freebsd-skq/sys/dev/aha/aha.c

1766 lines
44 KiB
C

/*
* Generic register and struct definitions for the Adaptech 154x/164x
* SCSI host adapters. Product specific probe and attach routines can
* be found in:
* <fill in list here> XXX
*
* Derived from bt.c written by:
*
* Copyright (c) 1998 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: aha.c,v 1.2 1998/09/16 03:27:12 gibbs Exp $
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/clock.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_message.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <dev/aha/ahareg.h>
struct aha_softc *aha_softcs[NAHA];
#define MIN(a, b) ((a) < (b) ? (a) : (b))
/* MailBox Management functions */
static __inline void ahanextinbox(struct aha_softc *aha);
static __inline void ahanextoutbox(struct aha_softc *aha);
static __inline void
ahanextinbox(struct aha_softc *aha)
{
if (aha->cur_inbox == aha->last_inbox)
aha->cur_inbox = aha->in_boxes;
else
aha->cur_inbox++;
}
static __inline void
ahanextoutbox(struct aha_softc *aha)
{
if (aha->cur_outbox == aha->last_outbox)
aha->cur_outbox = aha->out_boxes;
else
aha->cur_outbox++;
}
#define ahautoa24(u,s3) \
(s3)[0] = ((u) >> 16) & 0xff; \
(s3)[1] = ((u) >> 8) & 0xff; \
(s3)[2] = (u) & 0xff;
#define aha_a24tou(s3) \
(((s3)[0] << 16) | ((s3)[1] << 8) | (s3)[2])
/* CCB Mangement functions */
static __inline u_int32_t ahaccbvtop(struct aha_softc *aha,
struct aha_ccb *bccb);
static __inline struct aha_ccb* ahaccbptov(struct aha_softc *aha,
u_int32_t ccb_addr);
static __inline u_int32_t
ahaccbvtop(struct aha_softc *aha, struct aha_ccb *bccb)
{
return (aha->aha_ccb_physbase
+ (u_int32_t)((caddr_t)bccb - (caddr_t)aha->aha_ccb_array));
}
static __inline struct aha_ccb *
ahaccbptov(struct aha_softc *aha, u_int32_t ccb_addr)
{
return (aha->aha_ccb_array +
+ ((struct aha_ccb*)ccb_addr-(struct aha_ccb*)aha->aha_ccb_physbase));
}
static struct aha_ccb* ahagetccb(struct aha_softc *aha);
static __inline void ahafreeccb(struct aha_softc *aha, struct aha_ccb *bccb);
static void ahaallocccbs(struct aha_softc *aha);
static bus_dmamap_callback_t ahaexecuteccb;
static void ahadone(struct aha_softc *aha, struct aha_ccb *bccb,
aha_mbi_comp_code_t comp_code);
/* Host adapter command functions */
static int ahareset(struct aha_softc* aha, int hard_reset);
/* Initialization functions */
static int ahainitmboxes(struct aha_softc *aha);
static bus_dmamap_callback_t ahamapmboxes;
static bus_dmamap_callback_t ahamapccbs;
static bus_dmamap_callback_t ahamapsgs;
/* Transfer Negotiation Functions */
static void ahafetchtransinfo(struct aha_softc *aha,
struct ccb_trans_settings *cts);
/* CAM SIM entry points */
#define ccb_bccb_ptr spriv_ptr0
#define ccb_aha_ptr spriv_ptr1
static void ahaaction(struct cam_sim *sim, union ccb *ccb);
static void ahapoll(struct cam_sim *sim);
/* Our timeout handler */
timeout_t ahatimeout;
u_long aha_unit = 0;
/*
* Do our own re-probe protection until a configuration
* manager can do it for us. This ensures that we don't
* reprobe a card already found by the EISA or PCI probes.
*/
struct aha_isa_port aha_isa_ports[] =
{
{ 0x330, 0 },
{ 0x334, 0 },
{ 0x230, 0 },
{ 0x234, 0 },
{ 0x130, 0 },
{ 0x134, 0 }
};
/* Exported functions */
struct aha_softc *
aha_alloc(int unit, bus_space_tag_t tag, bus_space_handle_t bsh)
{
struct aha_softc *aha;
int i;
if (unit != AHA_TEMP_UNIT) {
if (unit >= NAHA) {
printf("aha: unit number (%d) too high\n", unit);
return NULL;
}
/*
* Allocate a storage area for us
*/
if (aha_softcs[unit]) {
printf("aha%d: memory already allocated\n", unit);
return NULL;
}
}
aha = malloc(sizeof(struct aha_softc), M_DEVBUF, M_NOWAIT);
if (!aha) {
printf("aha%d: cannot malloc!\n", unit);
return NULL;
}
bzero(aha, sizeof(struct aha_softc));
SLIST_INIT(&aha->free_aha_ccbs);
LIST_INIT(&aha->pending_ccbs);
SLIST_INIT(&aha->sg_maps);
aha->unit = unit;
aha->tag = tag;
aha->bsh = bsh;
if (aha->unit != AHA_TEMP_UNIT) {
aha_softcs[unit] = aha;
}
return (aha);
}
void
aha_free(struct aha_softc *aha)
{
switch (aha->init_level) {
default:
case 8:
{
struct sg_map_node *sg_map;
while ((sg_map = SLIST_FIRST(&aha->sg_maps))!= NULL) {
SLIST_REMOVE_HEAD(&aha->sg_maps, links);
bus_dmamap_unload(aha->sg_dmat,
sg_map->sg_dmamap);
bus_dmamem_free(aha->sg_dmat, sg_map->sg_vaddr,
sg_map->sg_dmamap);
free(sg_map, M_DEVBUF);
}
bus_dma_tag_destroy(aha->sg_dmat);
}
case 7:
bus_dmamap_unload(aha->ccb_dmat, aha->ccb_dmamap);
case 6:
bus_dmamap_destroy(aha->ccb_dmat, aha->ccb_dmamap);
bus_dmamem_free(aha->ccb_dmat, aha->aha_ccb_array,
aha->ccb_dmamap);
case 5:
bus_dma_tag_destroy(aha->ccb_dmat);
case 4:
bus_dmamap_unload(aha->mailbox_dmat, aha->mailbox_dmamap);
case 3:
bus_dmamem_free(aha->mailbox_dmat, aha->in_boxes,
aha->mailbox_dmamap);
bus_dmamap_destroy(aha->mailbox_dmat, aha->mailbox_dmamap);
case 2:
bus_dma_tag_destroy(aha->buffer_dmat);
case 1:
bus_dma_tag_destroy(aha->mailbox_dmat);
case 0:
}
if (aha->unit != AHA_TEMP_UNIT) {
aha_softcs[aha->unit] = NULL;
}
free(aha, M_DEVBUF);
}
/*
* Probe the adapter and verify that the card is an Adaptec.
