freebsd-skq/sys/powerpc/ofw/ofw_machdep.c
Nathan Whitehorn 509142e189 Where appropriate, use the endian-flipping OF_getencprop() instead of
OF_getprop() to get encode-int encoded values from the OF tree. This is
a no-op at present, since all existing PowerPC ports are big-endian, but
it is a correctness improvement and will be required if we have a
little-endian kernel at some future point.

Where it is totally impossible for the code ever to be used on a
little-endian system (much of powerpc/powermac, for instance), I have not
necessarily made the appropriate changes.

MFC after:	1 month
2015-11-17 16:07:43 +00:00

700 lines
16 KiB
C

/*-
* Copyright (C) 1996 Wolfgang Solfrank.
* Copyright (C) 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $NetBSD: ofw_machdep.c,v 1.5 2000/05/23 13:25:43 tsubai Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/fcntl.h>
#include <sys/malloc.h>
#include <sys/smp.h>
#include <sys/stat.h>
#include <sys/endian.h>
#include <net/ethernet.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_pci.h>
#include <dev/ofw/ofw_bus.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_page.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#include <machine/platform.h>
#include <machine/ofw_machdep.h>
#include <machine/trap.h>
static void *fdt;
int ofw_real_mode;
#ifdef AIM
extern register_t ofmsr[5];
extern void *openfirmware_entry;
char save_trap_init[0x2f00]; /* EXC_LAST */
char save_trap_of[0x2f00]; /* EXC_LAST */
int ofwcall(void *);
static int openfirmware(void *args);
__inline void
ofw_save_trap_vec(char *save_trap_vec)
{
if (!ofw_real_mode)
return;
bcopy((void *)EXC_RST, save_trap_vec, EXC_LAST - EXC_RST);
}
static __inline void
ofw_restore_trap_vec(char *restore_trap_vec)
{
if (!ofw_real_mode)
return;
bcopy(restore_trap_vec, (void *)EXC_RST, EXC_LAST - EXC_RST);
__syncicache(EXC_RSVD, EXC_LAST - EXC_RSVD);
}
/*
* Saved SPRG0-3 from OpenFirmware. Will be restored prior to the callback.
*/
register_t ofw_sprg0_save;
static __inline void
ofw_sprg_prepare(void)
{
if (ofw_real_mode)
return;
/*
* Assume that interrupt are disabled at this point, or
* SPRG1-3 could be trashed
*/
__asm __volatile("mfsprg0 %0\n\t"
"mtsprg0 %1\n\t"
"mtsprg1 %2\n\t"
"mtsprg2 %3\n\t"
"mtsprg3 %4\n\t"
: "=&r"(ofw_sprg0_save)
: "r"(ofmsr[1]),
"r"(ofmsr[2]),
"r"(ofmsr[3]),
"r"(ofmsr[4]));
}
static __inline void
ofw_sprg_restore(void)
{
if (ofw_real_mode)
return;
/*
* Note that SPRG1-3 contents are irrelevant. They are scratch
* registers used in the early portion of trap handling when
* interrupts are disabled.
*
* PCPU data cannot be used until this routine is called !
*/
__asm __volatile("mtsprg0 %0" :: "r"(ofw_sprg0_save));
}
#endif
static int
parse_ofw_memory(phandle_t node, const char *prop, struct mem_region *output)
{
cell_t address_cells, size_cells;
cell_t OFmem[4 * PHYS_AVAIL_SZ];
int sz, i, j;
phandle_t phandle;
sz = 0;
/*
* Get #address-cells from root node, defaulting to 1 if it cannot
* be found.
*/
phandle = OF_finddevice("/");
if (OF_getencprop(phandle, "#address-cells", &address_cells,
sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
address_cells = 1;
if (OF_getencprop(phandle, "#size-cells", &size_cells,
sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
size_cells = 1;
/*
* Get memory.
*/
if (node == -1 || (sz = OF_getencprop(node, prop,
OFmem, sizeof(OFmem))) <= 0)
panic("Physical memory map not found");
i = 0;
j = 0;
while (i < sz/sizeof(cell_t)) {
#ifndef __powerpc64__
/* On 32-bit PPC, ignore regions starting above 4 GB */
if (address_cells > 1 && OFmem[i] > 0) {
i += address_cells + size_cells;
continue;
}
#endif
output[j].mr_start = OFmem[i++];
if (address_cells == 2) {
#ifdef __powerpc64__
output[j].mr_start <<= 32;
#endif
output[j].mr_start += OFmem[i++];
}
output[j].mr_size = OFmem[i++];
if (size_cells == 2) {
#ifdef __powerpc64__
output[j].mr_size <<= 32;
#endif
output[j].mr_size += OFmem[i++];
}
#ifndef __powerpc64__
/*
* Check for memory regions extending above 32-bit
* memory space, and restrict them to stay there.
