freebsd-skq/sys/arm/allwinner/a10_dmac.c

472 lines
12 KiB
C

/*-
* Copyright (c) 2014-2016 Jared D. McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Allwinner A10/A20 DMA controller
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/condvar.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <machine/bus.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <arm/allwinner/a10_dmac.h>
#include <dev/extres/clk/clk.h>
#include "sunxi_dma_if.h"
#define NDMA_CHANNELS 8
#define DDMA_CHANNELS 8
enum a10dmac_type {
CH_NDMA,
CH_DDMA
};
struct a10dmac_softc;
struct a10dmac_channel {
struct a10dmac_softc * ch_sc;
uint8_t ch_index;
enum a10dmac_type ch_type;
void (*ch_callback)(void *);
void * ch_callbackarg;
uint32_t ch_regoff;
};
struct a10dmac_softc {
struct resource * sc_res[2];
struct mtx sc_mtx;
void * sc_ih;
struct a10dmac_channel sc_ndma_channels[NDMA_CHANNELS];
struct a10dmac_channel sc_ddma_channels[DDMA_CHANNELS];
};
static struct resource_spec a10dmac_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
#define DMA_READ(sc, reg) bus_read_4((sc)->sc_res[0], (reg))
#define DMA_WRITE(sc, reg, val) bus_write_4((sc)->sc_res[0], (reg), (val))
#define DMACH_READ(ch, reg) \
DMA_READ((ch)->ch_sc, (reg) + (ch)->ch_regoff)
#define DMACH_WRITE(ch, reg, val) \
DMA_WRITE((ch)->ch_sc, (reg) + (ch)->ch_regoff, (val))
static void a10dmac_intr(void *);
static int
a10dmac_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "allwinner,sun4i-a10-dma"))
return (ENXIO);
device_set_desc(dev, "Allwinner DMA controller");
return (BUS_PROBE_DEFAULT);
}
static int
a10dmac_attach(device_t dev)
{
struct a10dmac_softc *sc;
unsigned int index;
clk_t clk;
int error;
sc = device_get_softc(dev);
if (bus_alloc_resources(dev, a10dmac_spec, sc->sc_res)) {
device_printf(dev, "cannot allocate resources for device\n");
return (ENXIO);
}
mtx_init(&sc->sc_mtx, "a10 dmac", NULL, MTX_SPIN);
/* Activate DMA controller clock */
error = clk_get_by_ofw_index(dev, 0, 0, &clk);
if (error != 0) {
device_printf(dev, "cannot get clock\n");
return (error);
}
error = clk_enable(clk);
if (error != 0) {
device_printf(dev, "cannot enable clock\n");
return (error);
}
/* Disable all interrupts and clear pending status */
DMA_WRITE(sc, AWIN_DMA_IRQ_EN_REG, 0);
DMA_WRITE(sc, AWIN_DMA_IRQ_PEND_STA_REG, ~0);
/* Initialize channels */
for (index = 0; index < NDMA_CHANNELS; index++) {
sc->sc_ndma_channels[index].ch_sc = sc;
sc->sc_ndma_channels[index].ch_index = index;
sc->sc_ndma_channels[index].ch_type = CH_NDMA;
sc->sc_ndma_channels[index].ch_callback = NULL;
sc->sc_ndma_channels[index].ch_callbackarg = NULL;
