freebsd-skq/sys/kern/kern_tc.c
phk bcaaa89ad0 Explain magic number.
Add magic date no explanation.

Add a delta which was lost in transit yesterday which prevented
other timecounters from actually being used.
2002-04-27 07:28:54 +00:00

594 lines
14 KiB
C

/*
* ----------------------------------------------------------------------------
* "THE BEER-WARE LICENSE" (Revision 42):
* <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
* ----------------------------------------------------------------------------
*
* $FreeBSD$
*/
#include "opt_ntp.h"
#include <sys/param.h>
#include <sys/timetc.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/timex.h>
#include <sys/timepps.h>
/*
* Implement a dummy timecounter which we can use until we get a real one
* in the air. This allows the console and other early stuff to use
* timeservices.
*/
static unsigned
dummy_get_timecount(struct timecounter *tc)
{
static unsigned now;
return (++now);
}
static struct timecounter dummy_timecounter = {
dummy_get_timecount,
0,
~0u,
1000000,
"dummy"
};
struct timehands {
/* These fields must be initialized by the driver. */
struct timecounter *tc_counter;
int64_t tc_adjustment;
u_int64_t tc_scale;
unsigned tc_offset_count;
struct bintime tc_offset;
struct timeval tc_microtime;
struct timespec tc_nanotime;
/* Fields not to be copied in tc_windup start with tc_generation */
volatile unsigned tc_generation;
struct timehands *tc_next;
};
extern struct timehands th0;
static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 1, &th0};
static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 1, &th9};
static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 1, &th8};
static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 1, &th7};
static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 1, &th6};
static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 1, &th5};
static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 1, &th4};
static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 1, &th3};
static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 1, &th2};
static struct timehands th0 = {
&dummy_timecounter,
0,
18446744073709ULL, /* 2^64/1000000 */
0,
{769769981, 0}, /* Tue May 24 08:59:41 GMT 1994 */
{0, 0},
{0, 0},
1,
&th1
};
static struct timehands *volatile timehands = &th0;
struct timecounter *timecounter = &dummy_timecounter;
static struct timecounter *timecounters = &dummy_timecounter;
time_t time_second;
struct bintime boottimebin;
struct timeval boottime;
SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
&boottime, timeval, "System boottime");
SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
#define TC_STATS(foo) \
static unsigned foo; \
SYSCTL_INT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, & foo, 0, "")
TC_STATS(nbinuptime); TC_STATS(nnanouptime); TC_STATS(nmicrouptime);
TC_STATS(nbintime); TC_STATS(nnanotime); TC_STATS(nmicrotime);
TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
TC_STATS(ngetbintime); TC_STATS(ngetnanotime); TC_STATS(ngetmicrotime);
#undef TC_STATS
static void tc_windup(void);
static __inline unsigned
tc_delta(struct timehands *tc)
{
return ((tc->tc_counter->tc_get_timecount(tc->tc_counter) -
tc->tc_offset_count) & tc->tc_counter->tc_counter_mask);
}
void
binuptime(struct bintime *bt)
{
struct timehands *tc;
unsigned gen;
nbinuptime++;
do {
tc = timehands;
gen = tc->tc_generation;
*bt = tc->tc_offset;
bintime_addx(bt, tc->tc_scale * tc_delta(tc));
} while (gen == 0 || gen != tc->tc_generation);
}
void
nanouptime(struct timespec *ts)
{
struct bintime bt;
nnanouptime++;
binuptime(&bt);
bintime2timespec(&bt, ts);
}
void
microuptime(struct timeval *tv)
{
struct bintime bt;
nmicrouptime++;
binuptime(&bt);
bintime2timeval(&bt, tv);
}
void
bintime(struct bintime *bt)
{
nbintime++;
binuptime(bt);
bintime_add(bt, &boottimebin);
}
void
nanotime(struct timespec *ts)
{
struct bintime bt;
nnanotime++;
bintime(&bt);
bintime2timespec(&bt, ts);
}
void
microtime(struct timeval *tv)
{
struct bintime bt;
nmicrotime++;
bintime(&bt);
bintime2timeval(&bt, tv);
}
void
getbinuptime(struct bintime *bt)
{
struct timehands *tc;
unsigned gen;
ngetbinuptime++;
do {
tc = timehands;
gen = tc->tc_generation;
*bt = tc->tc_offset;
} while (gen == 0 || gen != tc->tc_generation);
}
void
getnanouptime(struct timespec *tsp)
{
struct timehands *tc;
unsigned gen;
ngetnanouptime++;
do {
tc = timehands;
gen = tc->tc_generation;
bintime2timespec(&tc->tc_offset, tsp);
} while (gen == 0 || gen != tc->tc_generation);
}
void
getmicrouptime(struct timeval *tvp)
{
struct timehands *tc;
unsigned gen;
ngetmicrouptime++;
do {
tc = timehands;
gen = tc->tc_generation;
bintime2timeval(&tc->tc_offset, tvp);
} while (gen == 0 || gen != tc->tc_generation);
}
void
getbintime(struct bintime *bt)
{
struct timehands *tc;
unsigned gen;
ngetbintime++;
do {
tc = timehands;
gen = tc->tc_generation;
*bt = tc->tc_offset;
} while (gen == 0 || gen != tc->tc_generation);
bintime_add(bt, &boottimebin);
}
void
getnanotime(struct timespec *tsp)
{
struct timehands *tc;
unsigned gen;
ngetnanotime++;
do {
tc = timehands;
gen = tc->tc_generation;
*tsp = tc->tc_nanotime;
} while (gen == 0 || gen != tc->tc_generation);
}
void
getmicrotime(struct timeval *tvp)
{
struct timehands *tc;
unsigned gen;
ngetmicrotime++;
do {
tc = timehands;
gen = tc->tc_generation;
*tvp = tc->tc_microtime;
} while (gen == 0 || gen != tc->tc_generation);
}
static void
tc_setscales(struct timehands *tc)
{
u_int64_t scale;
/* Sacrifice the lower bit to the deity for code clarity */
scale = 1ULL << 63;
/*
* We get nanoseconds with 32 bit binary fraction and want
* 64 bit binary fraction: x = a * 2^32 / 10^9 = a * 4.294967296
* The range is +/- 5000PPM so we can only multiply by about 850
* without overflowing. The best suitable fraction is 2199/512.