*/
int
aha_probe(struct aha_softc* aha)
{
u_int status;
u_int intstat;
int error;
u_int8_t param;
esetup_info_data_t esetup_info;
/*
* See if the three I/O ports look reasonable.
* Touch the minimal number of registers in the
* failure case.
*/
status = aha_inb(aha, STATUS_REG);
if ((status == 0)
|| (status & (DIAG_ACTIVE|CMD_REG_BUSY|
STATUS_REG_RSVD|CMD_INVALID)) != 0) {
return (ENXIO);
}
intstat = aha_inb(aha, INTSTAT_REG);
if ((intstat & INTSTAT_REG_RSVD) != 0) {
printf("%s: Failed Intstat Reg Test\n", aha_name(aha));
return (ENXIO);
}
/*
* Looking good so far. Final test is to reset the
* adapter.
*/
if ((error = ahareset(aha, /*hard_reset*/TRUE)) != 0) {
if (bootverbose)
printf("%s: Failed Reset\n", aha_name(aha));
return (ENXIO);
}
/*
* Issue a buslogic command that will fail, and reject the board
* if it doesn't.
*/
param = sizeof(esetup_info);
error = aha_cmd(aha, BOP_INQUIRE_ESETUP_INFO, &param, /*parmlen*/1,
(u_int8_t*)&esetup_info, sizeof(esetup_info),
DEFAULT_CMD_TIMEOUT);
if (error == 0)
return ENXIO;
return (0);
}
/*
* Pull the boards setup information and record it in our softc.
*/
int
aha_fetch_adapter_info(struct aha_softc *aha)
{
board_id_data_t board_id;
setup_data_t setup_info;
config_data_t config_data;
u_int8_t length_param;
int error;
/* First record the firmware version */
error = aha_cmd(aha, BOP_INQUIRE_BOARD_ID, NULL, /*parmlen*/0,
(u_int8_t*)&board_id, sizeof(board_id),
DEFAULT_CMD_TIMEOUT);
if (error != 0) {
printf("%s: aha_fetch_adapter_info - Failed Get Board Info\n",
aha_name(aha));
return (error);
}
aha->firmware_ver[0] = board_id.firmware_rev_major;
aha->firmware_ver[1] = '.';
aha->firmware_ver[2] = board_id.firmware_rev_minor;
aha->firmware_ver[3] = '\0';
aha->boardid = board_id.board_type;
switch (board_id.board_type) {
case BOARD_1540_16HEAD_BIOS:
strcpy(aha->model, "1540 16 head BIOS");
break;
case BOARD_1540_64HEAD_BIOS:
strcpy(aha->model, "1540 64 head BIOS");
break;
case BOARD_1542:
strcpy(aha->model, "1540/1542 64 head BIOS");
break;
case BOARD_1640:
strcpy(aha->model, "1640");
break;
case BOARD_1740:
strcpy(aha->model, "1740A/1742A/1744");
break;
case BOARD_1542C:
strcpy(aha->model, "1542C");
break;
case BOARD_1542CF:
strcpy(aha->model, "1542CF");
break;
case BOARD_1542CP:
strcpy(aha->model, "1542CP");
break;
default:
strcpy(aha->model, "Unknown");
break;
}
aha->max_sg = 16;
aha->diff_bus = 0;
aha->extended_lun = 0;
aha->extended_trans = 0; /* XXX ???? XXX */
aha->max_ccbs = 16; /* XXX ???? XXX */
/* Determine Sync/Wide/Disc settings */
length_param = sizeof(setup_info);
error = aha_cmd(aha, BOP_INQUIRE_SETUP_INFO, &length_param,
/*paramlen*/1, (u_int8_t*)&setup_info,
sizeof(setup_info), DEFAULT_CMD_TIMEOUT);
if (error != 0) {
printf("%s: aha_fetch_adapter_info - Failed "
"Get Setup Info\n", aha_name(aha));
return (error);
}
if (setup_info.initiate_sync != 0) {
aha->sync_permitted = ALL_TARGETS;
}
aha->disc_permitted = ALL_TARGETS;
/* We need as many mailboxes as we can have ccbs */
aha->num_boxes = aha->max_ccbs;
/* Determine our SCSI ID */
error = aha_cmd(aha, BOP_INQUIRE_CONFIG, NULL, /*parmlen*/0,
(u_int8_t*)&config_data, sizeof(config_data),
DEFAULT_CMD_TIMEOUT);
if (error != 0) {
printf("%s: aha_fetch_adapter_info - Failed Get Config\n",
aha_name(aha));
return (error);
}
aha->scsi_id = config_data.scsi_id;
return (0);
}
/*
* Start the board, ready for normal operation
*/
int
aha_init(struct aha_softc* aha)
{
/* Announce the Adapter */
printf("%s: AHA-%s FW Rev. %s (ID=%x)", aha_name(aha),
aha->model, aha->firmware_ver, aha->boardid);
if (aha->diff_bus != 0)
printf("Diff ");
printf("SCSI Host Adapter, SCSI ID %d, %d CCBs\n", aha->scsi_id,
aha->max_ccbs);
/*
* Create our DMA tags. These tags define the kinds of device
* accessable memory allocations and memory mappings we will
* need to perform during normal operation.
*
* Unless we need to further restrict the allocation, we rely
* on the restrictions of the parent dmat, hence the common
* use of MAXADDR and MAXSIZE.
