c4410efa0c
reduces the code size by about 10% and improves performance slightly.
347 lines
8.1 KiB
C
347 lines
8.1 KiB
C
/*-
|
|
* Copyright (c) 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Chris Torek.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* This file defines common routines used by both printf and wprintf.
|
|
* You must define CHAR to either char or wchar_t prior to including this.
|
|
*/
|
|
|
|
|
|
#ifndef NO_FLOATING_POINT
|
|
|
|
#define dtoa __dtoa
|
|
#define freedtoa __freedtoa
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include "floatio.h"
|
|
#include "gdtoa.h"
|
|
|
|
#define DEFPREC 6
|
|
|
|
static int exponent(CHAR *, int, CHAR);
|
|
|
|
#endif /* !NO_FLOATING_POINT */
|
|
|
|
static CHAR *__ujtoa(uintmax_t, CHAR *, int, int, const char *, int, char,
|
|
const char *);
|
|
static CHAR *__ultoa(u_long, CHAR *, int, int, const char *, int, char,
|
|
const char *);
|
|
|
|
#define NIOV 8
|
|
struct io_state {
|
|
FILE *fp;
|
|
struct __suio uio; /* output information: summary */
|
|
struct __siov iov[NIOV];/* ... and individual io vectors */
|
|
};
|
|
|
|
static inline void
|
|
io_init(struct io_state *iop, FILE *fp)
|
|
{
|
|
|
|
iop->uio.uio_iov = iop->iov;
|
|
iop->uio.uio_resid = 0;
|
|
iop->uio.uio_iovcnt = 0;
|
|
iop->fp = fp;
|
|
}
|
|
|
|
/*
|
|
* WARNING: The buffer passed to io_print() is not copied immediately; it must
|
|
* remain valid until io_flush() is called.
|
|
*/
|
|
static inline int
|
|
io_print(struct io_state *iop, const CHAR * __restrict ptr, int len)
|
|
{
|
|
|
|
iop->iov[iop->uio.uio_iovcnt].iov_base = (char *)ptr;
|
|
iop->iov[iop->uio.uio_iovcnt].iov_len = len;
|
|
iop->uio.uio_resid += len;
|
|
if (++iop->uio.uio_iovcnt >= NIOV)
|
|
return (__sprint(iop->fp, &iop->uio));
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Choose PADSIZE to trade efficiency vs. size. If larger printf
|
|
* fields occur frequently, increase PADSIZE and make the initialisers
|
|
* below longer.
|
|
*/
|
|
#define PADSIZE 16 /* pad chunk size */
|
|
static const CHAR blanks[PADSIZE] =
|
|
{' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' '};
|
|
static const CHAR zeroes[PADSIZE] =
|
|
{'0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0'};
|
|
|
|
/*
|
|
* Pad with blanks or zeroes. 'with' should point to either the blanks array
|
|
* or the zeroes array.
|
|
*/
|
|
static inline int
|
|
io_pad(struct io_state *iop, int howmany, const CHAR * __restrict with)
|
|
{
|
|
int n;
|
|
|
|
while (howmany > 0) {
|
|
n = (howmany >= PADSIZE) ? PADSIZE : howmany;
|
|
if (io_print(iop, with, n))
|
|
return (-1);
|
|
howmany -= n;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Print exactly len characters of the string spanning p to ep, truncating
|
|
* or padding with 'with' as necessary.
|
|
*/
|
|
static inline int
|
|
io_printandpad(struct io_state *iop, const CHAR *p, const CHAR *ep,
|
|
int len, const CHAR * __restrict with)
|
|
{
|
|
int p_len;
|
|
|
|
p_len = ep - p;
|
|
if (p_len > len)
|
|
p_len = len;
|
|
if (p_len > 0) {
|
|
if (io_print(iop, p, p_len))
|
|
return (-1);
|
|
} else {
|
|
p_len = 0;
|
|
}
|
|
return (io_pad(iop, len - p_len, with));
|
|
}
|
|
|
|
static inline int
|
|
io_flush(struct io_state *iop)
|
|
{
|
|
|
|
return (__sprint(iop->fp, &iop->uio));
|
|
}
|
|
|
|
/*
|
|
* Convert an unsigned long to ASCII for printf purposes, returning
|
|
* a pointer to the first character of the string representation.
|
|
* Octal numbers can be forced to have a leading zero; hex numbers
|
|
* use the given digits.
|
|
*/
|
|
static CHAR *
|
|
__ultoa(u_long val, CHAR *endp, int base, int octzero, const char *xdigs,
|
|
int needgrp, char thousep, const char *grp)
|
|
{
|
|
CHAR *cp = endp;
|
|
long sval;
|
|
int ndig;
|
|
|
|
/*
|
|
* Handle the three cases separately, in the hope of getting
|
|
* better/faster code.
|
|
*/
|
|
switch (base) {
|
|
case 10:
|
|
if (val < 10) { /* many numbers are 1 digit */
|
|
*--cp = to_char(val);
|
|
return (cp);
|
|
}
|
|
ndig = 0;
|
|
/*
|
|
* On many machines, unsigned arithmetic is harder than
|
|
* signed arithmetic, so we do at most one unsigned mod and
|
|
* divide; this is sufficient to reduce the range of
|
|
* the incoming value to where signed arithmetic works.