* Divide by 2 times 512 to match the temporary lower precision.
*/
scale += (tc->tc_adjustment / 1024) * 2199;
scale /= tc->tc_counter->tc_frequency;
tc->tc_scale = scale * 2;
}
void
tc_init(struct timecounter *tc)
{
tc->tc_next = timecounters;
timecounters = tc;
printf("Timecounter \"%s\" frequency %lu Hz\n",
tc->tc_name, (u_long)tc->tc_frequency);
timecounter = tc;
}
u_int32_t
tc_getfrequency(void)
{
return (timehands->tc_counter->tc_frequency);
}
void
tc_setclock(struct timespec *ts)
{
struct timespec ts2;
nanouptime(&ts2);
boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
if (boottime.tv_usec < 0) {
boottime.tv_usec += 1000000;
boottime.tv_sec--;
}
timeval2bintime(&boottime, &boottimebin);
/* fiddle all the little crinkly bits around the fiords... */
tc_windup();
}
static void
tc_windup(void)
{
struct timehands *tc, *tco;
struct bintime bt;
unsigned ogen, delta, ncount;
int i;
ncount = 0; /* GCC is lame */
tco = timehands;
tc = tco->tc_next;
ogen = tc->tc_generation;
tc->tc_generation = 0;
bcopy(tco, tc, __offsetof(struct timehands, tc_generation));
delta = tc_delta(tc);
if (tc->tc_counter != timecounter)
ncount = timecounter->tc_get_timecount(timecounter);
tc->tc_offset_count += delta;
tc->tc_offset_count &= tc->tc_counter->tc_counter_mask;
bintime_addx(&tc->tc_offset, tc->tc_scale * delta);
/*
* We may be inducing a tiny error here, the tc_poll_pps() may
* process a latched count which happens after the tc_delta()
* in sync_other_counter(), which would extend the previous
* counters parameters into the domain of this new one.
* Since the timewindow is very small for this, the error is
* going to be only a few weenieseconds (as Dave Mills would
* say), so lets just not talk more about it, OK ?
*/
if (tco->tc_counter->tc_poll_pps)
tco->tc_counter->tc_poll_pps(tco->tc_counter);
for (i = tc->tc_offset.sec - tco->tc_offset.sec; i > 0; i--)
ntp_update_second(&tc->tc_adjustment, &tc->tc_offset.sec);
if (tc->tc_counter != timecounter) {
tc->tc_counter = timecounter;
tc->tc_offset_count = ncount;
}
tc_setscales(tc);
bt = tc->tc_offset;
bintime_add(&bt, &boottimebin);
bintime2timeval(&bt, &tc->tc_microtime);
bintime2timespec(&bt, &tc->tc_nanotime);
ogen++;
if (ogen == 0)
ogen++;
tc->tc_generation = ogen;
time_second = tc->tc_microtime.tv_sec;
timehands = tc;
}
static int
sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
{
char newname[32];
struct timecounter *newtc, *tc;
int error;
tc = timecounter;
strncpy(newname, tc->tc_name, sizeof(newname));
error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
if (error != 0 && req->newptr == NULL && !strcmp(newname, tc->tc_name))
return(error);
for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
if (strcmp(newname, newtc->tc_name))
continue;
/* Warm up new timecounter. */
(void)newtc->tc_get_timecount(newtc);
(void)newtc->tc_get_timecount(newtc);
timecounter = newtc;
return (0);
}
return (EINVAL);
}
SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
0, 0, sysctl_kern_timecounter_hardware, "A", "");
int
pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
{
pps_params_t *app;
struct pps_fetch_args *fapi;
#ifdef PPS_SYNC
struct pps_kcbind_args *kapi;
#endif
switch (cmd) {
case PPS_IOC_CREATE:
return (0);
case PPS_IOC_DESTROY:
return (0);
case PPS_IOC_SETPARAMS:
app = (pps_params_t *)data;
if (app->mode & ~pps->ppscap)
return (EINVAL);
pps->ppsparam = *app;
return (0);
case PPS_IOC_GETPARAMS:
app = (pps_params_t *)data;
*app = pps->ppsparam;
app->api_version = PPS_API_VERS_1;
return (0);
case PPS_IOC_GETCAP:
*(int*)data = pps->ppscap;
return (0);
case PPS_IOC_FETCH:
fapi = (struct pps_fetch_args *)data;
if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
return (EINVAL);
if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
return (EOPNOTSUPP);