*/
/* DMA tag for mapping buffers into device visible space. */
if (bus_dma_tag_create(aha->parent_dmat, /*alignment*/0, /*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/MAXBSIZE, /*nsegments*/AHA_NSEG,
/*maxsegsz*/BUS_SPACE_MAXSIZE_24BIT,
/*flags*/BUS_DMA_ALLOCNOW,
&aha->buffer_dmat) != 0) {
goto error_exit;
}
aha->init_level++;
/* DMA tag for our mailboxes */
if (bus_dma_tag_create(aha->parent_dmat, /*alignment*/0, /*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
aha->num_boxes * (sizeof(aha_mbox_in_t)
+ sizeof(aha_mbox_out_t)),
/*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_24BIT,
/*flags*/0, &aha->mailbox_dmat) != 0) {
goto error_exit;
}
aha->init_level++;
/* Allocation for our mailboxes */
if (bus_dmamem_alloc(aha->mailbox_dmat, (void **)&aha->out_boxes,
BUS_DMA_NOWAIT, &aha->mailbox_dmamap) != 0) {
goto error_exit;
}
aha->init_level++;
/* And permanently map them */
bus_dmamap_load(aha->mailbox_dmat, aha->mailbox_dmamap,
aha->out_boxes,
aha->num_boxes * (sizeof(aha_mbox_in_t)
+ sizeof(aha_mbox_out_t)),
ahamapmboxes, aha, /*flags*/0);
aha->init_level++;
aha->in_boxes = (aha_mbox_in_t *)&aha->out_boxes[aha->num_boxes];
ahainitmboxes(aha);
/* DMA tag for our ccb structures */
if (bus_dma_tag_create(aha->parent_dmat, /*alignment*/0, /*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
aha->max_ccbs * sizeof(struct aha_ccb),
/*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_24BIT,
/*flags*/0, &aha->ccb_dmat) != 0) {
goto error_exit;
}
aha->init_level++;
/* Allocation for our ccbs */
if (bus_dmamem_alloc(aha->ccb_dmat, (void **)&aha->aha_ccb_array,
BUS_DMA_NOWAIT, &aha->ccb_dmamap) != 0) {
goto error_exit;
}
aha->init_level++;
/* And permanently map them */
bus_dmamap_load(aha->ccb_dmat, aha->ccb_dmamap,
aha->aha_ccb_array,
aha->max_ccbs * sizeof(struct aha_ccb),
ahamapccbs, aha, /*flags*/0);
aha->init_level++;
/* DMA tag for our S/G structures. We allocate in page sized chunks */
if (bus_dma_tag_create(aha->parent_dmat, /*alignment*/0, /*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
PAGE_SIZE, /*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_24BIT,
/*flags*/0, &aha->sg_dmat) != 0) {
goto error_exit;
}
aha->init_level++;
/* Perform initial CCB allocation */
bzero(aha->aha_ccb_array, aha->max_ccbs * sizeof(struct aha_ccb));
ahaallocccbs(aha);
if (aha->num_ccbs == 0) {
printf("%s: aha_init - Unable to allocate initial ccbs\n",
aha_name(aha));
goto error_exit;
}
/*
* Note that we are going and return (to probe)
*/
return 0;
error_exit:
return (ENXIO);
}
int
aha_attach(struct aha_softc *aha)
{
int tagged_dev_openings;
struct cam_devq *devq;
/*
* We reserve 1 ccb for error recovery, so don't
* tell the XPT about it.
*/
tagged_dev_openings = 0;
/*
* Create the device queue for our SIM.
*/
devq = cam_simq_alloc(aha->max_ccbs - 1);
if (devq == NULL)
return (ENOMEM);
/*
* Construct our SIM entry
*/
aha->sim = cam_sim_alloc(ahaaction, ahapoll, "aha", aha, aha->unit,
2, tagged_dev_openings, devq);
if (aha->sim == NULL) {
cam_simq_free(devq);
return (ENOMEM);
}
if (xpt_bus_register(aha->sim, 0) != CAM_SUCCESS) {
cam_sim_free(aha->sim, /*free_devq*/TRUE);
return (ENXIO);
}
if (xpt_create_path(&aha->path, /*periph*/NULL,
cam_sim_path(aha->sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(aha->sim));
cam_sim_free(aha->sim, /*free_devq*/TRUE);
return (ENXIO);
}
return (0);
}
char *
aha_name(struct aha_softc *aha)
{
static char name[10];
sprintf(name, "aha%d", aha->unit);
return (name);
}
int
aha_check_probed_iop(u_int ioport)
{
u_int i;
for (i=0; i < AHA_NUM_ISAPORTS; i++) {
if (aha_isa_ports[i].addr == ioport) {
if (aha_isa_ports[i].probed != 0)
return (1);
else {
return (0);
}
}
}
return (1);
}
void
aha_mark_probed_bio(isa_compat_io_t port)
{
if (port < BIO_DISABLED)
aha_isa_ports[port].probed = 1;
}
void
aha_mark_probed_iop(u_int ioport)
{
u_int i;
for (i = 0; i < AHA_NUM_ISAPORTS; i++) {
if (ioport == aha_isa_ports[i].addr) {
aha_isa_ports[i].probed = 1;
break;
}
}
}
static void
ahaallocccbs(struct aha_softc *aha)
{
struct aha_ccb *next_ccb;
struct sg_map_node *sg_map;
bus_addr_t physaddr;
aha_sg_t *segs;
int newcount;
int i;
next_ccb = &aha->aha_ccb_array[aha->num_ccbs];
sg_map = malloc(sizeof(*sg_map), M_DEVBUF, M_NOWAIT);
if (sg_map == NULL)
return;
/* Allocate S/G space for the next batch of CCBS */
if (bus_dmamem_alloc(aha->sg_dmat, (void **)&sg_map->sg_vaddr,
BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) {
free(sg_map, M_DEVBUF);
return;
}
SLIST_INSERT_HEAD(&aha->sg_maps, sg_map, links);
bus_dmamap_load(aha->sg_dmat, sg_map->sg_dmamap, sg_map->sg_vaddr,
PAGE_SIZE, ahamapsgs, aha, /*flags*/0);
segs = sg_map->sg_vaddr;
physaddr = sg_map->sg_physaddr;
newcount = (PAGE_SIZE / (AHA_NSEG * sizeof(aha_sg_t)));
for (i = 0; aha->num_ccbs < aha->max_ccbs && i < newcount; i++) {
int error;
next_ccb->sg_list = segs;
next_ccb->sg_list_phys = physaddr;
next_ccb->flags = BCCB_FREE;
