3cd35a2051
o Add CTASSERTs ensuring that HME_NRXDESC and HME_NTXDESC are set to legal values. o Use appropriate maxsize, nsegments and maxsegsize parameters when creating DMA tags and correct some comments related to them. o The FreeBSD bus_dmamap_sync(9) supports ored together flags for quite some time now so collapse calls accordingly. o Add missing BUS_DMASYNC_PREREAD when syncing the control DMA maps in hme_rint() and hme_start_locked(). o Keep state of the link state and use it to enable or disable the MAC in hme_mii_statchg() accordingly as well as to return early from hme_start_locked() in case the link is down. o Introduce a sc_flags and use it to replace individual members like sc_pci. o Add bus_barrier(9) calls to hme_mac_bitflip(), hme_mii_readreg(), hme_mii_writereg() and hme_stop() to ensure the respective bit has been written before we starting polling on it and for the right bits to change. o Rather just returning in case hme_mac_bitflip() fails and leaving us in an undefined state report the problem and move on; chances are the requested configuration will become active shortly after. o Don't call hme_start_locked() in hme_init_locked() unconditionally but only after calls to hme_init_locked() when it's appropriate, i.e. in hme_watchdog(). o Add a KASSERT which asserts nsegs is valid also to hme_load_txmbuf(). o In hme_load_txmbuf(): - use a maximum of the newly introduced HME_NTXSEGS segments instead of the incorrect HME_NTXQ, which reflects the maximum TX queue length, for loading the mbufs and put the DMA segments back onto the stack instead of the softc as 16 should be ok there. - use the common errno(2) return values instead of homegrown ones, - given that hme_load_txmbuf() is allowed to fail resulting in a packet drop for quite some time now implement the functionality of hme_txcksum() by means of m_pullup(9), which de-obfuscates the code and allows to always retrieve the correct length of the IP header, [1] - also add a KASSERT which asserts nsegs is valid, - take advantage of m_collapse(9) instead of m_defrag(9) for performance reasons. o Don't bother to check whether the interface is running or whether its queue is empty before calling hme_start_locked() in hme_tint(), the former will check these anyway. o In hme_intr() call hme_rint() before hme_tint() as gem_tint() may take quite a while to return when it calls hme_start_locked(). o Get rid of sc_debug and just check if_flags for IFF_DEBUG directly. o Add a shadow sc_ifflags so we don't reset the chip when unnecessary. o Handle IFF_ALLMULTI correctly. [2] o Use PCIR_BAR instead of a homegrown macro. o Replace sc_enaddr[6] with sc_enaddr[ETHER_ADDR_LEN]. o Use the maximum of 256 TX descriptors for better performance as using all of them has no additional static cost rather than using just half of them. Reported by: rwatson [2] Suggested by: yongari [1] Reviewed by: yongari MFC after: 1 month
1739 lines
48 KiB
C
1739 lines
48 KiB
C
/*-
|
|
* Copyright (c) 1999 The NetBSD Foundation, Inc.
|
|
* Copyright (c) 2001-2003 Thomas Moestl <tmm@FreeBSD.org>.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Paul Kranenburg.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* from: NetBSD: hme.c,v 1.45 2005/02/18 00:22:11 heas Exp
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* HME Ethernet module driver.
|
|
*
|
|
* The HME is e.g. part of the PCIO PCI multi function device.
|
|
* It supports TX gathering and TX and RX checksum offloading.
|
|
* RX buffers must be aligned at a programmable offset modulo 16. We choose 2
|
|
* for this offset: mbuf clusters are usually on about 2^11 boundaries, 2 bytes
|
|
* are skipped to make sure the header after the ethernet header is aligned on a
|
|
* natural boundary, so this ensures minimal wastage in the most common case.
|
|
*
|
|
* Also, apparently, the buffers must extend to a DMA burst boundary beyond the
|
|
* maximum packet size (this is not verified). Buffers starting on odd
|
|
* boundaries must be mapped so that the burst can start on a natural boundary.
|
|
*
|
|
* STP2002QFP-UG says that Ethernet hardware supports TCP checksum offloading.
|
|
* In reality, we can do the same technique for UDP datagram too. However,
|
|
* the hardware doesn't compensate the checksum for UDP datagram which can yield
|
|
* to 0x0. As a safe guard, UDP checksum offload is disabled by default. It
|
|
* can be reactivated by setting special link option link0 with ifconfig(8).
|
|
*/
|
|
#define HME_CSUM_FEATURES (CSUM_TCP)
|
|
#if 0
|
|
#define HMEDEBUG
|
|
#endif
|
|
#define KTR_HME KTR_CT2 /* XXX */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/hme/if_hmereg.h>
|
|
#include <dev/hme/if_hmevar.h>
|
|
|
|
CTASSERT(powerof2(HME_NRXDESC) && HME_NRXDESC >= 32 && HME_NRXDESC <= 256);
|
|
CTASSERT(HME_NTXDESC % 16 == 0 && HME_NTXDESC >= 16 && HME_NTXDESC <= 256);
|
|
|
|
static void hme_start(struct ifnet *);
|
|
static void hme_start_locked(struct ifnet *);
|
|
static void hme_stop(struct hme_softc *);
|
|
static int hme_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void hme_tick(void *);
|
|
static int hme_watchdog(struct hme_softc *);
|
|
static void hme_init(void *);
|
|
static void hme_init_locked(struct hme_softc *);
|
|
static int hme_add_rxbuf(struct hme_softc *, unsigned int, int);
|
|
static int hme_meminit(struct hme_softc *);
|
|
static int hme_mac_bitflip(struct hme_softc *, u_int32_t, u_int32_t,
|
|
u_int32_t, u_int32_t);
|
|
static void hme_mifinit(struct hme_softc *);
|
|
static void hme_setladrf(struct hme_softc *, int);
|
|
|
|
static int hme_mediachange(struct ifnet *);
|
|
static int hme_mediachange_locked(struct hme_softc *);
|
|
static void hme_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
static int hme_load_txmbuf(struct hme_softc *, struct mbuf **);
|
|
static void hme_read(struct hme_softc *, int, int, u_int32_t);
|
|
static void hme_eint(struct hme_softc *, u_int);
|
|
static void hme_rint(struct hme_softc *);
|
|
static void hme_tint(struct hme_softc *);
|
|
static void hme_rxcksum(struct mbuf *, u_int32_t);
|
|
|
|
static void hme_cdma_callback(void *, bus_dma_segment_t *, int, int);
|
|
|
|
devclass_t hme_devclass;
|
|
|
|
static int hme_nerr;
|
|
|
|
DRIVER_MODULE(miibus, hme, miibus_driver, miibus_devclass, 0, 0);
|
|
MODULE_DEPEND(hme, miibus, 1, 1, 1);
|
|
|
|
#define HME_SPC_READ_4(spc, sc, offs) \
|
|
bus_space_read_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
|
|
(offs))
|
|
#define HME_SPC_WRITE_4(spc, sc, offs, v) \
|
|
bus_space_write_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
|
|
(offs), (v))
|
|
#define HME_SPC_BARRIER(spc, sc, offs, l, f) \
|
|
bus_space_barrier((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
|
|
(offs), (l), (f))
|
|
|
|
#define HME_SEB_READ_4(sc, offs) HME_SPC_READ_4(seb, (sc), (offs))
|
|
#define HME_SEB_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(seb, (sc), (offs), (v))
|
|
#define HME_SEB_BARRIER(sc, offs, l, f) \
|
|
HME_SPC_BARRIER(seb, (sc), (offs), (l), (f))
|
|
#define HME_ERX_READ_4(sc, offs) HME_SPC_READ_4(erx, (sc), (offs))
|
|
#define HME_ERX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(erx, (sc), (offs), (v))
|
|
#define HME_ERX_BARRIER(sc, offs, l, f) \
|
|
HME_SPC_BARRIER(erx, (sc), (offs), (l), (f))
|
|
#define HME_ETX_READ_4(sc, offs) HME_SPC_READ_4(etx, (sc), (offs))
|
|
#define HME_ETX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(etx, (sc), (offs), (v))
|
|
#define HME_ETX_BARRIER(sc, offs, l, f) \
|
|
HME_SPC_BARRIER(etx, (sc), (offs), (l), (f))
|
|
#define HME_MAC_READ_4(sc, offs) HME_SPC_READ_4(mac, (sc), (offs))
|
|
#define HME_MAC_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mac, (sc), (offs), (v))
|
|
#define HME_MAC_BARRIER(sc, offs, l, f) \
|
|
HME_SPC_BARRIER(mac, (sc), (offs), (l), (f))
|
|
#define HME_MIF_READ_4(sc, offs) HME_SPC_READ_4(mif, (sc), (offs))
|
|
#define HME_MIF_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mif, (sc), (offs), (v))
|
|
#define HME_MIF_BARRIER(sc, offs, l, f) \
|
|
HME_SPC_BARRIER(mif, (sc), (offs), (l), (f))
|
|
|
|
#define HME_MAXERR 5
|
|
#define HME_WHINE(dev, ...) do { \
|
|
if (hme_nerr++ < HME_MAXERR) \
|
|
device_printf(dev, __VA_ARGS__); \
|
|
if (hme_nerr == HME_MAXERR) { \
|
|
device_printf(dev, "too many errors; not reporting " \
|
|
"any more\n"); \
|
|
} \
|
|
} while(0)
|
|
|
|
/* Support oversized VLAN frames. */
|
|
#define HME_MAX_FRAMESIZE (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)
|
|
|
|
int
|
|
hme_config(struct hme_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mii_softc *child;
|
|
bus_size_t size;
|
|
int error, rdesc, tdesc, i;
|
|
|
|
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL)
|
|
return (ENOSPC);
|
|
|
|
/*
|
|
* HME common initialization.
