);
pe = pn;
n -= k;
--s;
}
cp->segments = SYMCONF_MAX_SG - 1 - s;
return n ? -1 : 0;
}
/*
* Will stay so forever, in my opinion.
*/
static int
sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len)
{
return -1;
}
/*
* SIM action for non performance critical stuff.
*/
static void sym_action2(struct cam_sim *sim, union ccb *ccb)
{
hcb_p np;
tcb_p tp;
lcb_p lp;
struct ccb_hdr *ccb_h;
/*
* Retrieve our controller data structure.
*/
np = (hcb_p) cam_sim_softc(sim);
ccb_h = &ccb->ccb_h;
switch (ccb_h->func_code) {
case XPT_SET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts;
cts = &ccb->cts;
tp = &np->target[ccb_h->target_id];
/*
* Update user transfer settings if asked by user.
*/
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0)
sym_update_trans(np, tp, &tp->tinfo.user, cts);
/*
* Update current wished settings if asked by user.
* Force negotiations if something has changed.
*/
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
sym_update_trans(np, tp, &tp->tinfo.goal, cts);
/*
* The guys that have implemented this CAM seem to
* have made the common mistake about the CmdQue flag.
* This feature is a device feature and so must be
* handled per logical unit.
*/
lp = sym_lp(np, tp, ccb_h->target_lun);
if (lp) {
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0)
sym_update_dflags(np, &lp->user_flags, cts);
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
sym_update_dflags(np, &lp->current_flags, cts);
}
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts;
struct sym_trans *tip;
u_char dflags;
cts = &ccb->cts;
tp = &np->target[ccb_h->target_id];
lp = sym_lp(np, tp, ccb_h->target_lun);
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
tip = &tp->tinfo.current;
dflags = lp ? lp->current_flags : 0;
}
else {
tip = &tp->tinfo.user;
dflags = lp ? lp->user_flags : tp->usrflags;
}
cts->sync_period = tip->period;
cts->sync_offset = tip->offset;
cts->bus_width = tip->width;
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID;
if (lp) {
cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
if (dflags & SYM_DISC_ENABLED)
cts->flags |= CCB_TRANS_DISC_ENB;
if (dflags & SYM_TAGS_ENABLED)
cts->flags |= CCB_TRANS_TAG_ENB;
cts->valid |= CCB_TRANS_DISC_VALID;
cts->valid |= CCB_TRANS_TQ_VALID;
}
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u32 size_mb;
u32 secs_per_cylinder;
int extended;
/*
* Silly DOS geometry.
*/
ccg = &ccb->ccg;
size_mb = ccg->volume_size
/ ((1024L * 1024L) / ccg->block_size);
extended = 1;
if (size_mb > 1024 && extended) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
if ((np->features & FE_WIDE) != 0)
cpi->hba_inquiry |= PI_WIDE_16;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
/* Semantic problem:)LUN number max = max number of LUNs - 1 */
cpi->max_lun = SYMCONF_MAX_LUN-1;
cpi->bus_id = cam_sim_bus(sim);
cpi->initiator_id = np->myaddr;
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "Gerard Roudier", SIM_IDLEN);
strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
case XPT_ABORT:
{
union ccb *abort_ccb = ccb->cab.abort_ccb;
switch(abort_ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
default:
sym_xpt_done2(np, ccb, CAM_UA_ABORT);
break;
}
break;
}
case XPT_RESET_DEV:
{
sym_reset_dev(np, ccb);
break;
}
case XPT_RESET_BUS:
{
sym_reset_scsi_bus(np, 0);
sym_init (np, 1, NULL);
if (sym_verbose) {
xpt_print_path(np->path);
printf("SCSI bus reset delivered.\n");
}
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
break;
}
case XPT_ACCEPT_TARGET_IO:
case XPT_CONT_TARGET_IO:
case XPT_EN_LUN:
case XPT_NOTIFY_ACK:
case XPT_IMMED_NOTIFY:
case XPT_TERM_IO:
default:
sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
break;
}
}
/*
* Update transfer settings of a target.
*/
static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
struct ccb_trans_settings *cts)
{
/*
* Update the infos.
*/
if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
tip->width = cts->bus_width;
if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
tip->offset = cts->sync_offset;
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
tip->period = cts->sync_period;
/*
* Scale against out limits.
*/
if (tip->width > SYMSETUP_MAX_WIDE) tip->width = np->maxwide;
if (tip->width > np->maxwide) tip->width = np->maxwide;
if (tip->offset > SYMSETUP_MAX_OFFS) tip->offset = np->maxoffs;
if (tip->offset > np->maxoffs) tip->offset = np->maxoffs;
if (tip->period) {
if (tip->period < SYMSETUP_MIN_SYNC)
tip->period = SYMSETUP_MIN_SYNC;
if (np->features & FE_ULTRA3) {
if (tip->period < np->minsync_dt)
tip->period = np->minsync_dt;
}
else {
if (tip->period < np->minsync)
tip->period = np->minsync;
}
if (tip->period > np->maxsync)
tip->period = np->maxsync;
}
}
/*
* Update flags for a device (logical unit).