error = bus_dmamap_create(aha->buffer_dmat, /*flags*/0,
&next_ccb->dmamap);
if (error != 0)
break;
SLIST_INSERT_HEAD(&aha->free_aha_ccbs, next_ccb, links);
segs += AHA_NSEG;
physaddr += (AHA_NSEG * sizeof(aha_sg_t));
next_ccb++;
aha->num_ccbs++;
}
/* Reserve a CCB for error recovery */
if (aha->recovery_bccb == NULL) {
aha->recovery_bccb = SLIST_FIRST(&aha->free_aha_ccbs);
SLIST_REMOVE_HEAD(&aha->free_aha_ccbs, links);
}
}
static __inline void
ahafreeccb(struct aha_softc *aha, struct aha_ccb *bccb)
{
int s;
s = splcam();
if ((bccb->flags & BCCB_ACTIVE) != 0)
LIST_REMOVE(&bccb->ccb->ccb_h, sim_links.le);
if (aha->resource_shortage != 0
&& (bccb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) {
bccb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
aha->resource_shortage = FALSE;
}
bccb->flags = BCCB_FREE;
SLIST_INSERT_HEAD(&aha->free_aha_ccbs, bccb, links);
splx(s);
}
static struct aha_ccb*
ahagetccb(struct aha_softc *aha)
{
struct aha_ccb* bccb;
int s;
s = splcam();
if ((bccb = SLIST_FIRST(&aha->free_aha_ccbs)) != NULL) {
SLIST_REMOVE_HEAD(&aha->free_aha_ccbs, links);
} else if (aha->num_ccbs < aha->max_ccbs) {
ahaallocccbs(aha);
bccb = SLIST_FIRST(&aha->free_aha_ccbs);
if (bccb == NULL)
printf("%s: Can't malloc BCCB\n", aha_name(aha));
else
SLIST_REMOVE_HEAD(&aha->free_aha_ccbs, links);
}
splx(s);
return (bccb);
}
static void
ahaaction(struct cam_sim *sim, union ccb *ccb)
{
struct aha_softc *aha;
int s;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ahaaction\n"));
aha = (struct aha_softc *)cam_sim_softc(sim);
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_SCSI_IO: /* Execute the requested I/O operation */
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
{
struct aha_ccb *bccb;
struct aha_hccb *hccb;
/*
* get a bccb to use.
*/
if ((bccb = ahagetccb(aha)) == NULL) {
int s;
s = splcam();
aha->resource_shortage = TRUE;
splx(s);
xpt_freeze_simq(aha->sim, /*count*/1);
ccb->ccb_h.status = CAM_REQUEUE_REQ;
xpt_done(ccb);
return;
}
hccb = &bccb->hccb;
/*
* So we can find the BCCB when an abort is requested
*/
bccb->ccb = ccb;
ccb->ccb_h.ccb_bccb_ptr = bccb;
ccb->ccb_h.ccb_aha_ptr = aha;
/*
* Put all the arguments for the xfer in the bccb
*/
hccb->target = ccb->ccb_h.target_id;
hccb->lun = ccb->ccb_h.target_lun;
hccb->ahastat = 0;
hccb->sdstat = 0;
if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
struct ccb_scsiio *csio;
struct ccb_hdr *ccbh;
csio = &ccb->csio;
ccbh = &csio->ccb_h;
hccb->opcode = INITIATOR_CCB_WRESID;
hccb->datain = (ccb->ccb_h.flags & CAM_DIR_IN) != 0;
hccb->dataout = (ccb->ccb_h.flags & CAM_DIR_OUT) != 0;
hccb->cmd_len = csio->cdb_len;
if (hccb->cmd_len > sizeof(hccb->scsi_cdb)) {
ccb->ccb_h.status = CAM_REQ_INVALID;
ahafreeccb(aha, bccb);
xpt_done(ccb);
return;
}
hccb->sense_len = csio->sense_len;
if ((ccbh->flags & CAM_CDB_POINTER) != 0) {
if ((ccbh->flags & CAM_CDB_PHYS) == 0) {
bcopy(csio->cdb_io.cdb_ptr,
hccb->scsi_cdb, hccb->cmd_len);
} else {
/* I guess I could map it in... */
ccbh->status = CAM_REQ_INVALID;
ahafreeccb(aha, bccb);
xpt_done(ccb);
return;
}
} else {
bcopy(csio->cdb_io.cdb_bytes,
hccb->scsi_cdb, hccb->cmd_len);
}
/*
* If we have any data to send with this command,
* map it into bus space.
*/
/* Only use S/G if there is a transfer */
if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccbh->flags & CAM_SCATTER_VALID) == 0) {
/*
* We've been given a pointer
* to a single buffer.
*/
if ((ccbh->flags & CAM_DATA_PHYS)==0) {
int s;
int error;
s = splsoftvm();
error = bus_dmamap_load(
aha->buffer_dmat,
bccb->dmamap,
csio->data_ptr,
csio->dxfer_len,
ahaexecuteccb,
bccb,
/*flags*/0);
if (error == EINPROGRESS) {
/*
* So as to maintain
* ordering, freeze the
* controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(aha->sim,
1);
csio->ccb_h.status |=
CAM_RELEASE_SIMQ;
}
splx(s);
} else {
struct bus_dma_segment seg;
/* Pointer to physical buffer */
seg.ds_addr =
(bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
ahaexecuteccb(bccb, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((ccbh->flags & CAM_DATA_PHYS) != 0)
panic("ahaaction - Physical "
"segment pointers "
"unsupported");
if ((ccbh->flags&CAM_SG_LIST_PHYS)==0)
panic("ahaaction - Virtual "
"segment addresses "
"unsupported");
/* Just use the segments provided */
segs = (struct bus_dma_segment *)
csio->data_ptr;
ahaexecuteccb(bccb, segs,
csio->sglist_cnt, 0);
}
} else {
ahaexecuteccb(bccb, NULL, 0, 0);
}
} else {
hccb->opcode = INITIATOR_BUS_DEV_RESET;
/* No data transfer */
hccb->datain = TRUE;
hccb->dataout = TRUE;
hccb->cmd_len = 0;
hccb->sense_len = 0;
ahaexecuteccb(bccb, NULL, 0, 0);
}
break;
}
case XPT_EN_LUN: /* Enable LUN as a target */
case XPT_TARGET_IO: /* Execute target I/O request */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_SET_TRAN_SETTINGS:
{
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ccb_trans_settings *cts;
u_int target_mask;
cts = &ccb->cts;