|
|
*
|
|
* hme_softc fields that must be initialized by the front-end:
|
|
*
|
|
* the DMA bus tag:
|
|
* sc_dmatag
|
|
*
|
|
* the bus handles, tags and offsets (splitted for SBus compatability):
|
|
* sc_seb{t,h,o} (Shared Ethernet Block registers)
|
|
* sc_erx{t,h,o} (Receiver Unit registers)
|
|
* sc_etx{t,h,o} (Transmitter Unit registers)
|
|
* sc_mac{t,h,o} (MAC registers)
|
|
* sc_mif{t,h,o} (Management Interface registers)
|
|
*
|
|
* the maximum bus burst size:
|
|
* sc_burst
|
|
*
|
|
*/
|
|
|
|
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_lock, 0);
|
|
|
|
/* Make sure the chip is stopped. */
|
|
HME_LOCK(sc);
|
|
hme_stop(sc);
|
|
HME_UNLOCK(sc);
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
|
|
NULL, NULL, &sc->sc_pdmatag);
|
|
if (error)
|
|
goto fail_ifnet;
|
|
|
|
/*
|
|
* Create control, RX and TX mbuf DMA tags.
|
|
* Buffer descriptors must be aligned on a 2048 byte boundary;
|
|
* take this into account when calculating the size. Note that
|
|
* the maximum number of descriptors (256) occupies 2048 bytes,
|
|
* so we allocate that much regardless of HME_N*DESC.
|
|
*/
|
|
size = 4096;
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, 2048, 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
|
|
1, size, 0, busdma_lock_mutex, &sc->sc_lock, &sc->sc_cdmatag);
|
|
if (error)
|
|
goto fail_ptag;
|
|
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
|
|
1, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_rdmatag);
|
|
if (error)
|
|
goto fail_ctag;
|
|
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
MCLBYTES * HME_NTXSEGS, HME_NTXSEGS, MCLBYTES, BUS_DMA_ALLOCNOW,
|
|
NULL, NULL, &sc->sc_tdmatag);
|
|
if (error)
|
|
goto fail_rtag;
|
|
|
|
/* Allocate the control DMA buffer. */
|
|
error = bus_dmamem_alloc(sc->sc_cdmatag, (void **)&sc->sc_rb.rb_membase,
|
|
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "DMA buffer alloc error %d\n", error);
|
|
goto fail_ttag;
|
|
}
|
|
|
|
/* Load the control DMA buffer. */
|
|
sc->sc_rb.rb_dmabase = 0;
|
|
if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cdmamap,
|
|
sc->sc_rb.rb_membase, size, hme_cdma_callback, sc, 0)) != 0 ||
|
|
sc->sc_rb.rb_dmabase == 0) {
|
|
device_printf(sc->sc_dev, "DMA buffer map load error %d\n",
|
|
error);
|
|
goto fail_free;
|
|
}
|
|
CTR2(KTR_HME, "hme_config: dma va %p, pa %#lx", sc->sc_rb.rb_membase,
|
|
sc->sc_rb.rb_dmabase);
|
|
|
|
/*
|
|
* Prepare the RX descriptors. rdesc serves as marker for the last
|
|
* processed descriptor and may be used later on.
|
|
*/
|
|
for (rdesc = 0; rdesc < HME_NRXDESC; rdesc++) {
|
|
sc->sc_rb.rb_rxdesc[rdesc].hrx_m = NULL;
|
|
error = bus_dmamap_create(sc->sc_rdmatag, 0,
|
|
&sc->sc_rb.rb_rxdesc[rdesc].hrx_dmamap);
|
|
if (error != 0)
|
|
goto fail_rxdesc;
|
|
}
|
|
error = bus_dmamap_create(sc->sc_rdmatag, 0,
|
|
&sc->sc_rb.rb_spare_dmamap);
|
|
if (error != 0)
|
|
goto fail_rxdesc;
|
|
/* Same for the TX descs. */
|
|
for (tdesc = 0; tdesc < HME_NTXQ; tdesc++) {
|
|
sc->sc_rb.rb_txdesc[tdesc].htx_m = NULL;
|
|
error = bus_dmamap_create(sc->sc_tdmatag, 0,
|
|
&sc->sc_rb.rb_txdesc[tdesc].htx_dmamap);
|
|
if (error != 0)
|
|
goto fail_txdesc;
|
|
}
|
|
|
|
sc->sc_csum_features = HME_CSUM_FEATURES;
|
|
/* Initialize ifnet structure. */
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(sc->sc_dev),
|
|
device_get_unit(sc->sc_dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_start = hme_start;
|
|
ifp->if_ioctl = hme_ioctl;
|
|
ifp->if_init = hme_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, HME_NTXQ);
|
|
ifp->if_snd.ifq_drv_maxlen = HME_NTXQ;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
hme_mifinit(sc);
|
|
|
|
if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, hme_mediachange,
|
|
hme_mediastatus)) != 0) {
|
|
device_printf(sc->sc_dev, "phy probe failed: %d\n", error);
|
|
goto fail_rxdesc;
|
|
}
|
|
sc->sc_mii = device_get_softc(sc->sc_miibus);
|
|
|
|
/*
|
|
* Walk along the list of attached MII devices and
|
|
* establish an `MII instance' to `PHY number'
|
|
* mapping. We'll use this mapping to enable the MII
|
|
* drivers of the external transceiver according to
|
|
* the currently selected media.