*/
static void
sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
{
if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
*flags |= SYM_DISC_ENABLED;
else
*flags &= ~SYM_DISC_ENABLED;
}
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
*flags |= SYM_TAGS_ENABLED;
else
*flags &= ~SYM_TAGS_ENABLED;
}
}
/*============= DRIVER INITIALISATION ==================*/
#ifdef FreeBSD_4_Bus
static device_method_t sym_pci_methods[] = {
DEVMETHOD(device_probe, sym_pci_probe),
DEVMETHOD(device_attach, sym_pci_attach),
{ 0, 0 }
};
static driver_t sym_pci_driver = {
"sym",
sym_pci_methods,
sizeof(struct sym_hcb)
};
static devclass_t sym_devclass;
DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
#else /* Pre-FreeBSD_4_Bus */
static u_long sym_unit;
static struct pci_device sym_pci_driver = {
"sym",
sym_pci_probe,
sym_pci_attach,
&sym_unit,
NULL
};
DATA_SET (pcidevice_set, sym_pci_driver);
#endif /* FreeBSD_4_Bus */
static struct sym_pci_chip sym_pci_dev_table[] = {
{PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4,
FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
,
{PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4,
FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
,
{PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5,
FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
,
{PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5,
FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_DIFF}
,
{PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5,
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_DIFF}
,
{PCI_ID_SYM53C875_2,0xff, "875_2", 6, 16, 5,
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_DIFF}
,
{PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5,
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_DIFF}
,
{PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7,
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_LCKFRQ}
,
{PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7,
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
,
{PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7,
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
,
{PCI_ID_LSI53C1010, 0x45, "1010", 6, 62, 7,
FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_PCI66|FE_CRC|
FE_C10}
,
{PCI_ID_LSI53C1010, 0xff, "1010", 6, 62, 7,
FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_PCI66|FE_CRC|
FE_C10|FE_U3EN}
,
{PCI_ID_LSI53C1510D, 0xff, "1510D", 6, 31, 7,
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
FE_RAM|FE_IO256|FE_LEDC}
};
#define sym_pci_num_devs \
(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
/*
* Look up the chip table.
*
* Return a pointer to the chip entry if found,
* zero otherwise.
*/
static struct sym_pci_chip *
#ifdef FreeBSD_4_Bus
sym_find_pci_chip(device_t dev)
#else
sym_find_pci_chip(pcici_t pci_tag)
#endif
{
struct sym_pci_chip *chip;
int i;
u_short device_id;
u_char revision;
#ifdef FreeBSD_4_Bus
if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
return 0;
device_id = pci_get_device(dev);
revision = pci_get_revid(dev);
#else
if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR)
return 0;
device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
revision = pci_cfgread(pci_tag, PCIR_REVID, 1);
#endif
for (i = 0; i < sym_pci_num_devs; i++) {
chip = &sym_pci_dev_table[i];
if (device_id != chip->device_id)
continue;
if (revision > chip->revision_id)
continue;
if (FE_LDSTR & chip->features)
return chip;
}
return 0;
}
/*
* Tell upper layer if the chip is supported.
*/
#ifdef FreeBSD_4_Bus
static int
sym_pci_probe(device_t dev)
{
struct sym_pci_chip *chip;
chip = sym_find_pci_chip(dev);
if (chip) {
device_set_desc(dev, chip->name);
return 0;
}
return ENXIO;
}
#else /* Pre-FreeBSD_4_Bus */
static const char *
sym_pci_probe(pcici_t pci_tag, pcidi_t type)
{
struct sym_pci_chip *chip;
chip = sym_find_pci_chip(pci_tag);
if (chip)
return chip->name;
return 0;
}
#endif
/*
* Attach a sym53c8xx device.
*/
#ifdef FreeBSD_4_Bus
static int
sym_pci_attach(device_t dev)
#else
static void
sym_pci_attach(pcici_t pci_tag, int unit)
{
int err = sym_pci_attach2(pci_tag, unit);
if (err)
printf("sym: failed to attach unit %d - err=%d.\n", unit, err);
}
static int
sym_pci_attach2(pcici_t pci_tag, int unit)
#endif
{
struct sym_pci_chip *chip;
u_short command;
u_char cachelnsz;
struct sym_hcb *np = 0;
struct sym_nvram nvram;
int i;
/*
* Only probed devices should be attached.
* We just enjoy being paranoid. :)
*/
#ifdef FreeBSD_4_Bus
chip = sym_find_pci_chip(dev);
#else
chip = sym_find_pci_chip(pci_tag);
#endif
if (chip == NULL)
return (ENXIO);
/*
* Allocate immediately the host control block,
* since we are only expecting to succeed. :)
* We keep track in the HCB of all the resources that
* are to be released on error.
*/
np = sym_calloc(sizeof(*np), "HCB");
if (!np)
goto attach_failed;
/*
* Copy some useful infos to the HCB.
*/
np->verbose = bootverbose;
#ifdef FreeBSD_4_Bus
np->device = dev;
np->unit = device_get_unit(dev);
np->device_id = pci_get_device(dev);
np->revision_id = pci_get_revid(dev);
#else
np->pci_tag = pci_tag;
np->unit = unit;
np->device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
np->revision_id = pci_cfgread(pci_tag, PCIR_REVID, 1);
#endif
np->features = chip->features;
np->clock_divn = chip->nr_divisor;
np->maxoffs = chip->offset_max;
np->maxburst = chip->burst_max;
/*
* Edit its name.