target_mask = 0x01 << ccb->ccb_h.target_id;
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
cts->flags = 0;
if ((aha->disc_permitted & target_mask) != 0)
cts->flags |= CCB_TRANS_DISC_ENB;
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
if ((aha->sync_permitted & target_mask) != 0)
cts->sync_period = 50;
else
cts->sync_period = 0;
if (cts->sync_period != 0)
cts->sync_offset = 15;
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_DISC_VALID
| CCB_TRANS_TQ_VALID;
} else {
ahafetchtransinfo(aha, cts);
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
ccg = &ccb->ccg;
size_mb = ccg->volume_size
/ ((1024L * 1024L) / ccg->block_size);
if (size_mb >= 1024 && (aha->extended_trans != 0)) {
if (size_mb >= 2048) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 128;
ccg->secs_per_track = 32;
}
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
{
ahareset(aha, /*hardreset*/TRUE);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = aha->wide_bus ? 15 : 7;
cpi->max_lun = 7;
cpi->initiator_id = aha->scsi_id;
cpi->bus_id = cam_sim_bus(sim);
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Adaptec", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
static void
ahaexecuteccb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
struct aha_ccb *bccb;
union ccb *ccb;
struct aha_softc *aha;
int s, i;
u_int32_t paddr;
bccb = (struct aha_ccb *)arg;
ccb = bccb->ccb;
aha = (struct aha_softc *)ccb->ccb_h.ccb_aha_ptr;
if (error != 0) {
if (error != EFBIG)
printf("%s: Unexepected error 0x%x returned from "
"bus_dmamap_load\n", aha_name(aha), error);
if (ccb->ccb_h.status == CAM_REQ_INPROG) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status = CAM_REQ_TOO_BIG|CAM_DEV_QFRZN;
}
ahafreeccb(aha, bccb);
xpt_done(ccb);
return;
}
if (nseg != 0) {
aha_sg_t *sg;
bus_dma_segment_t *end_seg;
bus_dmasync_op_t op;
end_seg = dm_segs + nseg;
/* Copy the segments into our SG list */
sg = bccb->sg_list;
while (dm_segs < end_seg) {
ahautoa24(dm_segs->ds_len, sg->len);
ahautoa24(dm_segs->ds_addr, sg->addr);
sg++;
dm_segs++;
}
if (nseg > 1) {
bccb->hccb.opcode = INITIATOR_SG_CCB_WRESID;
ahautoa24((sizeof(aha_sg_t) * nseg),
bccb->hccb.data_len);
ahautoa24(bccb->sg_list_phys, bccb->hccb.data_addr);
} else {
bcopy(bccb->sg_list->len, bccb->hccb.data_len, 3);
bcopy(bccb->sg_list->addr, bccb->hccb.data_addr, 3);
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_PREREAD;
else
op = BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(aha->buffer_dmat, bccb->dmamap, op);
} else {
bccb->hccb.opcode = INITIATOR_CCB_WRESID;
ahautoa24(0, bccb->hccb.data_len);
ahautoa24(0, bccb->hccb.data_addr);
}
s = splcam();
/*
* Last time we need to check if this CCB needs to
* be aborted.
*/
if (ccb->ccb_h.status != CAM_REQ_INPROG) {
if (nseg != 0)
bus_dmamap_unload(aha->buffer_dmat, bccb->dmamap);
ahafreeccb(aha, bccb);
xpt_done(ccb);
splx(s);
return;
}
bccb->flags = BCCB_ACTIVE;
ccb->ccb_h.status |= CAM_SIM_QUEUED;
LIST_INSERT_HEAD(&aha->pending_ccbs, &ccb->ccb_h, sim_links.le);
ccb->ccb_h.timeout_ch =
timeout(ahatimeout, (caddr_t)bccb,
(ccb->ccb_h.timeout * hz) / 1000);
/* Tell the adapter about this command */
paddr = ahaccbvtop(aha, bccb);
ahautoa24(paddr, aha->cur_outbox->ccb_addr);
if (aha->cur_outbox->action_code != BMBO_FREE)
panic("%s: Too few mailboxes or to many ccbs???", aha_name(aha));
aha->cur_outbox->action_code = BMBO_START;
aha_outb(aha, COMMAND_REG, BOP_START_MBOX);
ahanextoutbox(aha);
splx(s);
}
void
aha_intr(void *arg)
{
struct aha_softc *aha;
u_int intstat;
aha = (struct aha_softc *)arg;
while (((intstat = aha_inb(aha, INTSTAT_REG)) & INTR_PENDING) != 0) {
if ((intstat & CMD_COMPLETE) != 0) {
aha->latched_status = aha_inb(aha, STATUS_REG);
aha->command_cmp = TRUE;
}
aha_outb(aha, CONTROL_REG, RESET_INTR);
if ((intstat & IMB_LOADED) != 0) {
while (aha->cur_inbox->comp_code != BMBI_FREE) {
u_int32_t paddr;
paddr = aha_a24tou(aha->cur_inbox->ccb_addr);
ahadone(aha,
ahaccbptov(aha, paddr),
aha->cur_inbox->comp_code);
aha->cur_inbox->comp_code = BMBI_FREE;
ahanextinbox(aha);
}
}
if ((intstat & SCSI_BUS_RESET) != 0) {
ahareset(aha, /*hardreset*/FALSE);
}
}
}
static void
ahadone(struct aha_softc *aha, struct aha_ccb *bccb, aha_mbi_comp_code_t comp_code)
{
union ccb *ccb;
struct ccb_scsiio *csio;
ccb = bccb->ccb;
csio = &bccb->ccb->csio;
if ((bccb->flags & BCCB_ACTIVE) == 0) {
printf("%s: ahadone - Attempt to free non-active BCCB %p\n",
aha_name(aha), (void *)bccb);
return;
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(aha->buffer_dmat, bccb->dmamap, op);
bus_dmamap_unload(aha->buffer_dmat, bccb->dmamap);
}
if (bccb == aha->recovery_bccb) {
/*
* The recovery BCCB does not have a CCB associated
* with it, so short circuit the normal error handling.
* We now traverse our list of pending CCBs and process
* any that were terminated by the recovery CCBs action.
* We also reinstate timeouts for all remaining, pending,
* CCBs.