|
|
*/
|
|
sc->sc_phys[0] = sc->sc_phys[1] = -1;
|
|
LIST_FOREACH(child, &sc->sc_mii->mii_phys, mii_list) {
|
|
/*
|
|
* Note: we support just two PHYs: the built-in
|
|
* internal device and an external on the MII
|
|
* connector.
|
|
*/
|
|
if ((child->mii_phy != HME_PHYAD_EXTERNAL &&
|
|
child->mii_phy != HME_PHYAD_INTERNAL) ||
|
|
child->mii_inst > 1) {
|
|
device_printf(sc->sc_dev, "cannot accommodate "
|
|
"MII device %s at phy %d, instance %d\n",
|
|
device_get_name(child->mii_dev),
|
|
child->mii_phy, child->mii_inst);
|
|
continue;
|
|
}
|
|
|
|
sc->sc_phys[child->mii_inst] = child->mii_phy;
|
|
}
|
|
|
|
/* Attach the interface. */
|
|
ether_ifattach(ifp, sc->sc_enaddr);
|
|
|
|
/*
|
|
* Tell the upper layer(s) we support long frames/checksum offloads.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
|
|
ifp->if_hwassist |= sc->sc_csum_features;
|
|
ifp->if_capenable |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
|
|
return (0);
|
|
|
|
fail_txdesc:
|
|
for (i = 0; i < tdesc; i++) {
|
|
bus_dmamap_destroy(sc->sc_tdmatag,
|
|
sc->sc_rb.rb_txdesc[i].htx_dmamap);
|
|
}
|
|
bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap);
|
|
fail_rxdesc:
|
|
for (i = 0; i < rdesc; i++) {
|
|
bus_dmamap_destroy(sc->sc_rdmatag,
|
|
sc->sc_rb.rb_rxdesc[i].hrx_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap);
|
|
fail_free:
|
|
bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap);
|
|
fail_ttag:
|
|
bus_dma_tag_destroy(sc->sc_tdmatag);
|
|
fail_rtag:
|
|
bus_dma_tag_destroy(sc->sc_rdmatag);
|
|
fail_ctag:
|
|
bus_dma_tag_destroy(sc->sc_cdmatag);
|
|
fail_ptag:
|
|
bus_dma_tag_destroy(sc->sc_pdmatag);
|
|
fail_ifnet:
|
|
if_free(ifp);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
hme_detach(struct hme_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
int i;
|
|
|
|
HME_LOCK(sc);
|
|
hme_stop(sc);
|
|
HME_UNLOCK(sc);
|
|
callout_drain(&sc->sc_tick_ch);
|
|
ether_ifdetach(ifp);
|
|
if_free(ifp);
|
|
device_delete_child(sc->sc_dev, sc->sc_miibus);
|
|
|
|
for (i = 0; i < HME_NTXQ; i++) {
|
|
bus_dmamap_destroy(sc->sc_tdmatag,
|
|
sc->sc_rb.rb_txdesc[i].htx_dmamap);
|
|
}
|
|
bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap);
|
|
for (i = 0; i < HME_NRXDESC; i++) {
|
|
bus_dmamap_destroy(sc->sc_rdmatag,
|
|
sc->sc_rb.rb_rxdesc[i].hrx_dmamap);
|
|
}
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap);
|
|
bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap);
|
|
bus_dma_tag_destroy(sc->sc_tdmatag);
|
|
bus_dma_tag_destroy(sc->sc_rdmatag);
|
|
bus_dma_tag_destroy(sc->sc_cdmatag);
|
|
bus_dma_tag_destroy(sc->sc_pdmatag);
|
|
}
|
|
|
|
void
|
|
hme_suspend(struct hme_softc *sc)
|
|
{
|
|
|
|
HME_LOCK(sc);
|
|
hme_stop(sc);
|
|
HME_UNLOCK(sc);
|
|
}
|
|
|
|
void
|
|
hme_resume(struct hme_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
HME_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) != 0)
|
|
hme_init_locked(sc);
|
|
HME_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
hme_cdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct hme_softc *sc = (struct hme_softc *)xsc;
|
|
|
|
if (error != 0)
|
|
return;
|
|
KASSERT(nsegs == 1,
|
|
("%s: too many DMA segments (%d)", __func__, nsegs));
|
|
sc->sc_rb.rb_dmabase = segs[0].ds_addr;
|
|
}
|
|
|
|
static void
|
|
hme_tick(void *arg)
|
|
{
|
|
struct hme_softc *sc = arg;
|
|
struct ifnet *ifp;
|
|
|
|
HME_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
ifp = sc->sc_ifp;
|
|
/*
|
|
* Unload collision counters
|
|
*/
|
|
ifp->if_collisions +=
|
|
HME_MAC_READ_4(sc, HME_MACI_NCCNT) +
|
|
HME_MAC_READ_4(sc, HME_MACI_FCCNT) +
|
|
HME_MAC_READ_4(sc, HME_MACI_EXCNT) +
|
|
HME_MAC_READ_4(sc, HME_MACI_LTCNT);
|
|
|
|
/*
|
|
* then clear the hardware counters.
|
|
*/
|
|
HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
|
|
|
|
mii_tick(sc->sc_mii);
|
|
|
|
if (hme_watchdog(sc) == EJUSTRETURN)
|
|
return;
|
|
|
|
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
|
|
}
|
|
|
|
static void
|
|
hme_stop(struct hme_softc *sc)
|
|
{
|
|
u_int32_t v;
|
|
int n;
|
|
|
|
callout_stop(&sc->sc_tick_ch);
|
|
sc->sc_wdog_timer = 0;
|
|
sc->sc_ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
sc->sc_flags &= ~HME_LINK;
|
|
|
|
/* Mask all interrupts */
|
|
HME_SEB_WRITE_4(sc, HME_SEBI_IMASK, 0xffffffff);
|
|
|
|
/* Reset transmitter and receiver */
|
|
HME_SEB_WRITE_4(sc, HME_SEBI_RESET, HME_SEB_RESET_ETX |
|
|
HME_SEB_RESET_ERX);
|
|
HME_SEB_BARRIER(sc, HME_SEBI_RESET, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
for (n = 0; n < 20; n++) {
|
|
v = HME_SEB_READ_4(sc, HME_SEBI_RESET);
|
|
if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
|
|
return;
|
|
DELAY(20);
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "hme_stop: reset failed\n");
|
|
}
|
|
|
|
/*
|
|
* Discard the contents of an mbuf in the RX ring, freeing the buffer in the
|
|
* ring for subsequent use.
|
|
*/
|
|
static __inline void
|
|
hme_discard_rxbuf(struct hme_softc *sc, int ix)
|
|
{
|
|
|
|
/*
|
|
* Dropped a packet, reinitialize the descriptor and turn the
|
|
* ownership back to the hardware.
|
|
*/
|
|
HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd,
|
|
ix, HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc,
|
|
&sc->sc_rb.rb_rxdesc[ix])));
|
|
}
|
|
|
|
static int
|
|
hme_add_rxbuf(struct hme_softc *sc, unsigned int ri, int keepold)
|
|
{
|
|
struct hme_rxdesc *rd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
uintptr_t b;
|
|
int a, unmap, nsegs;
|
|
|
|
rd = &sc->sc_rb.rb_rxdesc[ri];
|
|
unmap = rd->hrx_m != NULL;
|
|
if (unmap && keepold) {
|
|
/*
|
|
* Reinitialize the descriptor flags, as they may have been
|
|
* altered by the hardware.