*/
snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
/*
* Read and apply some fix-ups to the PCI COMMAND
* register. We want the chip to be enabled for:
* - BUS mastering
* - PCI parity checking (reporting would also be fine)
* - Write And Invalidate.
*/
#ifdef FreeBSD_4_Bus
command = pci_read_config(dev, PCIR_COMMAND, 2);
#else
command = pci_cfgread(pci_tag, PCIR_COMMAND, 2);
#endif
command |= PCIM_CMD_BUSMASTEREN;
command |= PCIM_CMD_PERRESPEN;
command |= /* PCIM_CMD_MWIEN */ 0x0010;
#ifdef FreeBSD_4_Bus
pci_write_config(dev, PCIR_COMMAND, command, 2);
#else
pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2);
#endif
/*
* Let the device know about the cache line size,
* if it doesn't yet.
*/
#ifdef FreeBSD_4_Bus
cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
#else
cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1);
#endif
if (!cachelnsz) {
cachelnsz = 8;
#ifdef FreeBSD_4_Bus
pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
#else
pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1);
#endif
}
/*
* Alloc/get/map/retrieve everything that deals with MMIO.
*/
#ifdef FreeBSD_4_Bus
if ((command & PCIM_CMD_MEMEN) != 0) {
int regs_id = SYM_PCI_MMIO;
np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
0, ~0, 1, RF_ACTIVE);
}
if (!np->mmio_res) {
device_printf(dev, "failed to allocate MMIO resources\n");
goto attach_failed;
}
np->mmio_bsh = rman_get_bushandle(np->mmio_res);
np->mmio_tag = rman_get_bustag(np->mmio_res);
np->mmio_pa = rman_get_start(np->mmio_res);
np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res);
np->mmio_ba = np->mmio_pa;
#else
if ((command & PCIM_CMD_MEMEN) != 0) {
vm_offset_t vaddr, paddr;
if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) {
printf("%s: failed to map MMIO window\n", sym_name(np));
goto attach_failed;
}
np->mmio_va = vaddr;
np->mmio_pa = paddr;
np->mmio_ba = paddr;
}
#endif
/*
* Allocate the IRQ.
*/
#ifdef FreeBSD_4_Bus
i = 0;
np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i,
0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
if (!np->irq_res) {
device_printf(dev, "failed to allocate IRQ resource\n");
goto attach_failed;
}
#endif
#ifdef SYMCONF_IOMAPPED
/*
* User want us to use normal IO with PCI.
* Alloc/get/map/retrieve everything that deals with IO.
*/
#ifdef FreeBSD_4_Bus
if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
int regs_id = SYM_PCI_IO;
np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &regs_id,
0, ~0, 1, RF_ACTIVE);
}
if (!np->io_res) {
device_printf(dev, "failed to allocate IO resources\n");
goto attach_failed;
}
np->io_bsh = rman_get_bushandle(np->io_res);
np->io_tag = rman_get_bustag(np->io_res);
np->io_port = rman_get_start(np->io_res);
#else
if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
pci_port_t io_port;
if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port))
printf("%s: failed to map IO window\n", sym_name(np));
goto attach_failed;
}
np->io_port = io_port;
}
#endif
#endif /* SYMCONF_IOMAPPED */
/*
* If the chip has RAM.
* Alloc/get/map/retrieve the corresponding resources.
*/
if ((np->features & (FE_RAM|FE_RAM8K)) &&
(command & PCIM_CMD_MEMEN) != 0) {
#ifdef FreeBSD_4_Bus
int regs_id = SYM_PCI_RAM;
if (np->features & FE_64BIT)
regs_id = SYM_PCI_RAM64;
np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
0, ~0, 1, RF_ACTIVE);
if (!np->ram_res) {
device_printf(dev,"failed to allocate RAM resources\n");
goto attach_failed;
}
np->ram_id = regs_id;
np->ram_bsh = rman_get_bushandle(np->ram_res);
np->ram_tag = rman_get_bustag(np->ram_res);
np->ram_pa = rman_get_start(np->ram_res);
np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res);
np->ram_ba = np->ram_pa;
#else
vm_offset_t vaddr, paddr;
int regs_id = SYM_PCI_RAM;
if (np->features & FE_64BIT)
regs_id = SYM_PCI_RAM64;
if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) {
printf("%s: failed to map RAM window\n", sym_name(np));
goto attach_failed;
}
np->ram_va = vaddr;
np->ram_pa = paddr;
np->ram_ba = paddr;
#endif
}
/*
* Try to read the user set-up.
*/
(void) sym_read_nvram(np, &nvram);
/*
* Prepare controller and devices settings, according
* to chip features, user set-up and driver set-up.
*/
(void) sym_prepare_setting(np, &nvram);
/*
* Check the PCI clock frequency.
* Must be performed after prepare_setting since it destroys
* STEST1 that is used to probe for the clock doubler.
*/
i = sym_getpciclock(np);
if (i > 37000)
#ifdef FreeBSD_4_Bus
device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
#else
printf("%s: PCI BUS clock seems too high: %u KHz.\n",
sym_name(np), i);
#endif
/*
* Allocate the start queue.
*/
np->squeue = (u32 *) sym_calloc(sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
if (!np->squeue)
goto attach_failed;
/*
* Allocate the done queue.
*/
np->dqueue = (u32 *) sym_calloc(sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
if (!np->dqueue)
goto attach_failed;
/*
* Allocate the target bus address array.
