freebsd-skq/sys/dev/uart/uart_dev_quicc.c
raj ddcbd7a1c9 Support for Freescale QUad Integrated Communications Controller.
The QUICC engine is found on various Freescale parts including MPC85xx, and
provides multiple generic time-division serial channel resources, which are in
turn muxed/demuxed by the Serial Communications Controller (SCC).

Along with core QUICC/SCC functionality a uart(4)-compliant device driver is
provided which allows for serial ports over QUICC/SCC.

Approved by:	cognet (mentor)
Obtained from:	Juniper
MFp4:		e500
2008-03-03 18:20:17 +00:00

488 lines
11 KiB
C

/*-
* Copyright (c) 2006 Juniper Networks
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <dev/ic/quicc.h>
#include <dev/uart/uart.h>
#include <dev/uart/uart_cpu.h>
#include <dev/uart/uart_bus.h>
#include "uart_if.h"
#define DEFAULT_RCLK ((266000000 * 2) / 16)
#define quicc_read2(bas, reg) \
bus_space_read_2((bas)->bst, (bas)->bsh, reg)
#define quicc_read4(bas, reg) \
bus_space_read_4((bas)->bst, (bas)->bsh, reg)
#define quicc_write2(bas, reg, val) \
bus_space_write_2((bas)->bst, (bas)->bsh, reg, val)
#define quicc_write4(bas, reg, val) \
bus_space_write_4((bas)->bst, (bas)->bsh, reg, val)
static int
quicc_divisor(int rclk, int baudrate)
{
int act_baud, divisor, error;
if (baudrate == 0)
return (-1);
divisor = rclk / baudrate / 16;
if (divisor > 4096)
divisor = ((divisor >> 3) - 2) | 1;
else if (divisor >= 0)
divisor = (divisor - 1) << 1;
if (divisor < 0 || divisor >= 8192)
return (-1);
act_baud = rclk / (((divisor >> 1) + 1) << ((divisor & 1) ? 8 : 4));
/* 10 times error in percent: */
error = ((act_baud - baudrate) * 2000 / baudrate + 1) >> 1;
/* 3.0% maximum error tolerance: */
if (error < -30 || error > 30)
return (-1);
return (divisor);
}
static int
quicc_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
int parity)
{
int divisor;
uint16_t psmr;
if (baudrate > 0) {
divisor = quicc_divisor(bas->rclk, baudrate);
if (divisor == -1)
return (EINVAL);
quicc_write4(bas, QUICC_REG_BRG(bas->chan - 1),
divisor | 0x10000);
}
psmr = 0;
switch (databits) {
case 5: psmr |= 0x0000; break;
case 6: psmr |= 0x1000; break;
case 7: psmr |= 0x2000; break;
case 8: psmr |= 0x3000; break;
default: return (EINVAL);
}
switch (stopbits) {
case 1: psmr |= 0x0000; break;
case 2: psmr |= 0x4000; break;
default: return (EINVAL);
}
switch (parity) {
case UART_PARITY_EVEN: psmr |= 0x1a; break;
case UART_PARITY_MARK: psmr |= 0x1f; break;
case UART_PARITY_NONE: psmr |= 0x00; break;
case UART_PARITY_ODD: psmr |= 0x10; break;
case UART_PARITY_SPACE: psmr |= 0x15; break;
default: return (EINVAL);
}
quicc_write2(bas, QUICC_REG_SCC_PSMR(bas->chan - 1), psmr);
return (0);
}
static void
quicc_setup(struct uart_bas *bas, int baudrate, int databits, int stopbits,
int parity)
{
if (bas->rclk == 0)
bas->rclk = DEFAULT_RCLK;
/*
* GSMR_L = 0x00028034
* GSMR_H = 0x00000020
*/
quicc_param(bas, baudrate, databits, stopbits, parity);
quicc_write2(bas, QUICC_REG_SCC_SCCE(bas->chan - 1), ~0);
quicc_write2(bas, QUICC_REG_SCC_SCCM(bas->chan - 1), 0x0027);
}
/*
* Low-level UART interface.