|
|
*/
|
|
if (val > LONG_MAX) {
|
|
*--cp = to_char(val % 10);
|
|
ndig++;
|
|
sval = val / 10;
|
|
} else
|
|
sval = val;
|
|
do {
|
|
*--cp = to_char(sval % 10);
|
|
ndig++;
|
|
/*
|
|
* If (*grp == CHAR_MAX) then no more grouping
|
|
* should be performed.
|
|
*/
|
|
if (needgrp && ndig == *grp && *grp != CHAR_MAX
|
|
&& sval > 9) {
|
|
*--cp = thousep;
|
|
ndig = 0;
|
|
/*
|
|
* If (*(grp+1) == '\0') then we have to
|
|
* use *grp character (last grouping rule)
|
|
* for all next cases
|
|
*/
|
|
if (*(grp+1) != '\0')
|
|
grp++;
|
|
}
|
|
sval /= 10;
|
|
} while (sval != 0);
|
|
break;
|
|
|
|
case 8:
|
|
do {
|
|
*--cp = to_char(val & 7);
|
|
val >>= 3;
|
|
} while (val);
|
|
if (octzero && *cp != '0')
|
|
*--cp = '0';
|
|
break;
|
|
|
|
case 16:
|
|
do {
|
|
*--cp = xdigs[val & 15];
|
|
val >>= 4;
|
|
} while (val);
|
|
break;
|
|
|
|
default: /* oops */
|
|
abort();
|
|
}
|
|
return (cp);
|
|
}
|
|
|
|
/* Identical to __ultoa, but for intmax_t. */
|
|
static CHAR *
|
|
__ujtoa(uintmax_t val, CHAR *endp, int base, int octzero, const char *xdigs,
|
|
int needgrp, char thousep, const char *grp)
|
|
{
|
|
CHAR *cp = endp;
|
|
intmax_t sval;
|
|
int ndig;
|
|
|
|
/* quick test for small values; __ultoa is typically much faster */
|
|
/* (perhaps instead we should run until small, then call __ultoa?) */
|
|
if (val <= ULONG_MAX)
|
|
return (__ultoa((u_long)val, endp, base, octzero, xdigs,
|
|
needgrp, thousep, grp));
|
|
switch (base) {
|
|
case 10:
|
|
if (val < 10) {
|
|
*--cp = to_char(val % 10);
|
|
return (cp);
|
|
}
|
|
ndig = 0;
|
|
if (val > INTMAX_MAX) {
|
|
*--cp = to_char(val % 10);
|
|
ndig++;
|
|
sval = val / 10;
|
|
} else
|
|
sval = val;
|
|
do {
|
|
*--cp = to_char(sval % 10);
|
|
ndig++;
|
|
/*
|
|
* If (*grp == CHAR_MAX) then no more grouping
|
|
* should be performed.
|
|
*/
|
|
if (needgrp && *grp != CHAR_MAX && ndig == *grp
|
|
&& sval > 9) {
|
|
*--cp = thousep;
|
|
ndig = 0;
|
|
/*
|
|
* If (*(grp+1) == '\0') then we have to
|
|
* use *grp character (last grouping rule)
|
|
* for all next cases
|
|
*/
|
|
if (*(grp+1) != '\0')
|
|
grp++;
|
|
}
|
|
sval /= 10;
|
|
} while (sval != 0);
|
|
break;
|
|
|
|
case 8:
|
|
do {
|
|
*--cp = to_char(val & 7);
|
|
val >>= 3;
|
|
} while (val);
|
|
if (octzero && *cp != '0')
|
|
*--cp = '0';
|
|
break;
|
|
|
|
case 16:
|
|
do {
|
|
*--cp = xdigs[val & 15];
|
|
val >>= 4;
|
|
} while (val);
|
|
break;
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
return (cp);
|
|
}
|
|
|
|
#ifndef NO_FLOATING_POINT
|
|
|
|
static int
|
|
exponent(CHAR *p0, int exp, CHAR fmtch)
|
|
{
|
|
CHAR *p, *t;
|
|
CHAR expbuf[MAXEXPDIG];
|
|
|
|
p = p0;
|
|
*p++ = fmtch;
|
|
if (exp < 0) {
|
|
exp = -exp;
|
|
*p++ = '-';
|
|
}
|
|
else
|
|
*p++ = '+';
|
|
t = expbuf + MAXEXPDIG;
|
|
if (exp > 9) {
|
|
do {
|
|
*--t = to_char(exp % 10);
|
|
} while ((exp /= 10) > 9);
|
|
*--t = to_char(exp);
|
|
for (; t < expbuf + MAXEXPDIG; *p++ = *t++);
|
|
}
|
|
else {
|
|
/*
|
|
* Exponents for decimal floating point conversions
|
|
* (%[eEgG]) must be at least two characters long,
|
|
* whereas exponents for hexadecimal conversions can
|
|
* be only one character long.
|
|
*/
|
|
if (fmtch == 'e' || fmtch == 'E')
|
|
*p++ = '0';
|
|
*p++ = to_char(exp);
|
|
}
|
|
return (p - p0);
|
|
}
|
|
|
|
#endif /* !NO_FLOATING_POINT */
|