*/
np->targtbl = (u32 *) sym_calloc(256, "TARGTBL");
if (!np->targtbl)
goto attach_failed;
/*
* Allocate SCRIPTS areas.
*/
np->script0 = (struct sym_scr *)
sym_calloc(sizeof(struct sym_scr), "SCRIPT0");
np->scripth0 = (struct sym_scrh *)
sym_calloc(sizeof(struct sym_scrh), "SCRIPTH0");
if (!np->script0 || !np->scripth0)
goto attach_failed;
/*
* Initialyze the CCB free and busy queues.
* Allocate some CCB. We need at least ONE.
*/
sym_que_init(&np->free_ccbq);
sym_que_init(&np->busy_ccbq);
sym_que_init(&np->comp_ccbq);
if (!sym_alloc_ccb(np))
goto attach_failed;
/*
* Initialyze the CAM CCB pending queue.
*/
sym_que_init(&np->cam_ccbq);
/*
* Fill-up variable-size parts of the SCRIPTS.
*/
sym_fill_scripts(&script0, &scripth0);
/*
* Calculate BUS addresses where we are going
* to load the SCRIPTS.
*/
np->script_ba = vtobus(np->script0);
np->scripth_ba = vtobus(np->scripth0);
np->scripth0_ba = np->scripth_ba;
if (np->ram_ba) {
np->script_ba = np->ram_ba;
if (np->features & FE_RAM8K) {
np->ram_ws = 8192;
np->scripth_ba = np->script_ba + 4096;
#if BITS_PER_LONG > 32
np->scr_ram_seg = cpu_to_scr(np->script_ba >> 32);
#endif
}
else
np->ram_ws = 4096;
}
/*
* Bind SCRIPTS with physical addresses usable by the
* SCRIPTS processor (as seen from the BUS = BUS addresses).
*/
sym_bind_script(np, (u32 *) &script0,
(u32 *) np->script0, sizeof(struct sym_scr));
sym_bind_script(np, (u32 *) &scripth0,
(u32 *) np->scripth0, sizeof(struct sym_scrh));
/*
* If not 64 bit chip, patch some places in SCRIPTS.
*/
if (!(np->features & FE_64BIT)) {
np->scripth0->swide_fin_32[0] = cpu_to_scr(SCR_JUMP);
np->scripth0->swide_fin_32[1] =
cpu_to_scr(SCRIPT_BA(np, dispatch));
}
/*
* Patch some variables in SCRIPTS.
* These ones are loaded by the SCRIPTS processor.
*/
np->scripth0->pm0_data_addr[0] = cpu_to_scr(SCRIPT_BA(np,pm0_data));
np->scripth0->pm1_data_addr[0] = cpu_to_scr(SCRIPT_BA(np,pm1_data));
#ifdef SYM_OPT_LED0
/*
* Still some for LED support.
*/
if (np->features & FE_LED0) {
np->script0->idle[0] =
cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01));
np->script0->reselected[0] =
cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
np->script0->start[0] =
cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
}
#endif
/*
* Load SCNTL4 on reselection for the C10.
*/
if (np->features & FE_C10) {
np->script0->resel_scntl4[0] =
cpu_to_scr(SCR_LOAD_REL (scntl4, 1));
np->script0->resel_scntl4[1] =
cpu_to_scr(offsetof(struct sym_tcb, uval));
}
#ifdef SYMCONF_IARB_SUPPORT
/*
* If user does not want to use IMMEDIATE ARBITRATION
* when we are reselected while attempting to arbitrate,
* patch the SCRIPTS accordingly with a SCRIPT NO_OP.
*/
if (!SYMCONF_SET_IARB_ON_ARB_LOST)
np->script0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
/*
* If user wants IARB to be set when we win arbitration
* and have other jobs, compute the max number of consecutive
* settings of IARB hints before we leave devices a chance to
* arbitrate for reselection.
*/
#ifdef SYMSETUP_IARB_MAX
np->iarb_max = SYMSETUP_IARB_MAX;
#else
np->iarb_max = 4;
#endif
#endif
/*
* Prepare the idle and invalid task actions.
*/
np->idletask.start = cpu_to_scr(SCRIPT_BA(np, idle));
np->idletask.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l));
np->idletask_ba = vtobus(&np->idletask);
np->notask.start = cpu_to_scr(SCRIPT_BA(np, idle));
np->notask.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l));
np->notask_ba = vtobus(&np->notask);
np->bad_itl.start = cpu_to_scr(SCRIPT_BA(np, idle));
np->bad_itl.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l));
np->bad_itl_ba = vtobus(&np->bad_itl);
np->bad_itlq.start = cpu_to_scr(SCRIPT_BA(np, idle));
np->bad_itlq.restart = cpu_to_scr(SCRIPTH_BA (np,bad_i_t_l_q));
np->bad_itlq_ba = vtobus(&np->bad_itlq);
/*
* Allocate and prepare the lun JUMP table that is used
* for a target prior the probing of devices (bad lun table).
* A private table will be allocated for the target on the
* first INQUIRY response received.
*/
np->badluntbl = sym_calloc(256, "BADLUNTBL");
if (!np->badluntbl)
goto attach_failed;
np->badlun_sa = cpu_to_scr(SCRIPTH_BA(np, resel_bad_lun));
for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
/*
* Prepare the bus address array that contains the bus
* address of each target control bloc.