*/
if (((uint64_t)output[j].mr_start +
(uint64_t)output[j].mr_size) >
BUS_SPACE_MAXADDR_32BIT) {
output[j].mr_size = BUS_SPACE_MAXADDR_32BIT -
output[j].mr_start;
}
#endif
j++;
}
sz = j*sizeof(output[0]);
return (sz);
}
static int
excise_fdt_reserved(struct mem_region *avail, int asz)
{
struct {
uint64_t address;
uint64_t size;
} fdtmap[16];
ssize_t fdtmapsize;
phandle_t chosen;
int i, j, k;
chosen = OF_finddevice("/chosen");
fdtmapsize = OF_getprop(chosen, "fdtmemreserv", fdtmap, sizeof(fdtmap));
for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) {
fdtmap[j].address = be64toh(fdtmap[j].address);
fdtmap[j].size = be64toh(fdtmap[j].size);
}
for (i = 0; i < asz; i++) {
for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) {
/*
* Case 1: Exclusion region encloses complete
* available entry. Drop it and move on.
*/
if (fdtmap[j].address <= avail[i].mr_start &&
fdtmap[j].address + fdtmap[j].size >=
avail[i].mr_start + avail[i].mr_size) {
for (k = i+1; k < asz; k++)
avail[k-1] = avail[k];
asz--;
i--; /* Repeat some entries */
continue;
}
/*
* Case 2: Exclusion region starts in available entry.
* Trim it to where the entry begins and append
* a new available entry with the region after
* the excluded region, if any.
*/
if (fdtmap[j].address >= avail[i].mr_start &&
fdtmap[j].address < avail[i].mr_start +
avail[i].mr_size) {
if (fdtmap[j].address + fdtmap[j].size <
avail[i].mr_start + avail[i].mr_size) {
avail[asz].mr_start =
fdtmap[j].address + fdtmap[j].size;
avail[asz].mr_size = avail[i].mr_start +
avail[i].mr_size -
avail[asz].mr_start;
asz++;
}
avail[i].mr_size = fdtmap[j].address -
avail[i].mr_start;
}
/*
* Case 3: Exclusion region ends in available entry.
* Move start point to where the exclusion zone ends.
* The case of a contained exclusion zone has already
* been caught in case 2.
*/
if (fdtmap[j].address + fdtmap[j].size >=
avail[i].mr_start && fdtmap[j].address +
fdtmap[j].size < avail[i].mr_start +
avail[i].mr_size) {
avail[i].mr_size += avail[i].mr_start;
avail[i].mr_start =
fdtmap[j].address + fdtmap[j].size;
avail[i].mr_size -= avail[i].mr_start;
}
}
}
return (asz);
}
/*
* This is called during powerpc_init, before the system is really initialized.
* It shall provide the total and the available regions of RAM.
* The available regions need not take the kernel into account.
*/
void
ofw_mem_regions(struct mem_region *memp, int *memsz,
struct mem_region *availp, int *availsz)
{
phandle_t phandle;
int asz, msz;
int res;
char name[31];
asz = msz = 0;
/*
* Get memory from all the /memory nodes.
