3c297571e4
other systems. o Normalize copyright text. o Clean up probe code function interfaces by passing around a single structure of common arguments instead of passing "too many" args in each function call. o Add support for the AAA-131 as a SCSI adapter. o Add support for the AHA-4944 courtesy of "Matthew N. Dodd" <winter@jurai.net o Correct manual termination support for PCI cards. The bit definitions for manual termination control in the SEEPROM were incorrect. o Add support for extracting NVRAM information from SCB 2 for BIOSen that use this mechanism to pass this data to OS drivers. o Properly set the STPWLEVEL bit in PCI config space based on the setting in an SEEPROM. o Go back to useing 32byte SCBs for all controllers. The current firmware allows us to embed 12byte cdbs on all controllers in a 32byte SCB, and larger cdbs are rarely used, so it is a better use of this space to offer more SCBs (32). o Add support for U160 transfers. o Add an idle loop executed during data transfers that prefetches S/G segments on controllers that have a secondary DMA engine (aic789X). o Improve the performance of reselections by avoiding an extra one byte DMA in the case of an SCB lookup miss for the reselecting target. We now keep a 16byte "untagged target" array on the card for dealing with untagged reselections. If the controller has external SCB ram and can support 64byte SCBs, then we use an "untagged target/lun" array to maximize concurrency. Without external SCB ram, the controller is limited to one untagged transaction per target, auto-request sense operations excluded. o Correct the setup of the STPWEN bit in SXFRCTL1. This control line is tri-stated until set to one, so set it to one and then set it to the desired value. o Add tagged queuing support to our target role implementation. o Handle the common cases of the ignore wide residue message in firmware. o Add preliminary support for 39bit addressing. o Add support for assembling on big-endian machines. Big-endian support is not complete in the driver. o Correctly remove SCBs in the waiting for selection queue when freezing a device queue. o Now that we understand more about the autoflush bug on the aic7890, only use the workaround on devices that need it. o Add a workaround for the "aic7890 hangs the system when you attempt to pause it" problem. We can now pause the aic7890 safely regardless of what instruction it is executing.
177 lines
5.7 KiB
C
177 lines
5.7 KiB
C
/*
|
|
* Interface for the 93C66/56/46/26/06 serial eeprom parts.
|
|
*
|
|
* Copyright (c) 1995, 1996 Daniel M. Eischen
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice immediately at the beginning of the file, without modification,
|
|
* this list of conditions, and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Absolutely no warranty of function or purpose is made by the author
|
|
* Daniel M. Eischen.
|
|
* 4. Modifications may be freely made to this file if the above conditions
|
|
* are met.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* The instruction set of the 93C66/56/46/26/06 chips are as follows:
|
|
*
|
|
* Start OP *
|
|
* Function Bit Code Address** Data Description
|
|
* -------------------------------------------------------------------
|
|
* READ 1 10 A5 - A0 Reads data stored in memory,
|
|
* starting at specified address
|
|
* EWEN 1 00 11XXXX Write enable must preceed
|
|
* all programming modes
|
|
* ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0
|
|
* WRITE 1 01 A5 - A0 D15 - D0 Writes register
|
|
* ERAL 1 00 10XXXX Erase all registers
|
|
* WRAL 1 00 01XXXX D15 - D0 Writes to all registers
|
|
* EWDS 1 00 00XXXX Disables all programming
|
|
* instructions
|
|
* *Note: A value of X for address is a don't care condition.
|
|
* **Note: There are 8 address bits for the 93C56/66 chips unlike
|
|
* the 93C46/26/06 chips which have 6 address bits.
|
|
*
|
|
* The 93C46 has a four wire interface: clock, chip select, data in, and
|
|
* data out. In order to perform one of the above functions, you need
|
|
* to enable the chip select for a clock period (typically a minimum of
|
|
* 1 usec, with the clock high and low a minimum of 750 and 250 nsec
|
|
* respectively). While the chip select remains high, you can clock in
|
|
* the instructions (above) starting with the start bit, followed by the
|
|
* OP code, Address, and Data (if needed). For the READ instruction, the
|
|
* requested 16-bit register contents is read from the data out line but
|
|
* is preceded by an initial zero (leading 0, followed by 16-bits, MSB
|
|
* first). The clock cycling from low to high initiates the next data
|
|
* bit to be sent from the chip.
|
|
*
|
|
*/
|
|
|
|
#include "opt_aic7xxx.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <machine/bus_memio.h>
|
|
#include <machine/bus_pio.h>
|
|
#include <machine/bus.h>
|
|
#include <dev/aic7xxx/93cx6.h>
|
|
|
|
/*
|
|
* Right now, we only have to read the SEEPROM. But we make it easier to
|
|
* add other 93Cx6 functions.