|
|
*/
|
|
hme_discard_rxbuf(sc, ri);
|
|
return (0);
|
|
}
|
|
if ((m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR)) == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
|
|
b = mtod(m, uintptr_t);
|
|
/*
|
|
* Required alignment boundary. At least 16 is needed, but since
|
|
* the mapping must be done in a way that a burst can start on a
|
|
* natural boundary we might need to extend this.
|
|
*/
|
|
a = imax(HME_MINRXALIGN, sc->sc_burst);
|
|
/*
|
|
* Make sure the buffer suitably aligned. The 2 byte offset is removed
|
|
* when the mbuf is handed up. XXX: this ensures at least 16 byte
|
|
* alignment of the header adjacent to the ethernet header, which
|
|
* should be sufficient in all cases. Nevertheless, this second-guesses
|
|
* ALIGN().
|
|
*/
|
|
m_adj(m, roundup2(b, a) - b);
|
|
if (bus_dmamap_load_mbuf_sg(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap,
|
|
m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
/* If nsegs is wrong then the stack is corrupt. */
|
|
KASSERT(nsegs == 1,
|
|
("%s: too many DMA segments (%d)", __func__, nsegs));
|
|
if (unmap) {
|
|
bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_rdmatag, rd->hrx_dmamap);
|
|
}
|
|
map = rd->hrx_dmamap;
|
|
rd->hrx_dmamap = sc->sc_rb.rb_spare_dmamap;
|
|
sc->sc_rb.rb_spare_dmamap = map;
|
|
bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap, BUS_DMASYNC_PREREAD);
|
|
HME_XD_SETADDR(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd, ri,
|
|
segs[0].ds_addr);
|
|
rd->hrx_m = m;
|
|
HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd, ri,
|
|
HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc, rd)));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hme_meminit(struct hme_softc *sc)
|
|
{
|
|
struct hme_ring *hr = &sc->sc_rb;
|
|
struct hme_txdesc *td;
|
|
bus_addr_t dma;
|
|
caddr_t p;
|
|
unsigned int i;
|
|
int error;
|
|
|
|
p = hr->rb_membase;
|
|
dma = hr->rb_dmabase;
|
|
|
|
/*
|
|
* Allocate transmit descriptors
|
|
*/
|
|
hr->rb_txd = p;
|
|
hr->rb_txddma = dma;
|
|
p += HME_NTXDESC * HME_XD_SIZE;
|
|
dma += HME_NTXDESC * HME_XD_SIZE;
|
|
/*
|
|
* We have reserved descriptor space until the next 2048 byte
|
|
* boundary.
|
|
*/
|
|
dma = (bus_addr_t)roundup((u_long)dma, 2048);
|
|
p = (caddr_t)roundup((u_long)p, 2048);
|
|
|
|
/*
|
|
* Allocate receive descriptors
|
|
*/
|
|
hr->rb_rxd = p;
|
|
hr->rb_rxddma = dma;
|
|
p += HME_NRXDESC * HME_XD_SIZE;
|
|
dma += HME_NRXDESC * HME_XD_SIZE;
|
|
/* Again move forward to the next 2048 byte boundary.*/
|
|
dma = (bus_addr_t)roundup((u_long)dma, 2048);
|
|
p = (caddr_t)roundup((u_long)p, 2048);
|
|
|
|
/*
|
|
* Initialize transmit buffer descriptors
|
|
*/
|
|
for (i = 0; i < HME_NTXDESC; i++) {
|
|
HME_XD_SETADDR(sc->sc_flags & HME_PCI, hr->rb_txd, i, 0);
|
|
HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, hr->rb_txd, i, 0);
|
|
}
|
|
|
|
STAILQ_INIT(&sc->sc_rb.rb_txfreeq);
|
|
STAILQ_INIT(&sc->sc_rb.rb_txbusyq);
|
|
for (i = 0; i < HME_NTXQ; i++) {
|
|
td = &sc->sc_rb.rb_txdesc[i];
|
|
if (td->htx_m != NULL) {
|
|
bus_dmamap_sync(sc->sc_tdmatag, td->htx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap);
|
|
m_freem(td->htx_m);
|
|
td->htx_m = NULL;
|
|
}
|
|
STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, td, htx_q);
|
|
}
|
|
|
|
/*
|
|
* Initialize receive buffer descriptors
|
|
*/
|
|
for (i = 0; i < HME_NRXDESC; i++) {
|
|
error = hme_add_rxbuf(sc, i, 1);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
hr->rb_tdhead = hr->rb_tdtail = 0;
|
|
hr->rb_td_nbusy = 0;
|
|
hr->rb_rdtail = 0;
|
|
CTR2(KTR_HME, "hme_meminit: tx ring va %p, pa %#lx", hr->rb_txd,
|
|
hr->rb_txddma);
|
|
CTR2(KTR_HME, "hme_meminit: rx ring va %p, pa %#lx", hr->rb_rxd,
|
|
hr->rb_rxddma);
|
|
CTR2(KTR_HME, "rx entry 1: flags %x, address %x",
|
|
*(u_int32_t *)hr->rb_rxd, *(u_int32_t *)(hr->rb_rxd + 4));
|
|
CTR2(KTR_HME, "tx entry 1: flags %x, address %x",
|
|
*(u_int32_t *)hr->rb_txd, *(u_int32_t *)(hr->rb_txd + 4));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hme_mac_bitflip(struct hme_softc *sc, u_int32_t reg, u_int32_t val,
|
|
u_int32_t clr, u_int32_t set)
|
|
{
|
|
int i = 0;
|
|
|
|
val &= ~clr;
|
|
val |= set;
|
|
HME_MAC_WRITE_4(sc, reg, val);
|
|
HME_MAC_BARRIER(sc, reg, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
if (clr == 0 && set == 0)
|
|
return (1); /* just write, no bits to wait for */
|
|
do {
|
|
DELAY(100);
|
|
i++;
|
|
val = HME_MAC_READ_4(sc, reg);
|
|
if (i > 40) {
|
|
/* After 3.5ms, we should have been done. */
|
|
device_printf(sc->sc_dev, "timeout while writing to "
|
|
"MAC configuration register\n");
|
|
return (0);
|
|
}
|
|
} while ((val & clr) != 0 && (val & set) != set);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Initialization of interface; set up initialization block
|
|
* and transmit/receive descriptor rings.
|
|
*/
|
|
static void
|
|
hme_init(void *xsc)
|
|
{
|
|
struct hme_softc *sc = (struct hme_softc *)xsc;
|
|
|
|
HME_LOCK(sc);
|
|
hme_init_locked(sc);
|
|
HME_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
hme_init_locked(struct hme_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
u_int8_t *ea;
|
|
u_int32_t n, v;
|
|
|
|
HME_LOCK_ASSERT(sc, MA_OWNED);
|
|
/*
|
|
* Initialization sequence. The numbered steps below correspond
|
|
* to the sequence outlined in section 6.3.5.1 in the Ethernet
|
|
* Channel Engine manual (part of the PCIO manual).
|
|
* See also the STP2002-STQ document from Sun Microsystems.