* For now, assume all logical unit are wrong. :)
*/
np->scripth0->targtbl[0] = cpu_to_scr(vtobus(np->targtbl));
for (i = 0 ; i < SYMCONF_MAX_TARGET ; i++) {
np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
np->target[i].luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
np->target[i].lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
}
/*
* Reset the chip.
* We should use sym_soft_reset(), but we donnot want to do
* so, since we may not be safe if ABRT interrupt occurs due
* to the BIOS or previous O/S having enable this interrupt.
*/
OUTB (nc_istat, SRST);
UDELAY(10);
OUTB (nc_istat, 0);
/*
* Now check the cache handling of the pci chipset.
*/
if (sym_snooptest (np)) {
#ifdef FreeBSD_4_Bus
device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
#else
printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
#endif
goto attach_failed;
};
/*
* Now deal with CAM.
* Hopefully, we will succeed with that one.:)
*/
if (!sym_cam_attach(np))
goto attach_failed;
/*
* Sigh! we are done.
*/
return 0;
/*
* We have failed.
* We will try to free all the resources we have
* allocated, but if we are a boot device, this
* will not help that much.;)
*/
attach_failed:
if (np)
sym_pci_free(np);
return ENXIO;
}
/*
* Free everything that have been allocated for this device.
*/
static void sym_pci_free(hcb_p np)
{
ccb_p cp;
tcb_p tp;
lcb_p lp;
int target, lun;
int s;
/*
* First free CAM resources.
*/
s = splcam();
sym_cam_free(np);
splx(s);
/*
* Now every should be quiet for us to
* free other resources.
*/
#ifdef FreeBSD_4_Bus
if (np->ram_res)
bus_release_resource(np->device, SYS_RES_MEMORY,
np->ram_id, np->ram_res);
if (np->mmio_res)
bus_release_resource(np->device, SYS_RES_MEMORY,
SYM_PCI_MMIO, np->mmio_res);
if (np->io_res)
bus_release_resource(np->device, SYS_RES_IOPORT,
SYM_PCI_IO, np->io_res);
if (np->irq_res)
bus_release_resource(np->device, SYS_RES_IRQ,
0, np->irq_res);
#else
/*
* YEAH!!!
* It seems there is no means to free MMIO resources.
*/
#endif
if (np->scripth0)
sym_mfree(np->scripth0, sizeof(struct sym_scrh), "SCRIPTH0");
if (np->script0)
sym_mfree(np->script0, sizeof(struct sym_scr), "SCRIPT0");
if (np->squeue)
sym_mfree(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
if (np->dqueue)
sym_mfree(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
while ((cp = np->ccbc) != NULL) {
np->ccbc = cp->link_ccb;
sym_mfree(cp, sizeof(*cp), "CCB");
}
if (np->badluntbl)
sym_mfree(np->badluntbl, 256,"BADLUNTBL");
for (target = 0; target < SYMCONF_MAX_TARGET ; target++) {
tp = &np->target[target];
for (lun = 0 ; lun < SYMCONF_MAX_LUN ; lun++) {
lp = sym_lp(np, tp, lun);
if (!lp)
continue;
if (lp->itlq_tbl)
sym_mfree(lp->itlq_tbl, SYMCONF_MAX_TASK*4,
"ITLQ_TBL");
if (lp->cb_tags)
sym_mfree(lp->cb_tags, SYMCONF_MAX_TASK,
"CB_TAGS");
sym_mfree(lp, sizeof(*lp), "LCB");
}
#if SYMCONF_MAX_LUN > 1
if (tp->lunmp)
sym_mfree(tp->lunmp, SYMCONF_MAX_LUN*sizeof(lcb_p),
"LUNMP");
#endif
}
sym_mfree(np, sizeof(*np), "HCB");
}
/*
* Allocate CAM resources and register a bus to CAM.
*/
int sym_cam_attach(hcb_p np)
{
struct cam_devq *devq = 0;
struct cam_sim *sim = 0;
struct cam_path *path = 0;
int err, s;
s = splcam();
/*
* Establish our interrupt handler.
*/
#ifdef FreeBSD_4_Bus
err = bus_setup_intr(np->device, np->irq_res, INTR_TYPE_CAM,
sym_intr, np, &np->intr);
if (err) {
device_printf(np->device, "bus_setup_intr() failed: %d\n",
err);
goto fail;
}
#else
if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) {
printf("%s: failed to map interrupt\n", sym_name(np));
goto fail;
}
#endif
/*
* Create the device queue for our sym SIM.
*/
devq = cam_simq_alloc(SYMCONF_MAX_START);
if (!devq)
goto fail;
/*
* Construct our SIM entry.
*/
sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
1, SYMSETUP_MAX_TAG, devq);
if (!sim)
goto fail;
devq = 0;
if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
goto fail;
np->sim = sim;
sim = 0;
if (xpt_create_path(&path, 0,
cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
goto fail;
}
np->path = path;
#if 0
/*
* Establish our async notification handler.
*/
{
struct ccb_setasync csa;
xpt_setup_ccb(&csa.ccb_h, np->path, 5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = sym_async;
csa.callback_arg = np->sim;
xpt_action((union ccb *)&csa);
}
#endif
splx(s);
return 1;
fail:
if (sim)
cam_sim_free(sim, FALSE);
if (devq)
cam_simq_free(devq);
sym_cam_free(np);
splx(s);
return 0;
}
/*
* Free everything that deals with CAM.