*/
static int quicc_probe(struct uart_bas *bas);
static void quicc_init(struct uart_bas *bas, int, int, int, int);
static void quicc_term(struct uart_bas *bas);
static void quicc_putc(struct uart_bas *bas, int);
static int quicc_rxready(struct uart_bas *bas);
static int quicc_getc(struct uart_bas *bas, struct mtx *);
static struct uart_ops uart_quicc_ops = {
.probe = quicc_probe,
.init = quicc_init,
.term = quicc_term,
.putc = quicc_putc,
.rxready = quicc_rxready,
.getc = quicc_getc,
};
static int
quicc_probe(struct uart_bas *bas)
{
return (0);
}
static void
quicc_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
int parity)
{
quicc_setup(bas, baudrate, databits, stopbits, parity);
}
static void
quicc_term(struct uart_bas *bas)
{
}
static void
quicc_putc(struct uart_bas *bas, int c)
{
int unit;
uint16_t toseq;
unit = bas->chan - 1;
while (quicc_read2(bas, QUICC_PRAM_SCC_UART_TOSEQ(unit)) & 0x2000)
DELAY(10);
toseq = 0x2000 | (c & 0xff);
quicc_write2(bas, QUICC_PRAM_SCC_UART_TOSEQ(unit), toseq);
}
static int
quicc_rxready(struct uart_bas *bas)
{
uint16_t rb;
rb = quicc_read2(bas, QUICC_PRAM_SCC_RBASE(bas->chan - 1));
return ((quicc_read2(bas, rb) & 0x8000) ? 0 : 1);
}
static int
quicc_getc(struct uart_bas *bas, struct mtx *hwmtx)
{
volatile char *buf;
int c;
uint16_t rb, sc;
uart_lock(hwmtx);
rb = quicc_read2(bas, QUICC_PRAM_SCC_RBASE(bas->chan - 1));
while ((sc = quicc_read2(bas, rb)) & 0x8000) {
uart_unlock(hwmtx);
DELAY(4);
uart_lock(hwmtx);
}
buf = (void *)quicc_read4(bas, rb + 4);
c = *buf;
quicc_write2(bas, rb, sc | 0x8000);
uart_unlock(hwmtx);
return (c);
}
/*
* High-level UART interface.
*/
struct quicc_softc {
struct uart_softc base;
};
static int quicc_bus_attach(struct uart_softc *);
static int quicc_bus_detach(struct uart_softc *);
static int quicc_bus_flush(struct uart_softc *, int);
static int quicc_bus_getsig(struct uart_softc *);
static int quicc_bus_ioctl(struct uart_softc *, int, intptr_t);
static int quicc_bus_ipend(struct uart_softc *);
static int quicc_bus_param(struct uart_softc *, int, int, int, int);
static int quicc_bus_probe(struct uart_softc *);
static int quicc_bus_receive(struct uart_softc *);
static int quicc_bus_setsig(struct uart_softc *, int);
static int quicc_bus_transmit(struct uart_softc *);
static kobj_method_t quicc_methods[] = {
KOBJMETHOD(uart_attach, quicc_bus_attach),
KOBJMETHOD(uart_detach, quicc_bus_detach),
KOBJMETHOD(uart_flush, quicc_bus_flush),
KOBJMETHOD(uart_getsig, quicc_bus_getsig),
KOBJMETHOD(uart_ioctl, quicc_bus_ioctl),
KOBJMETHOD(uart_ipend, quicc_bus_ipend),
KOBJMETHOD(uart_param, quicc_bus_param),
KOBJMETHOD(uart_probe, quicc_bus_probe),
KOBJMETHOD(uart_receive, quicc_bus_receive),
KOBJMETHOD(uart_setsig, quicc_bus_setsig),
KOBJMETHOD(uart_transmit, quicc_bus_transmit),
{ 0, 0 }
};
struct uart_class uart_quicc_class = {
"quicc",
quicc_methods,
sizeof(struct quicc_softc),
.uc_ops = &uart_quicc_ops,
.uc_range = 2,
.uc_rclk = DEFAULT_RCLK
};
#define SIGCHG(c, i, s, d) \
if (c) { \
i |= (i & s) ? s : s | d; \
} else { \
i = (i & s) ? (i & ~s) | d : i; \
}
static int
quicc_bus_attach(struct uart_softc *sc)
{
struct uart_bas *bas;
struct uart_devinfo *di;
uint16_t st, rb;
bas = &sc->sc_bas;
if (sc->sc_sysdev != NULL) {
di = sc->sc_sysdev;
quicc_param(bas, di->baudrate, di->databits, di->stopbits,
di->parity);
} else {
quicc_setup(bas, 9600, 8, 1, UART_PARITY_NONE);
}
sc->sc_rxfifosz = 1;
sc->sc_txfifosz = 1;
/* Enable interrupts on the receive buffer. */
rb = quicc_read2(bas, QUICC_PRAM_SCC_RBASE(bas->chan - 1));