*/
struct cam_path *path;
struct ccb_hdr *ccb_h;
cam_status error;
/* Notify all clients that a BDR occured */
error = xpt_create_path(&path, /*periph*/NULL,
cam_sim_path(aha->sim),
bccb->hccb.target,
CAM_LUN_WILDCARD);
if (error == CAM_REQ_CMP)
xpt_async(AC_SENT_BDR, path, NULL);
ccb_h = LIST_FIRST(&aha->pending_ccbs);
while (ccb_h != NULL) {
struct aha_ccb *pending_bccb;
pending_bccb = (struct aha_ccb *)ccb_h->ccb_bccb_ptr;
if (pending_bccb->hccb.target == bccb->hccb.target) {
pending_bccb->hccb.ahastat = AHASTAT_HA_BDR;
ccb_h = LIST_NEXT(ccb_h, sim_links.le);
ahadone(aha, pending_bccb, BMBI_ERROR);
} else {
ccb_h->timeout_ch =
timeout(ahatimeout, (caddr_t)pending_bccb,
(ccb_h->timeout * hz) / 1000);
ccb_h = LIST_NEXT(ccb_h, sim_links.le);
}
}
printf("%s: No longer in timeout\n", aha_name(aha));
return;
}
untimeout(ahatimeout, bccb, ccb->ccb_h.timeout_ch);
switch (comp_code) {
case BMBI_FREE:
printf("%s: ahadone - CCB completed with free status!\n",
aha_name(aha));
break;
case BMBI_NOT_FOUND:
printf("%s: ahadone - CCB Abort failed to find CCB\n",
aha_name(aha));
break;
case BMBI_ABORT:
case BMBI_ERROR:
/* An error occured */
switch(bccb->hccb.ahastat) {
case AHASTAT_DATARUN_ERROR:
if (bccb->hccb.data_len <= 0) {
csio->ccb_h.status = CAM_DATA_RUN_ERR;
break;
}
/* FALLTHROUGH */
case AHASTAT_NOERROR:
csio->scsi_status = bccb->hccb.sdstat;
csio->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
switch(csio->scsi_status) {
case SCSI_STATUS_CHECK_COND:
case SCSI_STATUS_CMD_TERMINATED:
csio->ccb_h.status |= CAM_AUTOSNS_VALID;
/*
* The aha writes the sense data at different
* offsets based on the scsi cmd len
*/
bcopy((caddr_t) &bccb->hccb.scsi_cdb +
bccb->hccb.cmd_len,
(caddr_t) &csio->sense_data,
bccb->hccb.sense_len);
break;
default:
break;
case SCSI_STATUS_OK:
csio->ccb_h.status = CAM_REQ_CMP;
break;
}
csio->resid = aha_a24tou(bccb->hccb.data_len);
break;
case AHASTAT_SELTIMEOUT:
csio->ccb_h.status = CAM_SEL_TIMEOUT;
break;
case AHASTAT_UNEXPECTED_BUSFREE:
csio->ccb_h.status = CAM_UNEXP_BUSFREE;
break;
case AHASTAT_INVALID_PHASE:
csio->ccb_h.status = CAM_SEQUENCE_FAIL;
break;
case AHASTAT_INVALID_ACTION_CODE:
panic("%s: Inavlid Action code", aha_name(aha));
break;
case AHASTAT_INVALID_OPCODE:
panic("%s: Inavlid CCB Opcode code %x hccb = %p",
aha_name(aha), bccb->hccb.opcode, &bccb->hccb);
break;
case AHASTAT_LINKED_CCB_LUN_MISMATCH:
/* We don't even support linked commands... */
panic("%s: Linked CCB Lun Mismatch", aha_name(aha));
break;
case AHASTAT_INVALID_CCB_OR_SG_PARAM:
panic("%s: Invalid CCB or SG list", aha_name(aha));
break;
case AHASTAT_HA_SCSI_BUS_RESET:
if ((csio->ccb_h.status & CAM_STATUS_MASK)
!= CAM_CMD_TIMEOUT)
csio->ccb_h.status = CAM_SCSI_BUS_RESET;
break;
case AHASTAT_HA_BDR:
if ((bccb->flags & BCCB_DEVICE_RESET) == 0)
csio->ccb_h.status = CAM_BDR_SENT;
else
csio->ccb_h.status = CAM_CMD_TIMEOUT;
break;
}
if (csio->ccb_h.status != CAM_REQ_CMP) {
xpt_freeze_devq(csio->ccb_h.path, /*count*/1);
csio->ccb_h.status |= CAM_DEV_QFRZN;
}
if ((bccb->flags & BCCB_RELEASE_SIMQ) != 0)
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
ahafreeccb(aha, bccb);
xpt_done(ccb);
break;
case BMBI_OK:
/* All completed without incident */
/* XXX DO WE NEED TO COPY SENSE BYTES HERE???? XXX */
ccb->ccb_h.status |= CAM_REQ_CMP;
if ((bccb->flags & BCCB_RELEASE_SIMQ) != 0)
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
ahafreeccb(aha, bccb);
xpt_done(ccb);
break;
}
}
static int
ahareset(struct aha_softc* aha, int hard_reset)
{
struct ccb_hdr *ccb_h;
u_int status;
u_int timeout;
u_int8_t reset_type;
if (hard_reset != 0)
reset_type = HARD_RESET;
else
reset_type = SOFT_RESET;
aha_outb(aha, CONTROL_REG, reset_type);
/* Wait 5sec. for Diagnostic start */
timeout = 5 * 10000;
while (--timeout) {
status = aha_inb(aha, STATUS_REG);
if ((status & DIAG_ACTIVE) != 0)
break;
DELAY(100);
}
if (timeout == 0) {
if (bootverbose)
printf("%s: ahareset - Diagnostic Active failed to "
"assert. status = 0x%x\n", aha_name(aha),
status);
return (ETIMEDOUT);
}
/* Wait 10sec. for Diagnostic end */
timeout = 10 * 10000;
while (--timeout) {
status = aha_inb(aha, STATUS_REG);
if ((status & DIAG_ACTIVE) == 0)
break;
DELAY(100);
}
if (timeout == 0) {
panic("%s: ahareset - Diagnostic Active failed to drop. "
"status = 0x%x\n", aha_name(aha), status);
return (ETIMEDOUT);
}
/* Wait for the host adapter to become ready or report a failure */
timeout = 10000;
while (--timeout) {
status = aha_inb(aha, STATUS_REG);
if ((status & (DIAG_FAIL|HA_READY|DATAIN_REG_READY)) != 0)
break;
DELAY(100);
}
if (timeout == 0) {
printf("%s: ahareset - Host adapter failed to come ready. "
"status = 0x%x\n", aha_name(aha), status);
return (ETIMEDOUT);
}
/* If the diagnostics failed, tell the user */
if ((status & DIAG_FAIL) != 0
|| (status & HA_READY) == 0) {
printf("%s: ahareset - Adapter failed diagnostics\n",
aha_name(aha));
if ((status & DATAIN_REG_READY) != 0)
printf("%s: ahareset - Host Adapter Error "
"code = 0x%x\n", aha_name(aha),
aha_inb(aha, DATAIN_REG));
return (ENXIO);
}
/* If we've allocated mailboxes, initialize them */
if (aha->init_level > 4)
ahainitmboxes(aha);
/* If we've attached to the XPT, tell it about the event */
if (aha->path != NULL)
xpt_async(AC_BUS_RESET, aha->path, NULL);
/*
* Perform completion processing for all outstanding CCBs.