*/
void sym_cam_free(hcb_p np)
{
#ifdef FreeBSD_4_Bus
if (np->intr)
bus_teardown_intr(np->device, np->irq_res, np->intr);
#else
/* pci_unmap_int(np->pci_tag); */ /* Does nothing */
#endif
if (np->sim) {
xpt_bus_deregister(cam_sim_path(np->sim));
cam_sim_free(np->sim, /*free_devq*/ TRUE);
}
if (np->path)
xpt_free_path(np->path);
}
/*============ OPTIONNAL NVRAM SUPPORT =================*/
/*
* Get host setup from NVRAM.
*/
static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
{
#ifdef SYMCONF_NVRAM_SUPPORT
/*
* Get parity checking, host ID and verbose mode from NVRAM
*/
switch(nvram->type) {
case SYM_SYMBIOS_NVRAM:
if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
np->rv_scntl0 &= ~0x0a;
np->myaddr = nvram->data.Symbios.host_id & 0x0f;
if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
np->verbose += 1;
break;
case SYM_TEKRAM_NVRAM:
np->myaddr = nvram->data.Tekram.host_id & 0x0f;
break;
default:
break;
}
#endif
}
/*
* Get target setup from NVRAM.
*/
#ifdef SYMCONF_NVRAM_SUPPORT
static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
#endif
static void
sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
{
#ifdef SYMCONF_NVRAM_SUPPORT
switch(nvp->type) {
case SYM_SYMBIOS_NVRAM:
sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
break;
case SYM_TEKRAM_NVRAM:
sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
break;
default:
break;
}
#endif
}
#ifdef SYMCONF_NVRAM_SUPPORT
/*
* Get target set-up from Symbios format NVRAM.
*/
static void
sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
{
tcb_p tp = &np->target[target];
Symbios_target *tn = &nvram->target[target];
tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
tp->usrtags =
(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYMSETUP_MAX_TAG : 0;
if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
tp->usrflags &= ~SYM_DISC_ENABLED;
if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
if (!(tn->flags & SYMBIOS_SCAN_LUNS))
tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
}
/*
* Get target set-up from Tekram format NVRAM.
*/
static void
sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
{
tcb_p tp = &np->target[target];
struct Tekram_target *tn = &nvram->target[target];
int i;
if (tn->flags & TEKRAM_SYNC_NEGO) {
i = tn->sync_index & 0xf;
tp->tinfo.user.period = Tekram_sync[i];
}
tp->tinfo.user.width =
(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
tp->usrtags = 2 << nvram->max_tags_index;
}
if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
tp->usrflags |= SYM_DISC_ENABLED;
/* If any device does not support parity, we will not use this option */
if (!(tn->flags & TEKRAM_PARITY_CHECK))
np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */
}
#ifdef SYMCONF_DEBUG_NVRAM
/*
* Dump Symbios format NVRAM for debugging purpose.
*/
void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
{
int i;
/* display Symbios nvram host data */
printf("%s: HOST ID=%d%s%s%s%s%s\n",
sym_name(np), nvram->host_id & 0x0f,
(nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
(nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"",
(nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"",
(nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"",
(nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :"");
/* display Symbios nvram drive data */
for (i = 0 ; i < 15 ; i++) {
struct Symbios_target *tn = &nvram->target[i];
printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
sym_name(np), i,
(tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "",
(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "",
(tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "",
(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "",
tn->bus_width,
tn->sync_period / 4,
tn->timeout);
}
}
/*
* Dump TEKRAM format NVRAM for debugging purpose.
*/
static u_char Tekram_boot_delay[7] __initdata = {3, 5, 10, 20, 30, 60, 120};
void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
{
int i, tags, boot_delay;
char *rem;
/* display Tekram nvram host data */
tags = 2 << nvram->max_tags_index;
boot_delay = 0;
if (nvram->boot_delay_index < 6)
boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
default:
case 0: rem = ""; break;
case 1: rem = " REMOVABLE=boot device"; break;
case 2: rem = " REMOVABLE=all"; break;
}
printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
sym_name(np), nvram->host_id & 0x0f,
(nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"",
(nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"",
(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"",
(nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"",
(nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"",
(nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"",
(nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"",
rem, boot_delay, tags);
/* display Tekram nvram drive data */
for (i = 0; i <= 15; i++) {
int sync, j;
struct Tekram_target *tn = &nvram->target[i];
j = tn->sync_index & 0xf;
sync = Tekram_sync[j];
printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
sym_name(np), i,
(tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "",
(tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "",
(tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "",
(tn->flags & TEKRAM_START_CMD) ? " START" : "",
(tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "",
(tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "",
sync);
}
}
#endif /* SYMCONF_DEBUG_NVRAM */
#endif /* SYMCONF_NVRAM_SUPPORT */
/*
* Try reading Symbios or Tekram NVRAM
*/
#ifdef SYMCONF_NVRAM_SUPPORT
static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram);
#endif
int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
{
#ifdef SYMCONF_NVRAM_SUPPORT
/*
* Try to read SYMBIOS nvram.
* Try to read TEKRAM nvram if Symbios nvram not found.