*/
for (phandle = OF_child(OF_peer(0)); phandle != 0;
phandle = OF_peer(phandle)) {
if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
continue;
if (strncmp(name, "memory", sizeof(name)) != 0 &&
strncmp(name, "memory@", strlen("memory@")) != 0)
continue;
res = parse_ofw_memory(phandle, "reg", &memp[msz]);
msz += res/sizeof(struct mem_region);
if (OF_getproplen(phandle, "available") >= 0)
res = parse_ofw_memory(phandle, "available",
&availp[asz]);
else
res = parse_ofw_memory(phandle, "reg", &availp[asz]);
asz += res/sizeof(struct mem_region);
}
phandle = OF_finddevice("/chosen");
if (OF_hasprop(phandle, "fdtmemreserv"))
asz = excise_fdt_reserved(availp, asz);
*memsz = msz;
*availsz = asz;
}
void
OF_initial_setup(void *fdt_ptr, void *junk, int (*openfirm)(void *))
{
#ifdef AIM
ofmsr[0] = mfmsr();
#ifdef __powerpc64__
ofmsr[0] &= ~PSL_SF;
#endif
__asm __volatile("mfsprg0 %0" : "=&r"(ofmsr[1]));
__asm __volatile("mfsprg1 %0" : "=&r"(ofmsr[2]));
__asm __volatile("mfsprg2 %0" : "=&r"(ofmsr[3]));
__asm __volatile("mfsprg3 %0" : "=&r"(ofmsr[4]));
openfirmware_entry = openfirm;
if (ofmsr[0] & PSL_DR)
ofw_real_mode = 0;
else
ofw_real_mode = 1;
ofw_save_trap_vec(save_trap_init);
#else
ofw_real_mode = 1;
#endif
fdt = fdt_ptr;
#ifdef FDT_DTB_STATIC
/* Check for a statically included blob */
if (fdt == NULL)
fdt = &fdt_static_dtb;
#endif
}
boolean_t
OF_bootstrap()
{
boolean_t status = FALSE;
#ifdef AIM
if (openfirmware_entry != NULL) {
if (ofw_real_mode) {
status = OF_install(OFW_STD_REAL, 0);
} else {
#ifdef __powerpc64__
status = OF_install(OFW_STD_32BIT, 0);
#else
status = OF_install(OFW_STD_DIRECT, 0);
#endif
}
if (status != TRUE)
return status;
OF_init(openfirmware);
} else
#endif
if (fdt != NULL) {
status = OF_install(OFW_FDT, 0);
if (status != TRUE)
return status;
OF_init(fdt);
OF_interpret("perform-fixup", 0);
}
return (status);
}
#ifdef AIM
void
ofw_quiesce(void)
{
struct {
cell_t name;
cell_t nargs;
cell_t nreturns;
} args;
KASSERT(!pmap_bootstrapped, ("Cannot call ofw_quiesce after VM is up"));
args.name = (cell_t)(uintptr_t)"quiesce";
args.nargs = 0;
args.nreturns = 0;
openfirmware(&args);
}
static int
openfirmware_core(void *args)
{
int result;
register_t oldmsr;
if (openfirmware_entry == NULL)
return (-1);
/*
* Turn off exceptions - we really don't want to end up
* anywhere unexpected with PCPU set to something strange
* or the stack pointer wrong.
*/
oldmsr = intr_disable();
ofw_sprg_prepare();
/* Save trap vectors */
ofw_save_trap_vec(save_trap_of);
/* Restore initially saved trap vectors */
ofw_restore_trap_vec(save_trap_init);
#if defined(AIM) && !defined(__powerpc64__)
/*
* Clear battable[] translations
*/
if (!(cpu_features & PPC_FEATURE_64))
__asm __volatile("mtdbatu 2, %0\n"
"mtdbatu 3, %0" : : "r" (0));
isync();
#endif
result = ofwcall(args);
/* Restore trap vecotrs */
ofw_restore_trap_vec(save_trap_of);
ofw_sprg_restore();
intr_restore(oldmsr);
return (result);
}
#ifdef SMP
struct ofw_rv_args {
void *args;
int retval;
volatile int in_progress;
};
static void
ofw_rendezvous_dispatch(void *xargs)
{
struct ofw_rv_args *rv_args = xargs;
/* NOTE: Interrupts are disabled here */
if (PCPU_GET(cpuid) == 0) {
/*
* Execute all OF calls on CPU 0
*/
rv_args->retval = openfirmware_core(rv_args->args);
rv_args->in_progress = 0;
} else {
/*
* Spin with interrupts off on other CPUs while OF has
* control of the machine.
*/
while (rv_args->in_progress)
cpu_spinwait();
}
}
#endif
static int
openfirmware(void *args)
{
int result;
#ifdef SMP
struct ofw_rv_args rv_args;
#endif
if (openfirmware_entry == NULL)
return (-1);
#ifdef SMP
rv_args.args = args;
rv_args.in_progress = 1;
smp_rendezvous(smp_no_rendevous_barrier, ofw_rendezvous_dispatch,
smp_no_rendevous_barrier, &rv_args);
result = rv_args.retval;
#else
result = openfirmware_core(args);
#endif
return (result);
}
void
OF_reboot()
{
struct {
cell_t name;
cell_t nargs;
cell_t nreturns;
cell_t arg;
} args;
args.name = (cell_t)(uintptr_t)"interpret";
args.nargs = 1;
args.nreturns = 0;
args.arg = (cell_t)(uintptr_t)"reset-all";
openfirmware_core(&args); /* Don't do rendezvous! */
for (;;); /* just in case */
}
#endif /* AIM */
void
OF_getetheraddr(device_t dev, u_char *addr)
{
phandle_t node;
node = ofw_bus_get_node(dev);
OF_getprop(node, "local-mac-address", addr, ETHER_ADDR_LEN);
}
/*
* Return a bus handle and bus tag that corresponds to the register
* numbered regno for the device referenced by the package handle
* dev. This function is intended to be used by console drivers in
* early boot only. It works by mapping the address of the device's
* register in the address space of its parent and recursively walk
* the device tree upward this way.