pps->ppsinfo.current_mode = pps->ppsparam.mode;
fapi->pps_info_buf = pps->ppsinfo;
return (0);
case PPS_IOC_KCBIND:
#ifdef PPS_SYNC
kapi = (struct pps_kcbind_args *)data;
/* XXX Only root should be able to do this */
if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
return (EINVAL);
if (kapi->kernel_consumer != PPS_KC_HARDPPS)
return (EINVAL);
if (kapi->edge & ~pps->ppscap)
return (EINVAL);
pps->kcmode = kapi->edge;
return (0);
#else
return (EOPNOTSUPP);
#endif
default:
return (ENOTTY);
}
}
void
pps_init(struct pps_state *pps)
{
pps->ppscap |= PPS_TSFMT_TSPEC;
if (pps->ppscap & PPS_CAPTUREASSERT)
pps->ppscap |= PPS_OFFSETASSERT;
if (pps->ppscap & PPS_CAPTURECLEAR)
pps->ppscap |= PPS_OFFSETCLEAR;
}
void
pps_capture(struct pps_state *pps)
{
struct timehands *tc;
tc = timehands;
pps->captc = tc;
pps->capgen = tc->tc_generation;
pps->capcount = tc->tc_counter->tc_get_timecount(tc->tc_counter);
}
void
pps_event(struct pps_state *pps, int event)
{
struct timespec ts, *tsp, *osp;
unsigned tcount, *pcount;
struct bintime bt;
int foff, fhard;
pps_seq_t *pseq;
/* If the timecounter were wound up, bail. */
if (pps->capgen != pps->capgen)
return;
/* Things would be easier with arrays... */
if (event == PPS_CAPTUREASSERT) {
tsp = &pps->ppsinfo.assert_timestamp;
osp = &pps->ppsparam.assert_offset;
foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
fhard = pps->kcmode & PPS_CAPTUREASSERT;
pcount = &pps->ppscount[0];
pseq = &pps->ppsinfo.assert_sequence;
} else {
tsp = &pps->ppsinfo.clear_timestamp;
osp = &pps->ppsparam.clear_offset;
foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
fhard = pps->kcmode & PPS_CAPTURECLEAR;
pcount = &pps->ppscount[1];
pseq = &pps->ppsinfo.clear_sequence;
}
/* The timecounter changed: bail */
if (!pps->ppstc ||
pps->ppstc != pps->captc->tc_counter ||
pps->captc->tc_counter != timehands->tc_counter) {
pps->ppstc = pps->captc->tc_counter;
*pcount = pps->capcount;
#ifdef PPS_SYNC
pps->ppscount[2] = pps->capcount;
#endif
return;
}
/* Nothing really happened */
if (*pcount == pps->capcount)
return;
/* Convert the count to timespec */
tcount = pps->capcount - pps->captc->tc_offset_count;
tcount &= pps->captc->tc_counter->tc_counter_mask;
bt = pps->captc->tc_offset;
bintime_addx(&bt, pps->captc->tc_scale * tcount);
bintime2timespec(&bt, &ts);
/* If the timecounter were wound up, bail. */
if (pps->capgen != pps->capgen)
return;
*pcount = pps->capcount;
(*pseq)++;
*tsp = ts;
if (foff) {
timespecadd(tsp, osp);
if (tsp->tv_nsec < 0) {
tsp->tv_nsec += 1000000000;
tsp->tv_sec -= 1;
}
}
#ifdef PPS_SYNC
if (fhard) {
/* magic, at its best... */
tcount = pps->capcount - pps->ppscount[2];
pps->ppscount[2] = pps->capcount;
tcount &= pps->captc->tc_counter->tc_counter_mask;
bt.sec = 0;
bt.frac = 0;
bintime_addx(&bt, pps->captc->tc_scale * tcount);
bintime2timespec(&bt, &ts);
hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
}
#endif
}
/*-
* Timecounters need to be updated every so often to prevent the hardware
* counter from overflowing. Updating also recalculates the cached values
* used by the get*() family of functions, so their precision depends on
* the update frequency.
* Don't update faster than approx once per millisecond, if people want
* better timestamps they should use the non-"get" functions.
*/
static int tc_tick;
SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tick, 0, "");
static void
tc_ticktock(void *dummy)
{
tc_windup();
timeout(tc_ticktock, NULL, tc_tick);
}
static void
inittimecounter(void *dummy)
{
u_int p;
if (hz > 1000)
tc_tick = (hz + 500) / 1000;
else
tc_tick = 1;
p = (tc_tick * 1000000) / hz;
printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
tc_ticktock(NULL);
}
SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_FIRST, inittimecounter, NULL)