sc->sc_ndma_channels[index].ch_regoff = AWIN_NDMA_REG(index);
DMACH_WRITE(&sc->sc_ndma_channels[index], AWIN_NDMA_CTL_REG, 0);
}
for (index = 0; index < DDMA_CHANNELS; index++) {
sc->sc_ddma_channels[index].ch_sc = sc;
sc->sc_ddma_channels[index].ch_index = index;
sc->sc_ddma_channels[index].ch_type = CH_DDMA;
sc->sc_ddma_channels[index].ch_callback = NULL;
sc->sc_ddma_channels[index].ch_callbackarg = NULL;
sc->sc_ddma_channels[index].ch_regoff = AWIN_DDMA_REG(index);
DMACH_WRITE(&sc->sc_ddma_channels[index], AWIN_DDMA_CTL_REG, 0);
}
error = bus_setup_intr(dev, sc->sc_res[1], INTR_MPSAFE | INTR_TYPE_MISC,
NULL, a10dmac_intr, sc, &sc->sc_ih);
if (error != 0) {
device_printf(dev, "could not setup interrupt handler\n");
bus_release_resources(dev, a10dmac_spec, sc->sc_res);
mtx_destroy(&sc->sc_mtx);
return (ENXIO);
}
OF_device_register_xref(OF_xref_from_node(ofw_bus_get_node(dev)), dev);
return (0);
}
static void
a10dmac_intr(void *priv)
{
struct a10dmac_softc *sc = priv;
uint32_t sta, bit, mask;
uint8_t index;
sta = DMA_READ(sc, AWIN_DMA_IRQ_PEND_STA_REG);
DMA_WRITE(sc, AWIN_DMA_IRQ_PEND_STA_REG, sta);
while ((bit = ffs(sta & AWIN_DMA_IRQ_END_MASK)) != 0) {
mask = (1U << (bit - 1));
sta &= ~mask;
/*
* Map status bit to channel number. The status register is
* encoded with two bits of status per channel (lowest bit
* is half transfer pending, highest bit is end transfer
* pending). The 8 normal DMA channel status are in the lower
* 16 bits and the 8 dedicated DMA channel status are in
* the upper 16 bits. The output is a channel number from 0-7.
*/
index = ((bit - 1) / 2) & 7;
if (mask & AWIN_DMA_IRQ_NDMA) {
if (sc->sc_ndma_channels[index].ch_callback == NULL)
continue;
sc->sc_ndma_channels[index].ch_callback(
sc->sc_ndma_channels[index].ch_callbackarg);
} else {
if (sc->sc_ddma_channels[index].ch_callback == NULL)
continue;
sc->sc_ddma_channels[index].ch_callback(
sc->sc_ddma_channels[index].ch_callbackarg);
}
}
}
static uint32_t
a10dmac_read_ctl(struct a10dmac_channel *ch)
{
if (ch->ch_type == CH_NDMA) {
return (DMACH_READ(ch, AWIN_NDMA_CTL_REG));
} else {
return (DMACH_READ(ch, AWIN_DDMA_CTL_REG));
}
}
static void
a10dmac_write_ctl(struct a10dmac_channel *ch, uint32_t val)
{
if (ch->ch_type == CH_NDMA) {
DMACH_WRITE(ch, AWIN_NDMA_CTL_REG, val);
} else {
DMACH_WRITE(ch, AWIN_DDMA_CTL_REG, val);
}
}
static int
a10dmac_set_config(device_t dev, void *priv, const struct sunxi_dma_config *cfg)
{
struct a10dmac_channel *ch = priv;
uint32_t val;
unsigned int dst_dw, dst_bl, dst_bs, dst_wc, dst_am;
unsigned int src_dw, src_bl, src_bs, src_wc, src_am;