*/
if (SYMSETUP_SYMBIOS_NVRAM &&
!sym_read_Symbios_nvram (np, &nvp->data.Symbios))
nvp->type = SYM_SYMBIOS_NVRAM;
else if (SYMSETUP_TEKRAM_NVRAM &&
!sym_read_Tekram_nvram (np, &nvp->data.Tekram))
nvp->type = SYM_TEKRAM_NVRAM;
else
nvp->type = 0;
#else
nvp->type = 0;
#endif
return nvp->type;
}
#ifdef SYMCONF_NVRAM_SUPPORT
/*
* 24C16 EEPROM reading.
*
* GPOI0 - data in/data out
* GPIO1 - clock
* Symbios NVRAM wiring now also used by Tekram.
*/
#define SET_BIT 0
#define CLR_BIT 1
#define SET_CLK 2
#define CLR_CLK 3
/*
* Set/clear data/clock bit in GPIO0
*/
static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
int bit_mode)
{
UDELAY (5);
switch (bit_mode){
case SET_BIT:
*gpreg |= write_bit;
break;
case CLR_BIT:
*gpreg &= 0xfe;
break;
case SET_CLK:
*gpreg |= 0x02;
break;
case CLR_CLK:
*gpreg &= 0xfd;
break;
}
OUTB (nc_gpreg, *gpreg);
UDELAY (5);
}
/*
* Send START condition to NVRAM to wake it up.
*/
static void S24C16_start(hcb_p np, u_char *gpreg)
{
S24C16_set_bit(np, 1, gpreg, SET_BIT);
S24C16_set_bit(np, 0, gpreg, SET_CLK);
S24C16_set_bit(np, 0, gpreg, CLR_BIT);
S24C16_set_bit(np, 0, gpreg, CLR_CLK);
}
/*
* Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
*/
static void S24C16_stop(hcb_p np, u_char *gpreg)
{
S24C16_set_bit(np, 0, gpreg, SET_CLK);
S24C16_set_bit(np, 1, gpreg, SET_BIT);
}
/*
* Read or write a bit to the NVRAM,
* read if GPIO0 input else write if GPIO0 output
*/
static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
u_char *gpreg)
{
S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
S24C16_set_bit(np, 0, gpreg, SET_CLK);
if (read_bit)
*read_bit = INB (nc_gpreg);
S24C16_set_bit(np, 0, gpreg, CLR_CLK);
S24C16_set_bit(np, 0, gpreg, CLR_BIT);
}
/*
* Output an ACK to the NVRAM after reading,
* change GPIO0 to output and when done back to an input
*/
static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
u_char *gpcntl)
{
OUTB (nc_gpcntl, *gpcntl & 0xfe);
S24C16_do_bit(np, 0, write_bit, gpreg);
OUTB (nc_gpcntl, *gpcntl);
}
/*
* Input an ACK from NVRAM after writing,
* change GPIO0 to input and when done back to an output
*/
static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
u_char *gpcntl)
{
OUTB (nc_gpcntl, *gpcntl | 0x01);
S24C16_do_bit(np, read_bit, 1, gpreg);
OUTB (nc_gpcntl, *gpcntl);
}
/*
* WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
* GPIO0 must already be set as an output
*/
static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
u_char *gpreg, u_char *gpcntl)
{
int x;
for (x = 0; x < 8; x++)
S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
S24C16_read_ack(np, ack_data, gpreg, gpcntl);
}
/*
* READ a byte from the NVRAM and then send an ACK to say we have got it,
* GPIO0 must already be set as an input
*/
static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
u_char *gpreg, u_char *gpcntl)
{
int x;
u_char read_bit;
*read_data = 0;
for (x = 0; x < 8; x++) {
S24C16_do_bit(np, &read_bit, 1, gpreg);
*read_data |= ((read_bit & 0x01) << (7 - x));
}
S24C16_write_ack(np, ack_data, gpreg, gpcntl);
}
/*
* Read 'len' bytes starting at 'offset'.
*/
static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
{
u_char gpcntl, gpreg;
u_char old_gpcntl, old_gpreg;
u_char ack_data;
int retv = 1;
int x;
/* save current state of GPCNTL and GPREG */
old_gpreg = INB (nc_gpreg);
old_gpcntl = INB (nc_gpcntl);
gpcntl = old_gpcntl & 0xfc;
/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
OUTB (nc_gpreg, old_gpreg);
OUTB (nc_gpcntl, gpcntl);
/* this is to set NVRAM into a known state with GPIO0/1 both low */
gpreg = old_gpreg;
S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
/* now set NVRAM inactive with GPIO0/1 both high */
S24C16_stop(np, &gpreg);
/* activate NVRAM */
S24C16_start(np, &gpreg);
/* write device code and random address MSB */
S24C16_write_byte(np, &ack_data,
0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
if (ack_data & 0x01)
goto out;
/* write random address LSB */
S24C16_write_byte(np, &ack_data,
(offset & 0x7f) << 1, &gpreg, &gpcntl);
if (ack_data & 0x01)
goto out;
/* regenerate START state to set up for reading */
S24C16_start(np, &gpreg);
/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
S24C16_write_byte(np, &ack_data,
0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
if (ack_data & 0x01)
goto out;
/* now set up GPIO0 for inputting data */
gpcntl |= 0x01;
OUTB (nc_gpcntl, gpcntl);
/* input all requested data - only part of total NVRAM */
for (x = 0; x < len; x++)
S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
/* finally put NVRAM back in inactive mode */
gpcntl &= 0xfe;
OUTB (nc_gpcntl, gpcntl);
S24C16_stop(np, &gpreg);
retv = 0;
out:
/* return GPIO0/1 to original states after having accessed NVRAM */
OUTB (nc_gpcntl, old_gpcntl);
OUTB (nc_gpreg, old_gpreg);
return retv;
}
#undef SET_BIT 0
#undef CLR_BIT 1
#undef SET_CLK 2
#undef CLR_CLK 3
/*
* Try reading Symbios NVRAM.