|
|
*/
|
|
static struct seeprom_cmd {
|
|
unsigned char len;
|
|
unsigned char bits[3];
|
|
} seeprom_read = {3, {1, 1, 0}};
|
|
|
|
/*
|
|
* Wait for the SEERDY to go high; about 800 ns.
|
|
*/
|
|
#define CLOCK_PULSE(sd, rdy) \
|
|
while ((SEEPROM_STATUS_INB(sd) & rdy) == 0) { \
|
|
; /* Do nothing */ \
|
|
} \
|
|
(void)SEEPROM_INB(sd); /* Clear clock */
|
|
|
|
/*
|
|
* Read the serial EEPROM and returns 1 if successful and 0 if
|
|
* not successful.
|
|
*/
|
|
int
|
|
read_seeprom(sd, buf, start_addr, count)
|
|
struct seeprom_descriptor *sd;
|
|
uint16_t *buf;
|
|
bus_size_t start_addr;
|
|
bus_size_t count;
|
|
{
|
|
int i = 0;
|
|
u_int k = 0;
|
|
uint16_t v;
|
|
uint8_t temp;
|
|
|
|
/*
|
|
* Read the requested registers of the seeprom. The loop
|
|
* will range from 0 to count-1.
|
|
*/
|
|
for (k = start_addr; k < count + start_addr; k++) {
|
|
/* Send chip select for one clock cycle. */
|
|
temp = sd->sd_MS ^ sd->sd_CS;
|
|
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
|
|
CLOCK_PULSE(sd, sd->sd_RDY);
|
|
|
|
/*
|
|
* Now we're ready to send the read command followed by the
|
|
* address of the 16-bit register we want to read.
|
|
*/
|
|
for (i = 0; i < seeprom_read.len; i++) {
|
|
if (seeprom_read.bits[i] != 0)
|
|
temp ^= sd->sd_DO;
|
|
SEEPROM_OUTB(sd, temp);
|
|
CLOCK_PULSE(sd, sd->sd_RDY);
|
|
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
|
|
CLOCK_PULSE(sd, sd->sd_RDY);
|
|
if (seeprom_read.bits[i] != 0)
|
|
temp ^= sd->sd_DO;
|
|
}
|
|
/* Send the 6 or 8 bit address (MSB first, LSB last). */
|
|
for (i = (sd->sd_chip - 1); i >= 0; i--) {
|
|
if ((k & (1 << i)) != 0)
|
|
temp ^= sd->sd_DO;
|
|
SEEPROM_OUTB(sd, temp);
|
|
CLOCK_PULSE(sd, sd->sd_RDY);
|
|
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
|
|
CLOCK_PULSE(sd, sd->sd_RDY);
|
|
if ((k & (1 << i)) != 0)
|
|
temp ^= sd->sd_DO;
|
|
}
|
|
|
|
/*
|
|
* Now read the 16 bit register. An initial 0 precedes the
|
|
* register contents which begins with bit 15 (MSB) and ends
|
|
* with bit 0 (LSB). The initial 0 will be shifted off the
|
|
* top of our word as we let the loop run from 0 to 16.
|
|
*/
|
|
v = 0;
|
|
for (i = 16; i >= 0; i--) {
|
|
SEEPROM_OUTB(sd, temp);
|
|
CLOCK_PULSE(sd, sd->sd_RDY);
|
|
v <<= 1;
|
|
if (SEEPROM_DATA_INB(sd) & sd->sd_DI)
|
|
v |= 1;
|
|
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
|
|
CLOCK_PULSE(sd, sd->sd_RDY);
|
|
}
|
|
|
|
buf[k - start_addr] = v;
|
|
|
|
/* Reset the chip select for the next command cycle. */
|
|
temp = sd->sd_MS;
|
|
SEEPROM_OUTB(sd, temp);
|
|
CLOCK_PULSE(sd, sd->sd_RDY);
|
|
SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
|
|
CLOCK_PULSE(sd, sd->sd_RDY);
|
|
SEEPROM_OUTB(sd, temp);
|
|
CLOCK_PULSE(sd, sd->sd_RDY);
|
|
}
|
|
#ifdef AHC_DUMP_EEPROM
|
|
printf("\nSerial EEPROM:\n\t");
|
|
for (k = 0; k < count; k = k + 1) {
|
|
if (((k % 8) == 0) && (k != 0)) {
|
|
printf ("\n\t");
|
|
}
|
|
printf (" 0x%x", buf[k]);
|
|
}
|
|
printf ("\n");
|
|
#endif
|
|
return (1);
|
|
}
|