switch (cfg->dst_width) {
case 8:
dst_dw = AWIN_DMA_CTL_DATA_WIDTH_8;
break;
case 16:
dst_dw = AWIN_DMA_CTL_DATA_WIDTH_16;
break;
case 32:
dst_dw = AWIN_DMA_CTL_DATA_WIDTH_32;
break;
default:
return (EINVAL);
}
switch (cfg->dst_burst_len) {
case 1:
dst_bl = AWIN_DMA_CTL_BURST_LEN_1;
break;
case 4:
dst_bl = AWIN_DMA_CTL_BURST_LEN_4;
break;
case 8:
dst_bl = AWIN_DMA_CTL_BURST_LEN_8;
break;
default:
return (EINVAL);
}
switch (cfg->src_width) {
case 8:
src_dw = AWIN_DMA_CTL_DATA_WIDTH_8;
break;
case 16:
src_dw = AWIN_DMA_CTL_DATA_WIDTH_16;
break;
case 32:
src_dw = AWIN_DMA_CTL_DATA_WIDTH_32;
break;
default:
return (EINVAL);
}
switch (cfg->src_burst_len) {
case 1:
src_bl = AWIN_DMA_CTL_BURST_LEN_1;
break;
case 4:
src_bl = AWIN_DMA_CTL_BURST_LEN_4;
break;
case 8:
src_bl = AWIN_DMA_CTL_BURST_LEN_8;
break;
default:
return (EINVAL);
}
val = (dst_dw << AWIN_DMA_CTL_DST_DATA_WIDTH_SHIFT) |
(dst_bl << AWIN_DMA_CTL_DST_BURST_LEN_SHIFT) |
(cfg->dst_drqtype << AWIN_DMA_CTL_DST_DRQ_TYPE_SHIFT) |
(src_dw << AWIN_DMA_CTL_SRC_DATA_WIDTH_SHIFT) |
(src_bl << AWIN_DMA_CTL_SRC_BURST_LEN_SHIFT) |
(cfg->src_drqtype << AWIN_DMA_CTL_SRC_DRQ_TYPE_SHIFT);
if (ch->ch_type == CH_NDMA) {
if (cfg->dst_noincr)
val |= AWIN_NDMA_CTL_DST_ADDR_NOINCR;
if (cfg->src_noincr)
val |= AWIN_NDMA_CTL_SRC_ADDR_NOINCR;
DMACH_WRITE(ch, AWIN_NDMA_CTL_REG, val);
} else {
dst_am = cfg->dst_noincr ? AWIN_DDMA_CTL_DMA_ADDR_IO :
AWIN_DDMA_CTL_DMA_ADDR_LINEAR;
src_am = cfg->src_noincr ? AWIN_DDMA_CTL_DMA_ADDR_IO :
AWIN_DDMA_CTL_DMA_ADDR_LINEAR;
val |= (dst_am << AWIN_DDMA_CTL_DST_ADDR_MODE_SHIFT);
val |= (src_am << AWIN_DDMA_CTL_SRC_ADDR_MODE_SHIFT);
DMACH_WRITE(ch, AWIN_DDMA_CTL_REG, val);
dst_bs = cfg->dst_blksize - 1;
dst_wc = cfg->dst_wait_cyc - 1;
src_bs = cfg->src_blksize - 1;
src_wc = cfg->src_wait_cyc - 1;
DMACH_WRITE(ch, AWIN_DDMA_PARA_REG,
(dst_bs << AWIN_DDMA_PARA_DST_DATA_BLK_SIZ_SHIFT) |
(dst_wc << AWIN_DDMA_PARA_DST_WAIT_CYC_SHIFT) |
(src_bs << AWIN_DDMA_PARA_SRC_DATA_BLK_SIZ_SHIFT) |
(src_wc << AWIN_DDMA_PARA_SRC_WAIT_CYC_SHIFT));
}
return (0);
}
static void *
a10dmac_alloc(device_t dev, bool dedicated, void (*cb)(void *), void *cbarg)
{
struct a10dmac_softc *sc = device_get_softc(dev);
struct a10dmac_channel *ch_list;
struct a10dmac_channel *ch = NULL;
uint32_t irqen;
uint8_t ch_count, index;
if (dedicated) {
ch_list = sc->sc_ddma_channels;
ch_count = DDMA_CHANNELS;
} else {
ch_list = sc->sc_ndma_channels;
ch_count = NDMA_CHANNELS;
}
mtx_lock_spin(&sc->sc_mtx);
for (index = 0; index < ch_count; index++) {
if (ch_list[index].ch_callback == NULL) {
ch = &ch_list[index];
ch->ch_callback = cb;