* Return 0 if OK.
*/
static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
{
static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
u_char *data = (u_char *) nvram;
int len = sizeof(*nvram);
u_short csum;
int x;
/* probe the 24c16 and read the SYMBIOS 24c16 area */
if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
return 1;
/* check valid NVRAM signature, verify byte count and checksum */
if (nvram->type != 0 ||
memcmp(nvram->trailer, Symbios_trailer, 6) ||
nvram->byte_count != len - 12)
return 1;
/* verify checksum */
for (x = 6, csum = 0; x < len - 6; x++)
csum += data[x];
if (csum != nvram->checksum)
return 1;
return 0;
}
/*
* 93C46 EEPROM reading.
*
* GPOI0 - data in
* GPIO1 - data out
* GPIO2 - clock
* GPIO4 - chip select
*
* Used by Tekram.
*/
/*
* Pulse clock bit in GPIO0
*/
static void T93C46_Clk(hcb_p np, u_char *gpreg)
{
OUTB (nc_gpreg, *gpreg | 0x04);
UDELAY (2);
OUTB (nc_gpreg, *gpreg);
}
/*
* Read bit from NVRAM
*/
static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
{
UDELAY (2);
T93C46_Clk(np, gpreg);
*read_bit = INB (nc_gpreg);
}
/*
* Write bit to GPIO0
*/
static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
{
if (write_bit & 0x01)
*gpreg |= 0x02;
else
*gpreg &= 0xfd;
*gpreg |= 0x10;
OUTB (nc_gpreg, *gpreg);
UDELAY (2);
T93C46_Clk(np, gpreg);
}
/*
* Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
*/
static void T93C46_Stop(hcb_p np, u_char *gpreg)
{
*gpreg &= 0xef;
OUTB (nc_gpreg, *gpreg);
UDELAY (2);
T93C46_Clk(np, gpreg);
}
/*
* Send read command and address to NVRAM
*/
static void T93C46_Send_Command(hcb_p np, u_short write_data,
u_char *read_bit, u_char *gpreg)
{
int x;
/* send 9 bits, start bit (1), command (2), address (6) */
for (x = 0; x < 9; x++)
T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
*read_bit = INB (nc_gpreg);
}
/*
* READ 2 bytes from the NVRAM
*/
static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
{
int x;
u_char read_bit;
*nvram_data = 0;
for (x = 0; x < 16; x++) {
T93C46_Read_Bit(np, &read_bit, gpreg);
if (read_bit & 0x01)
*nvram_data |= (0x01 << (15 - x));
else
*nvram_data &= ~(0x01 << (15 - x));
}
}
/*
* Read Tekram NvRAM data.
*/
static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
{
u_char read_bit;
int x;
for (x = 0; x < len; x++) {
/* output read command and address */
T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
if (read_bit & 0x01)
return 1; /* Bad */
T93C46_Read_Word(np, &data[x], gpreg);
T93C46_Stop(np, gpreg);
}
return 0;
}
/*
* Try reading 93C46 Tekram NVRAM.
*/
static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
{
u_char gpcntl, gpreg;
u_char old_gpcntl, old_gpreg;
int retv = 1;
/* save current state of GPCNTL and GPREG */
old_gpreg = INB (nc_gpreg);
old_gpcntl = INB (nc_gpcntl);
/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
1/2/4 out */
gpreg = old_gpreg & 0xe9;
OUTB (nc_gpreg, gpreg);
gpcntl = (old_gpcntl & 0xe9) | 0x09;
OUTB (nc_gpcntl, gpcntl);
/* input all of NVRAM, 64 words */
retv = T93C46_Read_Data(np, (u_short *) nvram,
sizeof(*nvram) / sizeof(short), &gpreg);
/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
OUTB (nc_gpcntl, old_gpcntl);
OUTB (nc_gpreg, old_gpreg);
return retv;
}
/*
* Try reading Tekram NVRAM.
* Return 0 if OK.
*/
static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
{
u_char *data = (u_char *) nvram;
int len = sizeof(*nvram);
u_short csum;
int x;
switch (np->device_id) {
case PCI_ID_SYM53C885:
case PCI_ID_SYM53C895:
case PCI_ID_SYM53C896:
x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
data, len);
break;
case PCI_ID_SYM53C875:
x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
data, len);
if (!x)
break;
default:
x = sym_read_T93C46_nvram(np, nvram);
break;
}
if (x)
return 1;
/* verify checksum */
for (x = 0, csum = 0; x < len - 1; x += 2)
csum += data[x] + (data[x+1] << 8);
if (csum != 0x1234)
return 1;
return 0;
}
#endif /* SYMCONF_NVRAM_SUPPORT */