freebsd-skq/lib/libc_r/uthread/uthread_write.c
2007-01-12 07:26:21 +00:00

163 lines
4.4 KiB
C

/*
* Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*
*/
#include <sys/types.h>
#include <sys/fcntl.h>
#include <sys/uio.h>
#include <errno.h>
#include <unistd.h>
#include <pthread.h>
#include "pthread_private.h"
__weak_reference(__write, write);
ssize_t
_write(int fd, const void *buf, size_t nbytes)
{
struct pthread *curthread = _get_curthread();
int blocking;
int type;
ssize_t n;
ssize_t num = 0;
ssize_t ret;
/* POSIX says to do just this: */
if (nbytes == 0)
return (0);
/* Lock the file descriptor for write: */
if ((ret = _FD_LOCK(fd, FD_WRITE, NULL)) == 0) {
/* Get the read/write mode type: */
type = _thread_fd_getflags(fd) & O_ACCMODE;
/* Check if the file is not open for write: */
if (type != O_WRONLY && type != O_RDWR) {
/* File is not open for write: */
errno = EBADF;
_FD_UNLOCK(fd, FD_WRITE);
return (-1);
}
/* Check if file operations are to block */
blocking = ((_thread_fd_getflags(fd) & O_NONBLOCK) == 0);
/*
* Loop while no error occurs and until the expected number
* of bytes are written if performing a blocking write:
*/
while (ret == 0) {
/* Perform a non-blocking write syscall: */
n = __sys_write(fd, (const char *)buf + num,
nbytes - num);
/* Check if one or more bytes were written: */
if (n > 0)
/*
* Keep a count of the number of bytes
* written:
*/
num += n;
/*
* If performing a blocking write, check if the
* write would have blocked or if some bytes
* were written but there are still more to
* write:
*/
if (blocking && ((n < 0 && (errno == EWOULDBLOCK ||
errno == EAGAIN)) || (n > 0 && num < nbytes))) {
curthread->data.fd.fd = fd;
_thread_kern_set_timeout(NULL);
/* Reset the interrupted operation flag: */
curthread->interrupted = 0;
_thread_kern_sched_state(PS_FDW_WAIT,
__FILE__, __LINE__);
/*
* Check if the operation was
* interrupted by a signal
*/
if (curthread->interrupted) {
if (num > 0) {
/* Return partial success: */
ret = num;
} else {
/* Return an error: */
errno = EINTR;
ret = -1;
}
}
/*
* If performing a non-blocking write,
* just return whatever the write syscall did:
*/
} else if (!blocking) {
/* A non-blocking call might return zero: */
ret = n;
break;
/*
* If there was an error, return partial success
* (if any bytes were written) or else the error:
*/
} else if (n <= 0) {
if (num > 0)
ret = num;
else
ret = n;
if (n == 0)
break;
/* Check if the write has completed: */
} else if (num >= nbytes)
/* Return the number of bytes written: */
ret = num;
}
_FD_UNLOCK(fd, FD_WRITE);
}
return (ret);
}
ssize_t
__write(int fd, const void *buf, size_t nbytes)
{
ssize_t ret;
_thread_enter_cancellation_point();
ret = _write(fd, buf, nbytes);
_thread_leave_cancellation_point();
return ret;
}