|
|
*/
|
|
|
|
/* step 1 & 2. Reset the Ethernet Channel */
|
|
hme_stop(sc);
|
|
|
|
/* Re-initialize the MIF */
|
|
hme_mifinit(sc);
|
|
|
|
#if 0
|
|
/* Mask all MIF interrupts, just in case */
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_IMASK, 0xffff);
|
|
#endif
|
|
|
|
/* step 3. Setup data structures in host memory */
|
|
if (hme_meminit(sc) != 0) {
|
|
device_printf(sc->sc_dev, "out of buffers; init aborted.");
|
|
return;
|
|
}
|
|
|
|
/* step 4. TX MAC registers & counters */
|
|
HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_TXSIZE, HME_MAX_FRAMESIZE);
|
|
|
|
/* Load station MAC address */
|
|
ea = IF_LLADDR(ifp);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
|
|
|
|
/*
|
|
* Init seed for backoff
|
|
* (source suggested by manual: low 10 bits of MAC address)
|
|
*/
|
|
v = ((ea[4] << 8) | ea[5]) & 0x3fff;
|
|
HME_MAC_WRITE_4(sc, HME_MACI_RANDSEED, v);
|
|
|
|
/* Note: Accepting power-on default for other MAC registers here.. */
|
|
|
|
/* step 5. RX MAC registers & counters */
|
|
hme_setladrf(sc, 0);
|
|
|
|
/* step 6 & 7. Program Descriptor Ring Base Addresses */
|
|
HME_ETX_WRITE_4(sc, HME_ETXI_RING, sc->sc_rb.rb_txddma);
|
|
/* Transmit Descriptor ring size: in increments of 16 */
|
|
HME_ETX_WRITE_4(sc, HME_ETXI_RSIZE, HME_NTXDESC / 16 - 1);
|
|
|
|
HME_ERX_WRITE_4(sc, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_RXSIZE, HME_MAX_FRAMESIZE);
|
|
|
|
/* step 8. Global Configuration & Interrupt Mask */
|
|
HME_SEB_WRITE_4(sc, HME_SEBI_IMASK,
|
|
~(/*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
|
|
HME_SEB_STAT_HOSTTOTX |
|
|
HME_SEB_STAT_RXTOHOST |
|
|
HME_SEB_STAT_TXALL |
|
|
HME_SEB_STAT_TXPERR |
|
|
HME_SEB_STAT_RCNTEXP |
|
|
HME_SEB_STAT_ALL_ERRORS ));
|
|
|
|
switch (sc->sc_burst) {
|
|
default:
|
|
v = 0;
|
|
break;
|
|
case 16:
|
|
v = HME_SEB_CFG_BURST16;
|
|
break;
|
|
case 32:
|
|
v = HME_SEB_CFG_BURST32;
|
|
break;
|
|
case 64:
|
|
v = HME_SEB_CFG_BURST64;
|
|
break;
|
|
}
|
|
/*
|
|
* Blindly setting 64bit transfers may hang PCI cards(Cheerio?).
|
|
* Allowing 64bit transfers breaks TX checksum offload as well.
|
|
* Don't know this comes from hardware bug or driver's DMAing
|
|
* scheme.
|
|
*
|
|
* if (sc->sc_flags & HME_PCI == 0)
|
|
* v |= HME_SEB_CFG_64BIT;
|
|
*/
|
|
HME_SEB_WRITE_4(sc, HME_SEBI_CFG, v);
|
|
|
|
/* step 9. ETX Configuration: use mostly default values */
|
|
|
|
/* Enable DMA */
|
|
v = HME_ETX_READ_4(sc, HME_ETXI_CFG);
|
|
v |= HME_ETX_CFG_DMAENABLE;
|
|
HME_ETX_WRITE_4(sc, HME_ETXI_CFG, v);
|
|
|
|
/* step 10. ERX Configuration */
|
|
v = HME_ERX_READ_4(sc, HME_ERXI_CFG);
|
|
|
|
/* Encode Receive Descriptor ring size: four possible values */
|
|
v &= ~HME_ERX_CFG_RINGSIZEMSK;
|
|
switch (HME_NRXDESC) {
|
|
case 32:
|
|
v |= HME_ERX_CFG_RINGSIZE32;
|
|
break;
|
|
case 64:
|
|
v |= HME_ERX_CFG_RINGSIZE64;
|
|
break;
|
|
case 128:
|
|
v |= HME_ERX_CFG_RINGSIZE128;
|
|
break;
|
|
case 256:
|
|
v |= HME_ERX_CFG_RINGSIZE256;
|
|
break;
|
|
default:
|
|
printf("hme: invalid Receive Descriptor ring size\n");
|
|
break;
|
|
}
|
|
|
|
/* Enable DMA, fix RX first byte offset. */
|
|
v &= ~HME_ERX_CFG_FBO_MASK;
|
|
v |= HME_ERX_CFG_DMAENABLE | (HME_RXOFFS << HME_ERX_CFG_FBO_SHIFT);
|
|
/* RX TCP/UDP checksum offset */
|
|
n = (ETHER_HDR_LEN + sizeof(struct ip)) / 2;
|
|
n = (n << HME_ERX_CFG_CSUMSTART_SHIFT) & HME_ERX_CFG_CSUMSTART_MASK;
|
|
v |= n;
|
|
CTR1(KTR_HME, "hme_init: programming ERX_CFG to %x", (u_int)v);
|
|
HME_ERX_WRITE_4(sc, HME_ERXI_CFG, v);
|
|
|
|
/* step 11. XIF Configuration */
|
|
v = HME_MAC_READ_4(sc, HME_MACI_XIF);
|
|
v |= HME_MAC_XIF_OE;
|
|
CTR1(KTR_HME, "hme_init: programming XIF to %x", (u_int)v);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_XIF, v);
|
|
|
|
/* step 12. RX_MAC Configuration Register */
|
|
v = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
|
|
v |= HME_MAC_RXCFG_ENABLE;
|
|
v &= ~(HME_MAC_RXCFG_DCRCS);
|
|
CTR1(KTR_HME, "hme_init: programming RX_MAC to %x", (u_int)v);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_RXCFG, v);
|
|
|
|
/* step 13. TX_MAC Configuration Register */
|
|
v = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
|
|
v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
|
|
CTR1(KTR_HME, "hme_init: programming TX_MAC to %x", (u_int)v);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v);
|
|
|
|
/* step 14. Issue Transmit Pending command */
|
|
|
|
#ifdef HMEDEBUG
|
|
/* Debug: double-check. */
|
|
CTR4(KTR_HME, "hme_init: tx ring %#x, rsz %#x, rx ring %#x, "
|
|
"rxsize %#x", HME_ETX_READ_4(sc, HME_ETXI_RING),
|
|
HME_ETX_READ_4(sc, HME_ETXI_RSIZE),
|
|
HME_ERX_READ_4(sc, HME_ERXI_RING),
|
|
HME_MAC_READ_4(sc, HME_MACI_RXSIZE));
|
|
CTR3(KTR_HME, "hme_init: intr mask %#x, erx cfg %#x, etx cfg %#x",
|
|
HME_SEB_READ_4(sc, HME_SEBI_IMASK),
|
|
HME_ERX_READ_4(sc, HME_ERXI_CFG),
|
|
HME_ETX_READ_4(sc, HME_ETXI_CFG));
|
|
CTR2(KTR_HME, "hme_init: mac rxcfg %#x, maci txcfg %#x",
|
|
HME_MAC_READ_4(sc, HME_MACI_RXCFG),
|
|
HME_MAC_READ_4(sc, HME_MACI_TXCFG));
|
|
#endif
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
/* Set the current media. */
|
|
hme_mediachange_locked(sc);
|
|
|
|
/* Start the one second timer. */
|
|
sc->sc_wdog_timer = 0;
|
|
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* Routine to DMA map an mbuf chain, set up the descriptor rings
|
|
* accordingly and start the transmission.
|
|
* Returns 0 on success, -1 if there were not enough free descriptors
|
|
* to map the packet, or an errno otherwise.
