peter 6c648dd642 Introduce svnlite so that we can check out our source code again.
This is actually a fully functional build except:
* All internal shared libraries are static linked to make sure there
  is no interference with ports (and to reduce build time).
* It does not have the python/perl/etc plugin or API support.
* By default, it installs as "svnlite" rather than "svn".
* If WITH_SVN added in make.conf, you get "svn".
* If WITHOUT_SVNLITE is in make.conf, this is completely disabled.

To be absolutely clear, this is not intended for any use other than
checking out freebsd source and committing, like we once did with cvs.

It should be usable for small scale local repositories that don't
need the python/perl plugin architecture.
2013-06-18 02:53:45 +00:00

405 lines
13 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This is derived from material copyright RSA Data Security, Inc.
* Their notice is reproduced below in its entirety.
*
* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
* rights reserved.
*
* License to copy and use this software is granted provided that it
* is identified as the "RSA Data Security, Inc. MD4 Message-Digest
* Algorithm" in all material mentioning or referencing this software
* or this function.
*
* License is also granted to make and use derivative works provided
* that such works are identified as "derived from the RSA Data
* Security, Inc. MD4 Message-Digest Algorithm" in all material
* mentioning or referencing the derived work.
*
* RSA Data Security, Inc. makes no representations concerning either
* the merchantability of this software or the suitability of this
* software for any particular purpose. It is provided "as is"
* without express or implied warranty of any kind.
*
* These notices must be retained in any copies of any part of this
* documentation and/or software.
*/
#include "apr_strings.h"
#include "apr_md4.h"
#include "apr_lib.h"
#if APR_HAVE_STRING_H
#include <string.h>
#endif
#if APR_HAVE_UNISTD_H
#include <unistd.h>
#endif
/* Constants for MD4Transform routine.
*/
#define S11 3
#define S12 7
#define S13 11
#define S14 19
#define S21 3
#define S22 5
#define S23 9
#define S24 13
#define S31 3
#define S32 9
#define S33 11
#define S34 15
static void MD4Transform(apr_uint32_t state[4], const unsigned char block[64]);
static void Encode(unsigned char *output, const apr_uint32_t *input,
unsigned int len);
static void Decode(apr_uint32_t *output, const unsigned char *input,
unsigned int len);
static unsigned char PADDING[64] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#if APR_CHARSET_EBCDIC
static apr_xlate_t *xlate_ebcdic_to_ascii; /* used in apr_md4_encode() */
#endif
/* F, G and I are basic MD4 functions.
*/
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
/* ROTATE_LEFT rotates x left n bits.
*/
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
/* FF, GG and HH are transformations for rounds 1, 2 and 3 */
/* Rotation is separate from addition to prevent recomputation */
#define FF(a, b, c, d, x, s) { \
(a) += F ((b), (c), (d)) + (x); \
(a) = ROTATE_LEFT ((a), (s)); \
}
#define GG(a, b, c, d, x, s) { \
(a) += G ((b), (c), (d)) + (x) + (apr_uint32_t)0x5a827999; \
(a) = ROTATE_LEFT ((a), (s)); \
}
#define HH(a, b, c, d, x, s) { \
(a) += H ((b), (c), (d)) + (x) + (apr_uint32_t)0x6ed9eba1; \
(a) = ROTATE_LEFT ((a), (s)); \
}
/* MD4 initialization. Begins an MD4 operation, writing a new context.
*/
APU_DECLARE(apr_status_t) apr_md4_init(apr_md4_ctx_t *context)
{
context->count[0] = context->count[1] = 0;
/* Load magic initialization constants. */
context->state[0] = 0x67452301;
context->state[1] = 0xefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;
#if APR_HAS_XLATE
context->xlate = NULL;
#endif
return APR_SUCCESS;
}
#if APR_HAS_XLATE
/* MD4 translation setup. Provides the APR translation handle
* to be used for translating the content before calculating the
* digest.
*/
APU_DECLARE(apr_status_t) apr_md4_set_xlate(apr_md4_ctx_t *context,
apr_xlate_t *xlate)
{
apr_status_t rv;
int is_sb;
/* TODO: remove the single-byte-only restriction from this code
*/
rv = apr_xlate_sb_get(xlate, &is_sb);
if (rv != APR_SUCCESS) {
return rv;
}
if (!is_sb) {
return APR_EINVAL;
}
context->xlate = xlate;
return APR_SUCCESS;
}
#endif /* APR_HAS_XLATE */
/* MD4 block update operation. Continues an MD4 message-digest
* operation, processing another message block, and updating the
* context.
