freebsd-skq/sys/vm/sg_pager.c
Attilio Rao 89f6b8632c Switch the vm_object mutex to be a rwlock. This will enable in the
future further optimizations where the vm_object lock will be held
in read mode most of the time the page cache resident pool of pages
are accessed for reading purposes.

The change is mostly mechanical but few notes are reported:
* The KPI changes as follow:
  - VM_OBJECT_LOCK() -> VM_OBJECT_WLOCK()
  - VM_OBJECT_TRYLOCK() -> VM_OBJECT_TRYWLOCK()
  - VM_OBJECT_UNLOCK() -> VM_OBJECT_WUNLOCK()
  - VM_OBJECT_LOCK_ASSERT(MA_OWNED) -> VM_OBJECT_ASSERT_WLOCKED()
    (in order to avoid visibility of implementation details)
  - The read-mode operations are added:
    VM_OBJECT_RLOCK(), VM_OBJECT_TRYRLOCK(), VM_OBJECT_RUNLOCK(),
    VM_OBJECT_ASSERT_RLOCKED(), VM_OBJECT_ASSERT_LOCKED()
* The vm/vm_pager.h namespace pollution avoidance (forcing requiring
  sys/mutex.h in consumers directly to cater its inlining functions
  using VM_OBJECT_LOCK()) imposes that all the vm/vm_pager.h
  consumers now must include also sys/rwlock.h.
* zfs requires a quite convoluted fix to include FreeBSD rwlocks into
  the compat layer because the name clash between FreeBSD and solaris
  versions must be avoided.
  At this purpose zfs redefines the vm_object locking functions
  directly, isolating the FreeBSD components in specific compat stubs.

The KPI results heavilly broken by this commit.  Thirdy part ports must
be updated accordingly (I can think off-hand of VirtualBox, for example).

Sponsored by:	EMC / Isilon storage division
Reviewed by:	jeff
Reviewed by:	pjd (ZFS specific review)
Discussed with:	alc
Tested by:	pho
2013-03-09 02:32:23 +00:00

219 lines
6.1 KiB
C

/*-
* Copyright (c) 2009 Advanced Computing Technologies LLC
* Written by: John H. Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* This pager manages OBJT_SG objects. These objects are backed by
* a scatter/gather list of physical address ranges.
*/
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <sys/sglist.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_phys.h>
#include <vm/uma.h>
static vm_object_t sg_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
vm_ooffset_t, struct ucred *);
static void sg_pager_dealloc(vm_object_t);
static int sg_pager_getpages(vm_object_t, vm_page_t *, int, int);
static void sg_pager_putpages(vm_object_t, vm_page_t *, int,
boolean_t, int *);
static boolean_t sg_pager_haspage(vm_object_t, vm_pindex_t, int *,
int *);
struct pagerops sgpagerops = {
.pgo_alloc = sg_pager_alloc,
.pgo_dealloc = sg_pager_dealloc,
.pgo_getpages = sg_pager_getpages,
.pgo_putpages = sg_pager_putpages,
.pgo_haspage = sg_pager_haspage,
};
static vm_object_t
sg_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
vm_ooffset_t foff, struct ucred *cred)
{
struct sglist *sg;
vm_object_t object;
vm_pindex_t npages, pindex;
int i;
/*
* Offset should be page aligned.
*/
if (foff & PAGE_MASK)
return (NULL);
/*
* The scatter/gather list must only include page-aligned
* ranges.
*/
npages = 0;
sg = handle;
for (i = 0; i < sg->sg_nseg; i++) {
if ((sg->sg_segs[i].ss_paddr % PAGE_SIZE) != 0 ||
(sg->sg_segs[i].ss_len % PAGE_SIZE) != 0)
return (NULL);
npages += sg->sg_segs[i].ss_len / PAGE_SIZE;
}
/*
* The scatter/gather list has a fixed size. Refuse requests
* to map beyond that.
*/
size = round_page(size);
pindex = OFF_TO_IDX(foff + size);
if (pindex > npages)
return (NULL);
/*
* Allocate a new object and associate it with the
* scatter/gather list. It is ok for our purposes to have
* multiple VM objects associated with the same scatter/gather
* list because scatter/gather lists are static. This is also
* simpler than ensuring a unique object per scatter/gather
* list.
*/
object = vm_object_allocate(OBJT_SG, npages);
object->handle = sglist_hold(sg);
TAILQ_INIT(&object->un_pager.sgp.sgp_pglist);
return (object);
}
static void
sg_pager_dealloc(vm_object_t object)
{
struct sglist *sg;
vm_page_t m;
/*
* Free up our fake pages.
*/
while ((m = TAILQ_FIRST(&object->un_pager.sgp.sgp_pglist)) != 0) {
TAILQ_REMOVE(&object->un_pager.sgp.sgp_pglist, m, pageq);
vm_page_putfake(m);
}
sg = object->handle;
sglist_free(sg);
}
static int
sg_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
{
struct sglist *sg;
vm_page_t m_paddr, page;
vm_pindex_t offset;
vm_paddr_t paddr;
vm_memattr_t memattr;
size_t space;
int i;
VM_OBJECT_ASSERT_WLOCKED(object);
sg = object->handle;
memattr = object->memattr;
VM_OBJECT_WUNLOCK(object);
offset = m[reqpage]->pindex;
/*
* Lookup the physical address of the requested page. An initial
* value of '1' instead of '0' is used so we can assert that the
* page is found since '0' can be a valid page-aligned physical
* address.
*/
space = 0;
paddr = 1;
for (i = 0; i < sg->sg_nseg; i++) {
if (space + sg->sg_segs[i].ss_len <= (offset * PAGE_SIZE)) {
space += sg->sg_segs[i].ss_len;
continue;
}
paddr = sg->sg_segs[i].ss_paddr + offset * PAGE_SIZE - space;
break;
}
KASSERT(paddr != 1, ("invalid SG page index"));
/* If "paddr" is a real page, perform a sanity check on "memattr". */
if ((m_paddr = vm_phys_paddr_to_vm_page(paddr)) != NULL &&
pmap_page_get_memattr(m_paddr) != memattr) {
memattr = pmap_page_get_memattr(m_paddr);
printf(
"WARNING: A device driver has set \"memattr\" inconsistently.\n");
}
/* Return a fake page for the requested page. */
KASSERT(!(m[reqpage]->flags & PG_FICTITIOUS),
("backing page for SG is fake"));
/* Construct a new fake page. */
page = vm_page_getfake(paddr, memattr);
VM_OBJECT_WLOCK(object);
TAILQ_INSERT_TAIL(&object->un_pager.sgp.sgp_pglist, page, pageq);
/* Free the original pages and insert this fake page into the object. */
for (i = 0; i < count; i++) {
vm_page_lock(m[i]);
vm_page_free(m[i]);
vm_page_unlock(m[i]);
}
vm_page_insert(page, object, offset);
m[reqpage] = page;
page->valid = VM_PAGE_BITS_ALL;
return (VM_PAGER_OK);
}
static void
sg_pager_putpages(vm_object_t object, vm_page_t *m, int count,
boolean_t sync, int *rtvals)
{
panic("sg_pager_putpage called");
}
static boolean_t
sg_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
int *after)
{
if (before != NULL)
*before = 0;
if (after != NULL)
*after = 0;
return (TRUE);
}