|
|
*
|
|
* XXX: this relies on the fact that segments returned by
|
|
* bus_dmamap_load_mbuf_sg() are readable from the nearest burst
|
|
* boundary on (i.e. potentially before ds_addr) to the first
|
|
* boundary beyond the end. This is usually a safe assumption to
|
|
* make, but is not documented.
|
|
*/
|
|
static int
|
|
hme_load_txmbuf(struct hme_softc *sc, struct mbuf **m0)
|
|
{
|
|
bus_dma_segment_t segs[HME_NTXSEGS];
|
|
struct hme_txdesc *htx;
|
|
struct ip *ip;
|
|
struct mbuf *m;
|
|
caddr_t txd;
|
|
int error, i, nsegs, pci, ri, si;
|
|
uint32_t cflags, flags;
|
|
|
|
if ((htx = STAILQ_FIRST(&sc->sc_rb.rb_txfreeq)) == NULL)
|
|
return (ENOBUFS);
|
|
|
|
cflags = 0;
|
|
if (((*m0)->m_pkthdr.csum_flags & sc->sc_csum_features) != 0) {
|
|
if (M_WRITABLE(*m0) == 0) {
|
|
m = m_dup(*m0, M_DONTWAIT);
|
|
m_freem(*m0);
|
|
*m0 = m;
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
}
|
|
i = sizeof(struct ether_header);
|
|
m = m_pullup(*m0, i + sizeof(struct ip));
|
|
if (m == NULL) {
|
|
*m0 = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m, caddr_t) + i);
|
|
i += (ip->ip_hl << 2);
|
|
cflags = i << HME_XD_TXCKSUM_SSHIFT |
|
|
((i + m->m_pkthdr.csum_data) << HME_XD_TXCKSUM_OSHIFT) |
|
|
HME_XD_TXCKSUM;
|
|
*m0 = m;
|
|
}
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, htx->htx_dmamap,
|
|
*m0, segs, &nsegs, 0);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m0, M_DONTWAIT, HME_NTXSEGS);
|
|
if (m == NULL) {
|
|
m_freem(*m0);
|
|
*m0 = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
*m0 = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, htx->htx_dmamap,
|
|
*m0, segs, &nsegs, 0);
|
|
if (error != 0) {
|
|
m_freem(*m0);
|
|
*m0 = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
/* If nsegs is wrong then the stack is corrupt. */
|
|
KASSERT(nsegs <= HME_NTXSEGS,
|
|
("%s: too many DMA segments (%d)", __func__, nsegs));
|
|
if (nsegs == 0) {
|
|
m_freem(*m0);
|
|
*m0 = NULL;
|
|
return (EIO);
|
|
}
|
|
if (sc->sc_rb.rb_td_nbusy + nsegs >= HME_NTXDESC) {
|
|
bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap);
|
|
/* Retry with m_collapse(9)? */
|
|
return (ENOBUFS);
|
|
}
|
|
bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap, BUS_DMASYNC_PREWRITE);
|
|
|
|
si = ri = sc->sc_rb.rb_tdhead;
|
|
txd = sc->sc_rb.rb_txd;
|
|
pci = sc->sc_flags & HME_PCI;
|
|
CTR2(KTR_HME, "hme_load_mbuf: next desc is %d (%#x)", ri,
|
|
HME_XD_GETFLAGS(pci, txd, ri));
|
|
for (i = 0; i < nsegs; i++) {
|
|
/* Fill the ring entry. */
|
|
flags = HME_XD_ENCODE_TSIZE(segs[i].ds_len);
|
|
if (i == 0)
|
|
flags |= HME_XD_SOP | cflags;
|
|
else
|
|
flags |= HME_XD_OWN | cflags;
|
|
CTR3(KTR_HME, "hme_load_mbuf: activating ri %d, si %d (%#x)",
|
|
ri, si, flags);
|
|
HME_XD_SETADDR(pci, txd, ri, segs[i].ds_addr);
|
|
HME_XD_SETFLAGS(pci, txd, ri, flags);
|
|
sc->sc_rb.rb_td_nbusy++;
|
|
htx->htx_lastdesc = ri;
|
|
ri = (ri + 1) % HME_NTXDESC;
|
|
}
|
|
sc->sc_rb.rb_tdhead = ri;
|
|
|
|
/* set EOP on the last descriptor */
|
|
ri = (ri + HME_NTXDESC - 1) % HME_NTXDESC;
|
|
flags = HME_XD_GETFLAGS(pci, txd, ri);
|
|
flags |= HME_XD_EOP;
|
|
CTR3(KTR_HME, "hme_load_mbuf: setting EOP ri %d, si %d (%#x)", ri, si,
|
|
flags);
|
|
HME_XD_SETFLAGS(pci, txd, ri, flags);
|
|
|
|
/* Turn the first descriptor ownership to the hme */
|
|
flags = HME_XD_GETFLAGS(pci, txd, si);
|
|
flags |= HME_XD_OWN;
|
|
CTR2(KTR_HME, "hme_load_mbuf: setting OWN for 1st desc ri %d, (%#x)",
|
|
ri, flags);
|
|
HME_XD_SETFLAGS(pci, txd, si, flags);
|
|
|
|
STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txfreeq, htx_q);
|
|
STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txbusyq, htx, htx_q);
|
|
htx->htx_m = *m0;
|
|
|
|
/* start the transmission. */
|
|
HME_ETX_WRITE_4(sc, HME_ETXI_PENDING, HME_ETX_TP_DMAWAKEUP);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Pass a packet to the higher levels.
|
|
*/
|
|
static void
|
|
hme_read(struct hme_softc *sc, int ix, int len, u_int32_t flags)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct mbuf *m;
|
|
|
|
if (len <= sizeof(struct ether_header) ||
|
|
len > HME_MAX_FRAMESIZE) {
|
|
#ifdef HMEDEBUG
|
|
HME_WHINE(sc->sc_dev, "invalid packet size %d; dropping\n",
|
|
len);
|
|
#endif
|
|
ifp->if_ierrors++;
|
|
hme_discard_rxbuf(sc, ix);
|
|
return;
|
|
}
|
|
|
|
m = sc->sc_rb.rb_rxdesc[ix].hrx_m;
|
|
CTR1(KTR_HME, "hme_read: len %d", len);
|
|
|
|
if (hme_add_rxbuf(sc, ix, 0) != 0) {
|
|
/*
|
|
* hme_add_rxbuf will leave the old buffer in the ring until
|
|
* it is sure that a new buffer can be mapped. If it can not,
|
|
* drop the packet, but leave the interface up.
|
|
*/
|
|
ifp->if_iqdrops++;
|
|
hme_discard_rxbuf(sc, ix);
|
|
return;
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len + HME_RXOFFS;
|
|
m_adj(m, HME_RXOFFS);
|
|
/* RX TCP/UDP checksum */
|
|
if (ifp->if_capenable & IFCAP_RXCSUM)
|
|
hme_rxcksum(m, flags);
|
|
/* Pass the packet up. */
|
|
HME_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
HME_LOCK(sc);
|
|
}
|
|
|
|
static void
|
|
hme_start(struct ifnet *ifp)
|
|
{
|
|
struct hme_softc *sc = ifp->if_softc;
|
|
|
|
HME_LOCK(sc);
|
|
hme_start_locked(ifp);
|
|
HME_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
hme_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
|
|
struct mbuf *m;
|
|
int error, enq = 0;
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || (sc->sc_flags & HME_LINK) == 0)
|
|
return;
|
|
|
|
for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
|
|
sc->sc_rb.rb_td_nbusy < HME_NTXDESC - 1;) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
break;
|
|
|
|
error = hme_load_txmbuf(sc, &m);
|
|
if (error != 0) {
|
|
if (m == NULL)
|
|
break;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m);
|
|
break;
|
|
}
|
|
enq++;
|
|
BPF_MTAP(ifp, m);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
sc->sc_wdog_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transmit interrupt.