*/
static void
OF_get_addr_props(phandle_t node, uint32_t *addrp, uint32_t *sizep, int *pcip)
{
char type[64];
uint32_t addr, size;
int pci, res;
res = OF_getencprop(node, "#address-cells", &addr, sizeof(addr));
if (res == -1)
addr = 2;
res = OF_getencprop(node, "#size-cells", &size, sizeof(size));
if (res == -1)
size = 1;
pci = 0;
if (addr == 3 && size == 2) {
res = OF_getprop(node, "device_type", type, sizeof(type));
if (res != -1) {
type[sizeof(type) - 1] = '\0';
pci = (strcmp(type, "pci") == 0) ? 1 : 0;
}
}
if (addrp != NULL)
*addrp = addr;
if (sizep != NULL)
*sizep = size;
if (pcip != NULL)
*pcip = pci;
}
int
OF_decode_addr(phandle_t dev, int regno, bus_space_tag_t *tag,
bus_space_handle_t *handle)
{
uint32_t cell[32];
bus_addr_t addr, raddr, baddr;
bus_size_t size, rsize;
uint32_t c, nbridge, naddr, nsize;
phandle_t bridge, parent;
u_int spc, rspc, prefetch;
int pci, pcib, res;
/* Sanity checking. */
if (dev == 0)
return (EINVAL);
bridge = OF_parent(dev);
if (bridge == 0)
return (EINVAL);
if (regno < 0)
return (EINVAL);
if (tag == NULL || handle == NULL)
return (EINVAL);
/* Assume big-endian unless we find a PCI device */
*tag = &bs_be_tag;
/* Get the requested register. */
OF_get_addr_props(bridge, &naddr, &nsize, &pci);
if (pci)
*tag = &bs_le_tag;
res = OF_getencprop(dev, (pci) ? "assigned-addresses" : "reg",
cell, sizeof(cell));
if (res == -1)
return (ENXIO);
if (res % sizeof(cell[0]))
return (ENXIO);
res /= sizeof(cell[0]);
regno *= naddr + nsize;
if (regno + naddr + nsize > res)
return (EINVAL);
spc = (pci) ? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK : ~0;
prefetch = (pci) ? cell[regno] & OFW_PCI_PHYS_HI_PREFETCHABLE : 0;
addr = 0;
for (c = 0; c < naddr; c++)
addr = ((uint64_t)addr << 32) | cell[regno++];
size = 0;
for (c = 0; c < nsize; c++)
size = ((uint64_t)size << 32) | cell[regno++];
/*
* Map the address range in the bridge's decoding window as given
* by the "ranges" property. If a node doesn't have such property
* then no mapping is done.
*/
parent = OF_parent(bridge);
while (parent != 0) {
OF_get_addr_props(parent, &nbridge, NULL, &pcib);
if (pcib)
*tag = &bs_le_tag;
res = OF_getencprop(bridge, "ranges", cell, sizeof(cell));
if (res == -1)
goto next;
if (res % sizeof(cell[0]))
return (ENXIO);
res /= sizeof(cell[0]);
regno = 0;
while (regno < res) {
rspc = (pci)
? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK
: ~0;
if (rspc != spc) {
regno += naddr + nbridge + nsize;
continue;
}
raddr = 0;
for (c = 0; c < naddr; c++)
raddr = ((uint64_t)raddr << 32) | cell[regno++];
rspc = (pcib)
? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK
: ~0;
baddr = 0;
for (c = 0; c < nbridge; c++)
baddr = ((uint64_t)baddr << 32) | cell[regno++];
rsize = 0;
for (c = 0; c < nsize; c++)
rsize = ((uint64_t)rsize << 32) | cell[regno++];
if (addr < raddr || addr >= raddr + rsize)
continue;
addr = addr - raddr + baddr;
if (rspc != ~0)
spc = rspc;
}
next:
bridge = parent;
parent = OF_parent(bridge);
OF_get_addr_props(bridge, &naddr, &nsize, &pci);
}
return (bus_space_map(*tag, addr, size,
prefetch ? BUS_SPACE_MAP_PREFETCHABLE : 0, handle));
}