315 lines
8.5 KiB
C
315 lines
8.5 KiB
C
/*
|
|
* modified for Lites 1.1
|
|
*
|
|
* Aug 1995, Godmar Back (gback@cs.utah.edu)
|
|
* University of Utah, Department of Computer Science
|
|
*/
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ffs_balloc.c 8.4 (Berkeley) 9/23/93
|
|
*/
|
|
|
|
#include "opt_diagnostic.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <ufs/ufs/quota.h>
|
|
#include <ufs/ufs/inode.h>
|
|
#include <ufs/ufs/ufs_extern.h>
|
|
|
|
#include <gnu/ext2fs/ext2_fs.h>
|
|
#include <gnu/ext2fs/ext2_fs_sb.h>
|
|
#include <gnu/ext2fs/fs.h>
|
|
#include <gnu/ext2fs/ext2_extern.h>
|
|
|
|
/*
|
|
* Balloc defines the structure of file system storage
|
|
* by allocating the physical blocks on a device given
|
|
* the inode and the logical block number in a file.
|
|
*/
|
|
int
|
|
ext2_balloc(ip, bn, size, cred, bpp, flags)
|
|
register struct inode *ip;
|
|
register daddr_t bn;
|
|
int size;
|
|
struct ucred *cred;
|
|
struct buf **bpp;
|
|
int flags;
|
|
{
|
|
register struct ext2_sb_info *fs;
|
|
register daddr_t nb;
|
|
struct buf *bp, *nbp;
|
|
struct vnode *vp = ITOV(ip);
|
|
struct indir indirs[NIADDR + 2];
|
|
daddr_t newb, lbn, *bap, pref;
|
|
int osize, nsize, num, i, error;
|
|
/*
|
|
ext2_debug("ext2_balloc called (%d, %d, %d)\n",
|
|
ip->i_number, (int)bn, (int)size);
|
|
*/
|
|
*bpp = NULL;
|
|
if (bn < 0)
|
|
return (EFBIG);
|
|
fs = ip->i_e2fs;
|
|
lbn = bn;
|
|
|
|
/*
|
|
* check if this is a sequential block allocation.
|
|
* If so, increment next_alloc fields to allow ext2_blkpref
|
|
* to make a good guess
|
|
*/
|
|
if (lbn == ip->i_next_alloc_block + 1) {
|
|
ip->i_next_alloc_block++;
|
|
ip->i_next_alloc_goal++;
|
|
}
|
|
|
|
/*
|
|
* The first NDADDR blocks are direct blocks
|
|
*/
|
|
if (bn < NDADDR) {
|
|
nb = ip->i_db[bn];
|
|
/* no new block is to be allocated, and no need to expand
|
|
the file */
|
|
if (nb != 0 && ip->i_size >= (bn + 1) * fs->s_blocksize) {
|
|
error = bread(vp, bn, fs->s_blocksize, NOCRED, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
return (error);
|
|
}
|
|
*bpp = bp;
|
|
return (0);
|
|
}
|
|
if (nb != 0) {
|
|
/*
|
|
* Consider need to reallocate a fragment.
|
|
*/
|
|
osize = fragroundup(fs, blkoff(fs, ip->i_size));
|
|
nsize = fragroundup(fs, size);
|
|
if (nsize <= osize) {
|
|
error = bread(vp, bn, osize, NOCRED, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
return (error);
|
|
}
|
|
} else {
|
|
/* Godmar thinks: this shouldn't happen w/o fragments */
|
|
printf("nsize %d(%d) > osize %d(%d) nb %d\n",
|
|
(int)nsize, (int)size, (int)osize,
|
|
(int)ip->i_size, (int)nb);
|
|
panic(
|
|
"ext2_balloc: Something is terribly wrong");
|
|
/*
|
|
* please note there haven't been any changes from here on -
|
|
* FFS seems to work.
|
|
*/
|
|
}
|
|
} else {
|
|
if (ip->i_size < (bn + 1) * fs->s_blocksize)
|
|
nsize = fragroundup(fs, size);
|
|
else
|
|
nsize = fs->s_blocksize;
|
|
error = ext2_alloc(ip, bn,
|
|
ext2_blkpref(ip, bn, (int)bn, &ip->i_db[0], 0),
|
|
nsize, cred, &newb);
|
|
if (error)
|
|
return (error);
|
|
bp = getblk(vp, bn, nsize, 0, 0);
|
|
bp->b_blkno = fsbtodb(fs, newb);
|
|
if (flags & B_CLRBUF)
|
|
vfs_bio_clrbuf(bp);
|
|
}
|
|
ip->i_db[bn] = dbtofsb(fs, bp->b_blkno);
|
|
ip->i_flag |= IN_CHANGE | IN_UPDATE;
|
|
*bpp = bp;
|
|
return (0);
|
|
}
|
|
/*
|
|
* Determine the number of levels of indirection.
|
|
*/
|
|
pref = 0;
|
|
if (error = ufs_getlbns(vp, bn, indirs, &num))
|
|
return(error);
|
|
#if DIAGNOSTIC
|
|
if (num < 1)
|
|
panic ("ext2_balloc: ufs_bmaparray returned indirect block");
|
|
#endif
|
|
/*
|
|
* Fetch the first indirect block allocating if necessary.
|
|
*/
|
|
--num;
|
|
nb = ip->i_ib[indirs[0].in_off];
|
|
if (nb == 0) {
|
|
#if 0
|
|
pref = ext2_blkpref(ip, lbn, 0, (daddr_t *)0, 0);
|
|
#else
|
|
/* see the comment by ext2_blkpref. What we do here is
|
|
to pretend that it'd be good for a block holding indirect
|
|
pointers to be allocated near its predecessor in terms
|
|
of indirection, or the last direct block.