|
|
*/
|
|
static void
|
|
hme_tint(struct hme_softc *sc)
|
|
{
|
|
caddr_t txd;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct hme_txdesc *htx;
|
|
unsigned int ri, txflags;
|
|
|
|
txd = sc->sc_rb.rb_txd;
|
|
htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq);
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
|
|
/* Fetch current position in the transmit ring */
|
|
for (ri = sc->sc_rb.rb_tdtail;; ri = (ri + 1) % HME_NTXDESC) {
|
|
if (sc->sc_rb.rb_td_nbusy <= 0) {
|
|
CTR0(KTR_HME, "hme_tint: not busy!");
|
|
break;
|
|
}
|
|
|
|
txflags = HME_XD_GETFLAGS(sc->sc_flags & HME_PCI, txd, ri);
|
|
CTR2(KTR_HME, "hme_tint: index %d, flags %#x", ri, txflags);
|
|
|
|
if ((txflags & HME_XD_OWN) != 0)
|
|
break;
|
|
|
|
CTR0(KTR_HME, "hme_tint: not owned");
|
|
--sc->sc_rb.rb_td_nbusy;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
/* Complete packet transmitted? */
|
|
if ((txflags & HME_XD_EOP) == 0)
|
|
continue;
|
|
|
|
KASSERT(htx->htx_lastdesc == ri,
|
|
("%s: ring indices skewed: %d != %d!",
|
|
__func__, htx->htx_lastdesc, ri));
|
|
bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap);
|
|
|
|
ifp->if_opackets++;
|
|
m_freem(htx->htx_m);
|
|
htx->htx_m = NULL;
|
|
STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txbusyq, htx_q);
|
|
STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, htx, htx_q);
|
|
htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq);
|
|
}
|
|
sc->sc_wdog_timer = sc->sc_rb.rb_td_nbusy > 0 ? 5 : 0;
|
|
|
|
/* Update ring */
|
|
sc->sc_rb.rb_tdtail = ri;
|
|
|
|
hme_start_locked(ifp);
|
|
}
|
|
|
|
/*
|
|
* RX TCP/UDP checksum
|
|
*/
|
|
static void
|
|
hme_rxcksum(struct mbuf *m, u_int32_t flags)
|
|
{
|
|
struct ether_header *eh;
|
|
struct ip *ip;
|
|
struct udphdr *uh;
|
|
int32_t hlen, len, pktlen;
|
|
u_int16_t cksum, *opts;
|
|
u_int32_t temp32;
|
|
|
|
pktlen = m->m_pkthdr.len;
|
|
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
|
|
return;
|
|
eh = mtod(m, struct ether_header *);
|
|
if (eh->ether_type != htons(ETHERTYPE_IP))
|
|
return;
|
|
ip = (struct ip *)(eh + 1);
|
|
if (ip->ip_v != IPVERSION)
|
|
return;
|
|
|
|
hlen = ip->ip_hl << 2;
|
|
pktlen -= sizeof(struct ether_header);
|
|
if (hlen < sizeof(struct ip))
|
|
return;
|
|
if (ntohs(ip->ip_len) < hlen)
|
|
return;
|
|
if (ntohs(ip->ip_len) != pktlen)
|
|
return;
|
|
if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
|
|
return; /* can't handle fragmented packet */
|
|
|
|
switch (ip->ip_p) {
|
|
case IPPROTO_TCP:
|
|
if (pktlen < (hlen + sizeof(struct tcphdr)))
|
|
return;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
if (pktlen < (hlen + sizeof(struct udphdr)))
|
|
return;
|
|
uh = (struct udphdr *)((caddr_t)ip + hlen);
|
|
if (uh->uh_sum == 0)
|
|
return; /* no checksum */
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
cksum = ~(flags & HME_XD_RXCKSUM);
|
|
/* checksum fixup for IP options */
|
|
len = hlen - sizeof(struct ip);
|
|
if (len > 0) {
|
|
opts = (u_int16_t *)(ip + 1);
|
|
for (; len > 0; len -= sizeof(u_int16_t), opts++) {
|
|
temp32 = cksum - *opts;
|
|
temp32 = (temp32 >> 16) + (temp32 & 65535);
|
|
cksum = temp32 & 65535;
|
|
}
|
|
}
|
|
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
|
|
m->m_pkthdr.csum_data = cksum;
|
|
}
|
|
|
|
/*
|
|
* Receive interrupt.
|
|
*/
|
|
static void
|
|
hme_rint(struct hme_softc *sc)
|
|
{
|
|
caddr_t xdr = sc->sc_rb.rb_rxd;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
unsigned int ri, len;
|
|
int progress = 0;
|
|
u_int32_t flags;
|
|
|
|
/*
|
|
* Process all buffers with valid data.
|
|
*/
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
|
|
for (ri = sc->sc_rb.rb_rdtail;; ri = (ri + 1) % HME_NRXDESC) {
|
|
flags = HME_XD_GETFLAGS(sc->sc_flags & HME_PCI, xdr, ri);
|
|
CTR2(KTR_HME, "hme_rint: index %d, flags %#x", ri, flags);
|
|
if ((flags & HME_XD_OWN) != 0)
|
|
break;
|
|
|
|
progress++;
|
|
if ((flags & HME_XD_OFL) != 0) {
|
|
device_printf(sc->sc_dev, "buffer overflow, ri=%d; "
|
|
"flags=0x%x\n", ri, flags);
|
|
ifp->if_ierrors++;
|
|
hme_discard_rxbuf(sc, ri);
|
|
} else {
|
|
len = HME_XD_DECODE_RSIZE(flags);
|
|
hme_read(sc, ri, len, flags);
|
|
}
|
|
}
|
|
if (progress) {
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
sc->sc_rb.rb_rdtail = ri;
|
|
}
|
|
|
|
static void
|
|
hme_eint(struct hme_softc *sc, u_int status)
|
|
{
|
|
|
|
if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
|
|
device_printf(sc->sc_dev, "XXXlink status changed: "
|
|
"cfg=%#x, stat=%#x, sm=%#x\n",
|
|
HME_MIF_READ_4(sc, HME_MIFI_CFG),
|
|
HME_MIF_READ_4(sc, HME_MIFI_STAT),
|
|
HME_MIF_READ_4(sc, HME_MIFI_SM));
|
|
return;
|
|
}
|
|
|
|
/* check for fatal errors that needs reset to unfreeze DMA engine */
|
|
if ((status & HME_SEB_STAT_FATAL_ERRORS) != 0) {
|
|
HME_WHINE(sc->sc_dev, "error signaled, status=%#x\n", status);
|
|
hme_init_locked(sc);
|
|
}
|
|
}
|
|
|
|
void
|
|
hme_intr(void *v)
|
|
{
|
|
struct hme_softc *sc = (struct hme_softc *)v;
|
|
u_int32_t status;
|
|
|
|
HME_LOCK(sc);
|
|
status = HME_SEB_READ_4(sc, HME_SEBI_STAT);
|
|
CTR1(KTR_HME, "hme_intr: status %#x", (u_int)status);
|
|
|
|
if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
|
|
hme_eint(sc, status);
|
|
|
|
if ((status & HME_SEB_STAT_RXTOHOST) != 0)
|
|
hme_rint(sc);
|
|
|
|
if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
|
|
hme_tint(sc);
|
|
HME_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
hme_watchdog(struct hme_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
HME_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
#ifdef HMEDEBUG
|
|
CTR1(KTR_HME, "hme_watchdog: status %x",
|
|
(u_int)HME_SEB_READ_4(sc, HME_SEBI_STAT));
|
|
#endif
|
|
|
|
if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
|
|
return (0);
|
|
|
|
if ((sc->sc_flags & HME_LINK) != 0)
|
|
device_printf(sc->sc_dev, "device timeout\n");
|
|
else if (bootverbose)
|
|
device_printf(sc->sc_dev, "device timeout (no link)\n");
|
|
++ifp->if_oerrors;
|
|
|
|
hme_init_locked(sc);
|
|
hme_start_locked(ifp);
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
/*
|
|
* Initialize the MII Management Interface
|
|
*/
|
|
static void
|
|
hme_mifinit(struct hme_softc *sc)
|
|
{
|
|
u_int32_t v;
|
|
|
|
/*
|
|
* Configure the MIF in frame mode, polling disabled, internal PHY
|
|
* selected.