*/
while ((ccb_h = LIST_FIRST(&aha->pending_ccbs)) != NULL) {
struct aha_ccb *pending_bccb;
pending_bccb = (struct aha_ccb *)ccb_h->ccb_bccb_ptr;
pending_bccb->hccb.ahastat = AHASTAT_HA_SCSI_BUS_RESET;
ahadone(aha, pending_bccb, BMBI_ERROR);
}
return (0);
}
/*
* Send a command to the adapter.
*/
int
aha_cmd(struct aha_softc *aha, aha_op_t opcode, u_int8_t *params,
u_int param_len, u_int8_t *reply_data, u_int reply_len,
u_int cmd_timeout)
{
u_int timeout;
u_int status;
u_int intstat;
u_int reply_buf_size;
int s;
/* No data returned to start */
reply_buf_size = reply_len;
reply_len = 0;
intstat = 0;
aha->command_cmp = 0;
/*
* Wait up to 1 sec. for the adapter to become
* ready to accept commands.
*/
timeout = 10000;
while (--timeout) {
status = aha_inb(aha, STATUS_REG);
if ((status & HA_READY) != 0
&& (status & CMD_REG_BUSY) == 0)
break;
DELAY(100);
}
if (timeout == 0) {
printf("%s: aha_cmd: Timeout waiting for adapter ready, "
"status = 0x%x\n", aha_name(aha), status);
return (ETIMEDOUT);
}
/*
* Send the opcode followed by any necessary parameter bytes.
*/
aha_outb(aha, COMMAND_REG, opcode);
/*
* Wait for up to 1sec to get the parameter list sent
*/
timeout = 10000;
while (param_len && --timeout) {
DELAY(100);
status = aha_inb(aha, STATUS_REG);
intstat = aha_inb(aha, INTSTAT_REG);
if ((intstat & (INTR_PENDING|CMD_COMPLETE))
== (INTR_PENDING|CMD_COMPLETE))
break;
if (aha->command_cmp != 0) {
status = aha->latched_status;
break;
}
if ((status & DATAIN_REG_READY) != 0)
break;
if ((status & CMD_REG_BUSY) == 0) {
aha_outb(aha, COMMAND_REG, *params++);
param_len--;
}
}
if (timeout == 0) {
printf("%s: aha_cmd: Timeout sending parameters, "
"status = 0x%x\n", aha_name(aha), status);
return (ETIMEDOUT);
}
/*
* For all other commands, we wait for any output data
* and the final comand completion interrupt.
*/
while (--cmd_timeout) {
status = aha_inb(aha, STATUS_REG);
intstat = aha_inb(aha, INTSTAT_REG);
if ((intstat & (INTR_PENDING|CMD_COMPLETE))
== (INTR_PENDING|CMD_COMPLETE))
break;
if (aha->command_cmp != 0) {
status = aha->latched_status;
break;
}
if ((status & DATAIN_REG_READY) != 0) {
u_int8_t data;
data = aha_inb(aha, DATAIN_REG);
if (reply_len < reply_buf_size) {
*reply_data++ = data;
} else {
printf("%s: aha_cmd - Discarded reply data byte "
"for opcode 0x%x\n", aha_name(aha),
opcode);
}
reply_len++;
}
DELAY(100);
}
if (timeout == 0) {
printf("%s: aha_cmd: Timeout waiting for reply data and "
"command complete.\n%s: status = 0x%x, intstat = 0x%x, "
"reply_len = %d\n", aha_name(aha), aha_name(aha), status,
intstat, reply_len);
return (ETIMEDOUT);
}
/*
* Clear any pending interrupts. Block interrupts so our
* interrupt handler is not re-entered.
*/
s = splcam();
aha_intr(aha);
splx(s);
/*
* If the command was rejected by the controller, tell the caller.
*/
if ((status & CMD_INVALID) != 0) {
if (bootverbose)
printf("%s: Invalid Command 0x%x\n", aha_name(aha),
opcode);
/*
* Some early adapters may not recover properly from
* an invalid command. If it appears that the controller
* has wedged (i.e. status was not cleared by our interrupt
* reset above), perform a soft reset.
*/
DELAY(1000);
status = aha_inb(aha, STATUS_REG);
if ((status & (CMD_INVALID|STATUS_REG_RSVD|DATAIN_REG_READY|
CMD_REG_BUSY|DIAG_FAIL|DIAG_ACTIVE)) != 0
|| (status & (HA_READY|INIT_REQUIRED))
!= (HA_READY|INIT_REQUIRED)) {
ahareset(aha, /*hard_reset*/FALSE);
}
return (EINVAL);
}
if (param_len > 0) {
/* The controller did not accept the full argument list */
return (E2BIG);
}
if (reply_len != reply_buf_size) {
/* Too much or too little data received */
return (EMSGSIZE);
}
/* We were successful */
return (0);
}
static int
ahainitmboxes(struct aha_softc *aha)
{
int error;
init_24b_mbox_params_t init_mbox;
bzero(aha->in_boxes, sizeof(aha_mbox_in_t) * aha->num_boxes);
bzero(aha->out_boxes, sizeof(aha_mbox_out_t) * aha->num_boxes);
aha->cur_inbox = aha->in_boxes;
aha->last_inbox = aha->in_boxes + aha->num_boxes - 1;
aha->cur_outbox = aha->out_boxes;
aha->last_outbox = aha->out_boxes + aha->num_boxes - 1;
/* Tell the adapter about them */
init_mbox.num_mboxes = aha->num_boxes;
ahautoa24(aha->mailbox_physbase, init_mbox.base_addr);
error = aha_cmd(aha, BOP_INITIALIZE_MBOX, (u_int8_t *)&init_mbox,
/*parmlen*/sizeof(init_mbox), /*reply_buf*/NULL,
/*reply_len*/0, DEFAULT_CMD_TIMEOUT);
if (error != 0)
printf("ahainitmboxes: Initialization command failed\n");
return (error);
}
/*
* Update the XPT's idea of the negotiated transfer
* parameters for a particular target.