*/
APU_DECLARE(apr_status_t) apr_md4_update(apr_md4_ctx_t *context,
const unsigned char *input,
apr_size_t inputLen)
{
unsigned int i, idx, partLen;
#if APR_HAS_XLATE
apr_size_t inbytes_left, outbytes_left;
#endif
/* Compute number of bytes mod 64 */
idx = (unsigned int)((context->count[0] >> 3) & 0x3F);
/* Update number of bits */
if ((context->count[0] += ((apr_uint32_t)inputLen << 3))
< ((apr_uint32_t)inputLen << 3))
context->count[1]++;
context->count[1] += (apr_uint32_t)inputLen >> 29;
partLen = 64 - idx;
/* Transform as many times as possible. */
#if !APR_HAS_XLATE
if (inputLen >= partLen) {
memcpy(&context->buffer[idx], input, partLen);
MD4Transform(context->state, context->buffer);
for (i = partLen; i + 63 < inputLen; i += 64)
MD4Transform(context->state, &input[i]);
idx = 0;
}
else
i = 0;
/* Buffer remaining input */
memcpy(&context->buffer[idx], &input[i], inputLen - i);
#else /*APR_HAS_XLATE*/
if (inputLen >= partLen) {
if (context->xlate) {
inbytes_left = outbytes_left = partLen;
apr_xlate_conv_buffer(context->xlate, (const char *)input,
&inbytes_left,
(char *)&context->buffer[idx],
&outbytes_left);
}
else {
memcpy(&context->buffer[idx], input, partLen);
}
MD4Transform(context->state, context->buffer);
for (i = partLen; i + 63 < inputLen; i += 64) {
if (context->xlate) {
unsigned char inp_tmp[64];
inbytes_left = outbytes_left = 64;
apr_xlate_conv_buffer(context->xlate, (const char *)&input[i],
&inbytes_left,
(char *)inp_tmp, &outbytes_left);
MD4Transform(context->state, inp_tmp);
}
else {
MD4Transform(context->state, &input[i]);
}
}
idx = 0;
}
else
i = 0;
/* Buffer remaining input */
if (context->xlate) {
inbytes_left = outbytes_left = inputLen - i;
apr_xlate_conv_buffer(context->xlate, (const char *)&input[i],
&inbytes_left, (char *)&context->buffer[idx],
&outbytes_left);
}
else {
memcpy(&context->buffer[idx], &input[i], inputLen - i);
}
#endif /*APR_HAS_XLATE*/
return APR_SUCCESS;
}
/* MD4 finalization. Ends an MD4 message-digest operation, writing the
* the message digest and zeroizing the context.
*/
APU_DECLARE(apr_status_t) apr_md4_final(
unsigned char digest[APR_MD4_DIGESTSIZE],
apr_md4_ctx_t *context)
{
unsigned char bits[8];
unsigned int idx, padLen;
/* Save number of bits */
Encode(bits, context->count, 8);
#if APR_HAS_XLATE
/* apr_md4_update() should not translate for this final round. */
context->xlate = NULL;
#endif /*APR_HAS_XLATE*/
/* Pad out to 56 mod 64. */
idx = (unsigned int) ((context->count[0] >> 3) & 0x3f);
padLen = (idx < 56) ? (56 - idx) : (120 - idx);
apr_md4_update(context, PADDING, padLen);
/* Append length (before padding) */
apr_md4_update(context, bits, 8);
/* Store state in digest */
Encode(digest, context->state, APR_MD4_DIGESTSIZE);
/* Zeroize sensitive information. */
memset(context, 0, sizeof(*context));
return APR_SUCCESS;
}
/* MD4 computation in one step (init, update, final)
*/
APU_DECLARE(apr_status_t) apr_md4(unsigned char digest[APR_MD4_DIGESTSIZE],
const unsigned char *input,
apr_size_t inputLen)
{
apr_md4_ctx_t ctx;
apr_status_t rv;
apr_md4_init(&ctx);
if ((rv = apr_md4_update(&ctx, input, inputLen)) != APR_SUCCESS)
return rv;
return apr_md4_final(digest, &ctx);
}
/* MD4 basic transformation. Transforms state based on block. */