|
|
We shamelessly exploit the fact that i_ib immediately
|
|
follows i_db.
|
|
Godmar thinks it make sense to allocate i_ib[0] immediately
|
|
after i_db[11], but it's not utterly clear whether this also
|
|
applies to i_ib[1] and i_ib[0]
|
|
*/
|
|
|
|
pref = ext2_blkpref(ip, lbn, indirs[0].in_off +
|
|
EXT2_NDIR_BLOCKS, &ip->i_db[0], 0);
|
|
#endif
|
|
if (error = ext2_alloc(ip, lbn, pref, (int)fs->s_blocksize,
|
|
cred, &newb))
|
|
return (error);
|
|
nb = newb;
|
|
bp = getblk(vp, indirs[1].in_lbn, fs->s_blocksize, 0, 0);
|
|
bp->b_blkno = fsbtodb(fs, newb);
|
|
vfs_bio_clrbuf(bp);
|
|
/*
|
|
* Write synchronously so that indirect blocks
|
|
* never point at garbage.
|
|
*/
|
|
if (error = bwrite(bp)) {
|
|
ext2_blkfree(ip, nb, fs->s_blocksize);
|
|
return (error);
|
|
}
|
|
ip->i_ib[indirs[0].in_off] = newb;
|
|
ip->i_flag |= IN_CHANGE | IN_UPDATE;
|
|
}
|
|
/*
|
|
* Fetch through the indirect blocks, allocating as necessary.
|
|
*/
|
|
for (i = 1;;) {
|
|
error = bread(vp,
|
|
indirs[i].in_lbn, (int)fs->s_blocksize, NOCRED, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
return (error);
|
|
}
|
|
bap = (daddr_t *)bp->b_data;
|
|
nb = bap[indirs[i].in_off];
|
|
if (i == num)
|
|
break;
|
|
i += 1;
|
|
if (nb != 0) {
|
|
brelse(bp);
|
|
continue;
|
|
}
|
|
if (pref == 0)
|
|
#if 1
|
|
/* see the comment above and by ext2_blkpref
|
|
* I think this implements Linux policy, but
|
|
* does it really make sense to allocate to
|
|
* block containing pointers together ?
|
|
* Also, will it ever succeed ?
|
|
*/
|
|
pref = ext2_blkpref(ip, lbn, indirs[i].in_off, bap,
|
|
bp->b_lblkno);
|
|
#else
|
|
pref = ext2_blkpref(ip, lbn, 0, (daddr_t *)0, 0);
|
|
#endif
|
|
if (error =
|
|
ext2_alloc(ip, lbn, pref, (int)fs->s_blocksize, cred, &newb)) {
|
|
brelse(bp);
|
|
return (error);
|
|
}
|
|
nb = newb;
|
|
nbp = getblk(vp, indirs[i].in_lbn, fs->s_blocksize, 0, 0);
|
|
nbp->b_blkno = fsbtodb(fs, nb);
|
|
vfs_bio_clrbuf(nbp);
|
|
/*
|
|
* Write synchronously so that indirect blocks
|
|
* never point at garbage.
|
|
*/
|
|
if (error = bwrite(nbp)) {
|
|
ext2_blkfree(ip, nb, fs->s_blocksize);
|
|
brelse(bp);
|
|
return (error);
|
|
}
|
|
bap[indirs[i - 1].in_off] = nb;
|
|
/*
|
|
* If required, write synchronously, otherwise use
|
|
* delayed write.
|
|
*/
|
|
if (flags & B_SYNC) {
|
|
bwrite(bp);
|
|
} else {
|
|
bdwrite(bp);
|
|
}
|
|
}
|
|
/*
|
|
* Get the data block, allocating if necessary.
|
|
*/
|
|
if (nb == 0) {
|
|
pref = ext2_blkpref(ip, lbn, indirs[i].in_off, &bap[0],
|
|
bp->b_lblkno);
|
|
if (error = ext2_alloc(ip,
|
|
lbn, pref, (int)fs->s_blocksize, cred, &newb)) {
|
|
brelse(bp);
|
|
return (error);
|
|
}
|
|
nb = newb;
|
|
nbp = getblk(vp, lbn, fs->s_blocksize, 0, 0);
|
|
nbp->b_blkno = fsbtodb(fs, nb);
|
|
if (flags & B_CLRBUF)
|
|
vfs_bio_clrbuf(nbp);
|
|
bap[indirs[i].in_off] = nb;
|
|
/*
|
|
* If required, write synchronously, otherwise use
|
|
* delayed write.
|
|
*/
|
|
if (flags & B_SYNC) {
|
|
bwrite(bp);
|
|
} else {
|
|
bdwrite(bp);
|
|
}
|
|
*bpp = nbp;
|
|
return (0);
|
|
}
|
|
brelse(bp);
|
|
if (flags & B_CLRBUF) {
|
|
error = bread(vp, lbn, (int)fs->s_blocksize, NOCRED, &nbp);
|
|
if (error) {
|
|
brelse(nbp);
|
|
return (error);
|
|
}
|
|
} else {
|
|
nbp = getblk(vp, lbn, fs->s_blocksize, 0, 0);
|
|
nbp->b_blkno = fsbtodb(fs, nb);
|
|
}
|
|
*bpp = nbp;
|
|
return (0);
|
|
}
|