*/
static void
ahafetchtransinfo(struct aha_softc *aha, struct ccb_trans_settings* cts)
{
setup_data_t setup_info;
u_int target;
u_int targ_offset;
u_int sync_period;
int error;
u_int8_t param;
targ_syncinfo_t sync_info;
target = cts->ccb_h.target_id;
targ_offset = (target & 0x7);
/*
* Inquire Setup Information. This command retreives the
* Wide negotiation status for recent adapters as well as
* the sync info for older models.
*/
param = sizeof(setup_info);
error = aha_cmd(aha, BOP_INQUIRE_SETUP_INFO, &param, /*paramlen*/1,
(u_int8_t*)&setup_info, sizeof(setup_info),
DEFAULT_CMD_TIMEOUT);
if (error != 0) {
printf("%s: ahafetchtransinfo - Inquire Setup Info Failed\n",
aha_name(aha));
return;
}
sync_info = setup_info.syncinfo[targ_offset];
if (sync_info.sync == 0)
cts->sync_offset = 0;
else
cts->sync_offset = sync_info.offset;
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
sync_period = 2000 + (500 * sync_info.period);
/* Convert ns value to standard SCSI sync rate */
if (cts->sync_offset != 0)
cts->sync_period = scsi_calc_syncparam(sync_period);
else
cts->sync_period = 0;
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID;
xpt_async(AC_TRANSFER_NEG, cts->ccb_h.path, cts);
}
static void
ahamapmboxes(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct aha_softc* aha;
aha = (struct aha_softc*)arg;
aha->mailbox_physbase = segs->ds_addr;
}
static void
ahamapccbs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct aha_softc* aha;
aha = (struct aha_softc*)arg;
aha->aha_ccb_physbase = segs->ds_addr;
}
static void
ahamapsgs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct aha_softc* aha;
aha = (struct aha_softc*)arg;
SLIST_FIRST(&aha->sg_maps)->sg_physaddr = segs->ds_addr;
}
static void
ahapoll(struct cam_sim *sim)
{
}
void
ahatimeout(void *arg)
{
struct aha_ccb *bccb;
union ccb *ccb;
struct aha_softc *aha;
int s;
u_int32_t paddr;
bccb = (struct aha_ccb *)arg;
ccb = bccb->ccb;
aha = (struct aha_softc *)ccb->ccb_h.ccb_aha_ptr;
xpt_print_path(ccb->ccb_h.path);
printf("CCB %p - timed out\n", (void *)bccb);
s = splcam();
if ((bccb->flags & BCCB_ACTIVE) == 0) {
xpt_print_path(ccb->ccb_h.path);
printf("CCB %p - timed out CCB already completed\n",
(void *)bccb);
splx(s);
return;
}
/*
* In order to simplify the recovery process, we ask the XPT
* layer to halt the queue of new transactions and we traverse
* the list of pending CCBs and remove their timeouts. This
* means that the driver attempts to clear only one error
* condition at a time. In general, timeouts that occur
* close together are related anyway, so there is no benefit
* in attempting to handle errors in parrallel. Timeouts will
* be reinstated when the recovery process ends.
*/
if ((bccb->flags & BCCB_DEVICE_RESET) == 0) {
struct ccb_hdr *ccb_h;
if ((bccb->flags & BCCB_RELEASE_SIMQ) == 0) {
xpt_freeze_simq(aha->sim, /*count*/1);
bccb->flags |= BCCB_RELEASE_SIMQ;
}
ccb_h = LIST_FIRST(&aha->pending_ccbs);
while (ccb_h != NULL) {
struct aha_ccb *pending_bccb;
pending_bccb = (struct aha_ccb *)ccb_h->ccb_bccb_ptr;
untimeout(ahatimeout, pending_bccb, ccb_h->timeout_ch);
ccb_h = LIST_NEXT(ccb_h, sim_links.le);
}
}
if ((bccb->flags & BCCB_DEVICE_RESET) != 0
|| aha->cur_outbox->action_code != BMBO_FREE) {
/*
* Try a full host adapter/SCSI bus reset.
* We do this only if we have already attempted
* to clear the condition with a BDR, or we cannot
* attempt a BDR for lack of mailbox resources.
*/
ccb->ccb_h.status = CAM_CMD_TIMEOUT;
ahareset(aha, /*hardreset*/TRUE);
printf("%s: No longer in timeout\n", aha_name(aha));
} else {
/*
* Send a Bus Device Reset message:
* The target that is holding up the bus may not
* be the same as the one that triggered this timeout
* (different commands have different timeout lengths),
* but we have no way of determining this from our
* timeout handler. Our strategy here is to queue a
* BDR message to the target of the timed out command.
* If this fails, we'll get another timeout 2 seconds
* later which will attempt a bus reset.
*/
bccb->flags |= BCCB_DEVICE_RESET;
ccb->ccb_h.timeout_ch = timeout(ahatimeout, (caddr_t)bccb, 2 * hz);
aha->recovery_bccb->hccb.opcode = INITIATOR_BUS_DEV_RESET;
/* No Data Transfer */
aha->recovery_bccb->hccb.datain = TRUE;
aha->recovery_bccb->hccb.dataout = TRUE;
aha->recovery_bccb->hccb.ahastat = 0;
aha->recovery_bccb->hccb.sdstat = 0;
aha->recovery_bccb->hccb.target = ccb->ccb_h.target_id;
/* Tell the adapter about this command */
paddr = ahaccbvtop(aha, aha->recovery_bccb);
ahautoa24(paddr, aha->cur_outbox->ccb_addr);
aha->cur_outbox->action_code = BMBO_START;
aha_outb(aha, COMMAND_REG, BOP_START_MBOX);
ahanextoutbox(aha);
}
splx(s);
}