ch->ch_callbackarg = cbarg;
irqen = DMA_READ(sc, AWIN_DMA_IRQ_EN_REG);
if (ch->ch_type == CH_NDMA)
irqen |= AWIN_DMA_IRQ_NDMA_END(index);
else
irqen |= AWIN_DMA_IRQ_DDMA_END(index);
DMA_WRITE(sc, AWIN_DMA_IRQ_EN_REG, irqen);
break;
}
}
mtx_unlock_spin(&sc->sc_mtx);
return (ch);
}
static void
a10dmac_free(device_t dev, void *priv)
{
struct a10dmac_channel *ch = priv;
struct a10dmac_softc *sc = ch->ch_sc;
uint32_t irqen, sta, cfg;
mtx_lock_spin(&sc->sc_mtx);
irqen = DMA_READ(sc, AWIN_DMA_IRQ_EN_REG);
cfg = a10dmac_read_ctl(ch);
if (ch->ch_type == CH_NDMA) {
sta = AWIN_DMA_IRQ_NDMA_END(ch->ch_index);
cfg &= ~AWIN_NDMA_CTL_DMA_LOADING;
} else {
sta = AWIN_DMA_IRQ_DDMA_END(ch->ch_index);
cfg &= ~AWIN_DDMA_CTL_DMA_LOADING;
}
irqen &= ~sta;
a10dmac_write_ctl(ch, cfg);
DMA_WRITE(sc, AWIN_DMA_IRQ_EN_REG, irqen);
DMA_WRITE(sc, AWIN_DMA_IRQ_PEND_STA_REG, sta);
ch->ch_callback = NULL;
ch->ch_callbackarg = NULL;
mtx_unlock_spin(&sc->sc_mtx);
}
static int
a10dmac_transfer(device_t dev, void *priv, bus_addr_t src, bus_addr_t dst,
size_t nbytes)
{
struct a10dmac_channel *ch = priv;
uint32_t cfg;
cfg = a10dmac_read_ctl(ch);
if (ch->ch_type == CH_NDMA) {
if (cfg & AWIN_NDMA_CTL_DMA_LOADING)
return (EBUSY);
DMACH_WRITE(ch, AWIN_NDMA_SRC_ADDR_REG, src);
DMACH_WRITE(ch, AWIN_NDMA_DEST_ADDR_REG, dst);
DMACH_WRITE(ch, AWIN_NDMA_BC_REG, nbytes);
cfg |= AWIN_NDMA_CTL_DMA_LOADING;
a10dmac_write_ctl(ch, cfg);
} else {
if (cfg & AWIN_DDMA_CTL_DMA_LOADING)
return (EBUSY);
DMACH_WRITE(ch, AWIN_DDMA_SRC_START_ADDR_REG, src);
DMACH_WRITE(ch, AWIN_DDMA_DEST_START_ADDR_REG, dst);
DMACH_WRITE(ch, AWIN_DDMA_BC_REG, nbytes);
cfg |= AWIN_DDMA_CTL_DMA_LOADING;
a10dmac_write_ctl(ch, cfg);
}
return (0);
}
static void
a10dmac_halt(device_t dev, void *priv)
{
struct a10dmac_channel *ch = priv;
uint32_t cfg;
cfg = a10dmac_read_ctl(ch);
if (ch->ch_type == CH_NDMA) {
cfg &= ~AWIN_NDMA_CTL_DMA_LOADING;
} else {
cfg &= ~AWIN_DDMA_CTL_DMA_LOADING;
}
a10dmac_write_ctl(ch, cfg);
}
static device_method_t a10dmac_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, a10dmac_probe),
DEVMETHOD(device_attach, a10dmac_attach),
/* sunxi DMA interface */
DEVMETHOD(sunxi_dma_alloc, a10dmac_alloc),
DEVMETHOD(sunxi_dma_free, a10dmac_free),
DEVMETHOD(sunxi_dma_set_config, a10dmac_set_config),
DEVMETHOD(sunxi_dma_transfer, a10dmac_transfer),
DEVMETHOD(sunxi_dma_halt, a10dmac_halt),
DEVMETHOD_END
};
static driver_t a10dmac_driver = {
"a10dmac",
a10dmac_methods,
sizeof(struct a10dmac_softc)
};
static devclass_t a10dmac_devclass;
DRIVER_MODULE(a10dmac, simplebus, a10dmac_driver, a10dmac_devclass, 0, 0);