static void MD4Transform(apr_uint32_t state[4], const unsigned char block[64])
{
apr_uint32_t a = state[0], b = state[1], c = state[2], d = state[3],
x[APR_MD4_DIGESTSIZE];
Decode(x, block, 64);
/* Round 1 */
FF (a, b, c, d, x[ 0], S11); /* 1 */
FF (d, a, b, c, x[ 1], S12); /* 2 */
FF (c, d, a, b, x[ 2], S13); /* 3 */
FF (b, c, d, a, x[ 3], S14); /* 4 */
FF (a, b, c, d, x[ 4], S11); /* 5 */
FF (d, a, b, c, x[ 5], S12); /* 6 */
FF (c, d, a, b, x[ 6], S13); /* 7 */
FF (b, c, d, a, x[ 7], S14); /* 8 */
FF (a, b, c, d, x[ 8], S11); /* 9 */
FF (d, a, b, c, x[ 9], S12); /* 10 */
FF (c, d, a, b, x[10], S13); /* 11 */
FF (b, c, d, a, x[11], S14); /* 12 */
FF (a, b, c, d, x[12], S11); /* 13 */
FF (d, a, b, c, x[13], S12); /* 14 */
FF (c, d, a, b, x[14], S13); /* 15 */
FF (b, c, d, a, x[15], S14); /* 16 */
/* Round 2 */
GG (a, b, c, d, x[ 0], S21); /* 17 */
GG (d, a, b, c, x[ 4], S22); /* 18 */
GG (c, d, a, b, x[ 8], S23); /* 19 */
GG (b, c, d, a, x[12], S24); /* 20 */
GG (a, b, c, d, x[ 1], S21); /* 21 */
GG (d, a, b, c, x[ 5], S22); /* 22 */
GG (c, d, a, b, x[ 9], S23); /* 23 */
GG (b, c, d, a, x[13], S24); /* 24 */
GG (a, b, c, d, x[ 2], S21); /* 25 */
GG (d, a, b, c, x[ 6], S22); /* 26 */
GG (c, d, a, b, x[10], S23); /* 27 */
GG (b, c, d, a, x[14], S24); /* 28 */
GG (a, b, c, d, x[ 3], S21); /* 29 */
GG (d, a, b, c, x[ 7], S22); /* 30 */
GG (c, d, a, b, x[11], S23); /* 31 */
GG (b, c, d, a, x[15], S24); /* 32 */
/* Round 3 */
HH (a, b, c, d, x[ 0], S31); /* 33 */
HH (d, a, b, c, x[ 8], S32); /* 34 */
HH (c, d, a, b, x[ 4], S33); /* 35 */
HH (b, c, d, a, x[12], S34); /* 36 */
HH (a, b, c, d, x[ 2], S31); /* 37 */
HH (d, a, b, c, x[10], S32); /* 38 */
HH (c, d, a, b, x[ 6], S33); /* 39 */
HH (b, c, d, a, x[14], S34); /* 40 */
HH (a, b, c, d, x[ 1], S31); /* 41 */
HH (d, a, b, c, x[ 9], S32); /* 42 */
HH (c, d, a, b, x[ 5], S33); /* 43 */
HH (b, c, d, a, x[13], S34); /* 44 */
HH (a, b, c, d, x[ 3], S31); /* 45 */
HH (d, a, b, c, x[11], S32); /* 46 */
HH (c, d, a, b, x[ 7], S33); /* 47 */
HH (b, c, d, a, x[15], S34); /* 48 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
/* Zeroize sensitive information. */
memset(x, 0, sizeof(x));
}
/* Encodes input (apr_uint32_t) into output (unsigned char). Assumes len is
* a multiple of 4.
*/
static void Encode(unsigned char *output, const apr_uint32_t *input,
unsigned int len)
{
unsigned int i, j;
apr_uint32_t k;
for (i = 0, j = 0; j < len; i++, j += 4) {
k = input[i];
output[j] = (unsigned char)(k & 0xff);
output[j + 1] = (unsigned char)((k >> 8) & 0xff);
output[j + 2] = (unsigned char)((k >> 16) & 0xff);
output[j + 3] = (unsigned char)((k >> 24) & 0xff);
}
}
/* Decodes input (unsigned char) into output (apr_uint32_t). Assumes len is
* a multiple of 4.
*/
static void Decode(apr_uint32_t *output, const unsigned char *input,
unsigned int len)
{
unsigned int i, j;
for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = ((apr_uint32_t)input[j]) |
(((apr_uint32_t)input[j + 1]) << 8) |
(((apr_uint32_t)input[j + 2]) << 16) |
(((apr_uint32_t)input[j + 3]) << 24);
}
#if APR_CHARSET_EBCDIC
APU_DECLARE(apr_status_t) apr_MD4InitEBCDIC(apr_xlate_t *xlate)
{
xlate_ebcdic_to_ascii = xlate;
return APR_SUCCESS;
}
#endif