st = quicc_read2(bas, rb);
quicc_write2(bas, rb, st | 0x9000);
(void)quicc_bus_getsig(sc);
return (0);
}
static int
quicc_bus_detach(struct uart_softc *sc)
{
return (0);
}
static int
quicc_bus_flush(struct uart_softc *sc, int what)
{
return (0);
}
static int
quicc_bus_getsig(struct uart_softc *sc)
{
uint32_t new, old, sig;
uint32_t dummy;
do {
old = sc->sc_hwsig;
sig = old;
uart_lock(sc->sc_hwmtx);
/* XXX SIGNALS */
dummy = 0;
uart_unlock(sc->sc_hwmtx);
SIGCHG(dummy, sig, SER_CTS, SER_DCTS);
SIGCHG(dummy, sig, SER_DCD, SER_DDCD);
SIGCHG(dummy, sig, SER_DSR, SER_DDSR);
new = sig & ~SER_MASK_DELTA;
} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
return (sig);
}
static int
quicc_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
{
struct uart_bas *bas;
uint32_t brg;
int baudrate, error;
bas = &sc->sc_bas;
error = 0;
uart_lock(sc->sc_hwmtx);
switch (request) {
case UART_IOCTL_BREAK:
break;
case UART_IOCTL_BAUD:
brg = quicc_read4(bas, QUICC_REG_BRG(bas->chan - 1)) & 0x1fff;
brg = (brg & 1) ? (brg + 1) << 3 : (brg + 2) >> 1;
baudrate = bas->rclk / (brg * 16);
*(int*)data = baudrate;
break;
default:
error = EINVAL;
break;
}
uart_unlock(sc->sc_hwmtx);
return (error);
}
static int
quicc_bus_ipend(struct uart_softc *sc)
{
struct uart_bas *bas;
int ipend;
uint16_t scce;
bas = &sc->sc_bas;
ipend = 0;
uart_lock(sc->sc_hwmtx);
scce = quicc_read2(bas, QUICC_REG_SCC_SCCE(bas->chan - 1));
quicc_write2(bas, QUICC_REG_SCC_SCCE(bas->chan - 1), ~0);
uart_unlock(sc->sc_hwmtx);
if (scce & 0x0001)
ipend |= SER_INT_RXREADY;
if (scce & 0x0002)
ipend |= SER_INT_TXIDLE;
if (scce & 0x0004)
ipend |= SER_INT_OVERRUN;
if (scce & 0x0020)
ipend |= SER_INT_BREAK;
/* XXX SIGNALS */
return (ipend);
}
static int
quicc_bus_param(struct uart_softc *sc, int baudrate, int databits,
int stopbits, int parity)
{
int error;
uart_lock(sc->sc_hwmtx);
error = quicc_param(&sc->sc_bas, baudrate, databits, stopbits,
parity);
uart_unlock(sc->sc_hwmtx);
return (error);
}
static int
quicc_bus_probe(struct uart_softc *sc)
{
char buf[80];
int error;
error = quicc_probe(&sc->sc_bas);
if (error)
return (error);
snprintf(buf, sizeof(buf), "quicc, channel %d", sc->sc_bas.chan);
device_set_desc_copy(sc->sc_dev, buf);
return (0);
}
static int
quicc_bus_receive(struct uart_softc *sc)
{
struct uart_bas *bas;
volatile char *buf;
uint16_t st, rb;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
rb = quicc_read2(bas, QUICC_PRAM_SCC_RBASE(bas->chan - 1));
st = quicc_read2(bas, rb);
buf = (void *)quicc_read4(bas, rb + 4);
uart_rx_put(sc, *buf);
quicc_write2(bas, rb, st | 0x9000);
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
quicc_bus_setsig(struct uart_softc *sc, int sig)
{
struct uart_bas *bas;
uint32_t new, old;
bas = &sc->sc_bas;
do {
old = sc->sc_hwsig;
new = old;
if (sig & SER_DDTR) {
SIGCHG(sig & SER_DTR, new, SER_DTR,
SER_DDTR);
}
if (sig & SER_DRTS) {
SIGCHG(sig & SER_RTS, new, SER_RTS,
SER_DRTS);
}
} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
uart_lock(sc->sc_hwmtx);
/* XXX SIGNALS */
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
quicc_bus_transmit(struct uart_softc *sc)
{
volatile char *buf;
struct uart_bas *bas;
uint16_t st, tb;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
tb = quicc_read2(bas, QUICC_PRAM_SCC_TBASE(bas->chan - 1));
st = quicc_read2(bas, tb);
buf = (void *)quicc_read4(bas, tb + 4);
*buf = sc->sc_txbuf[0];
quicc_write2(bas, tb + 2, 1);
quicc_write2(bas, tb, st | 0x9000);
sc->sc_txbusy = 1;
uart_unlock(sc->sc_hwmtx);
return (0);
}