|
|
*/
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, 0);
|
|
|
|
/*
|
|
* If the currently selected media uses the external transceiver,
|
|
* enable its MII drivers (which basically isolates the internal
|
|
* one and vice versa). In case the current media hasn't been set,
|
|
* yet, we default to the internal transceiver.
|
|
*/
|
|
v = HME_MAC_READ_4(sc, HME_MACI_XIF);
|
|
if (sc->sc_mii != NULL && sc->sc_mii->mii_media.ifm_cur != NULL &&
|
|
sc->sc_phys[IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media)] ==
|
|
HME_PHYAD_EXTERNAL)
|
|
v |= HME_MAC_XIF_MIIENABLE;
|
|
else
|
|
v &= ~HME_MAC_XIF_MIIENABLE;
|
|
HME_MAC_WRITE_4(sc, HME_MACI_XIF, v);
|
|
}
|
|
|
|
/*
|
|
* MII interface
|
|
*/
|
|
int
|
|
hme_mii_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct hme_softc *sc;
|
|
int n;
|
|
u_int32_t v;
|
|
|
|
/* We can at most have two PHYs. */
|
|
if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
|
|
return (0);
|
|
|
|
sc = device_get_softc(dev);
|
|
/* Select the desired PHY in the MIF configuration register */
|
|
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
|
|
if (phy == HME_PHYAD_EXTERNAL)
|
|
v |= HME_MIF_CFG_PHY;
|
|
else
|
|
v &= ~HME_MIF_CFG_PHY;
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
|
|
|
|
/* Construct the frame command */
|
|
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
|
|
HME_MIF_FO_TAMSB |
|
|
(MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
|
|
(phy << HME_MIF_FO_PHYAD_SHIFT) |
|
|
(reg << HME_MIF_FO_REGAD_SHIFT);
|
|
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
|
|
HME_MIF_BARRIER(sc, HME_MIFI_FO, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
for (n = 0; n < 100; n++) {
|
|
DELAY(1);
|
|
v = HME_MIF_READ_4(sc, HME_MIFI_FO);
|
|
if (v & HME_MIF_FO_TALSB)
|
|
return (v & HME_MIF_FO_DATA);
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "mii_read timeout\n");
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
hme_mii_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct hme_softc *sc;
|
|
int n;
|
|
u_int32_t v;
|
|
|
|
/* We can at most have two PHYs. */
|
|
if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
|
|
return (0);
|
|
|
|
sc = device_get_softc(dev);
|
|
/* Select the desired PHY in the MIF configuration register */
|
|
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
|
|
if (phy == HME_PHYAD_EXTERNAL)
|
|
v |= HME_MIF_CFG_PHY;
|
|
else
|
|
v &= ~HME_MIF_CFG_PHY;
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
|
|
|
|
/* Construct the frame command */
|
|
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
|
|
HME_MIF_FO_TAMSB |
|
|
(MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
|
|
(phy << HME_MIF_FO_PHYAD_SHIFT) |
|
|
(reg << HME_MIF_FO_REGAD_SHIFT) |
|
|
(val & HME_MIF_FO_DATA);
|
|
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
|
|
HME_MIF_BARRIER(sc, HME_MIFI_FO, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
for (n = 0; n < 100; n++) {
|
|
DELAY(1);
|
|
v = HME_MIF_READ_4(sc, HME_MIFI_FO);
|
|
if (v & HME_MIF_FO_TALSB)
|
|
return (1);
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "mii_write timeout\n");
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
hme_mii_statchg(device_t dev)
|
|
{
|
|
struct hme_softc *sc;
|
|
uint32_t rxcfg, txcfg;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
#ifdef HMEDEBUG
|
|
if ((sc->sc_ifp->if_flags & IFF_DEBUG) != 0)
|
|
device_printf(sc->sc_dev, "hme_mii_statchg: status change\n");
|
|
#endif
|
|
|
|
if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
|
|
IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
|
|
sc->sc_flags |= HME_LINK;
|
|
else
|
|
sc->sc_flags &= ~HME_LINK;
|
|
|
|
txcfg = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
|
|
if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, txcfg,
|
|
HME_MAC_TXCFG_ENABLE, 0))
|
|
device_printf(sc->sc_dev, "cannot disable TX MAC\n");
|
|
rxcfg = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
|
|
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, rxcfg,
|
|
HME_MAC_RXCFG_ENABLE, 0))
|
|
device_printf(sc->sc_dev, "cannot disable RX MAC\n");
|
|
|
|
/* Set the MAC Full Duplex bit appropriately. */
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
|
|
txcfg |= HME_MAC_TXCFG_FULLDPLX;
|
|
else
|
|
txcfg &= ~HME_MAC_TXCFG_FULLDPLX;
|
|
HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, txcfg);
|
|
|
|
if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
(sc->sc_flags & HME_LINK) != 0) {
|
|
if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, txcfg, 0,
|
|
HME_MAC_TXCFG_ENABLE))
|
|
device_printf(sc->sc_dev, "cannot enable TX MAC\n");
|
|
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, rxcfg, 0,
|
|
HME_MAC_RXCFG_ENABLE))
|
|
device_printf(sc->sc_dev, "cannot enable RX MAC\n");
|
|
}
|
|
}
|
|
|
|
static int
|
|
hme_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct hme_softc *sc = ifp->if_softc;
|
|
int error;
|
|
|
|
HME_LOCK(sc);
|
|
error = hme_mediachange_locked(sc);
|
|
HME_UNLOCK(sc);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
hme_mediachange_locked(struct hme_softc *sc)
|
|
{
|
|
struct mii_softc *child;
|
|
|
|
HME_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
#ifdef HMEDEBUG
|
|
if ((sc->sc_ifp->if_flags & IFF_DEBUG) != 0)
|
|
device_printf(sc->sc_dev, "hme_mediachange_locked");
|
|
#endif
|
|
|
|
hme_mifinit(sc);
|
|
|
|
/*
|
|
* If both PHYs are present reset them. This is required for
|
|
* unisolating the previously isolated PHY when switching PHYs.
|
|
* As the above hme_mifinit() call will set the MII drivers in
|
|
* the XIF configuration register accoring to the currently
|
|
* selected media, there should be no window during which the
|
|
* data paths of both transceivers are open at the same time,
|
|
* even if the PHY device drivers use MIIF_NOISOLATE.
|
|
*/
|
|
if (sc->sc_phys[0] != -1 && sc->sc_phys[1] != -1)
|
|
LIST_FOREACH(child, &sc->sc_mii->mii_phys, mii_list)
|
|
mii_phy_reset(child);
|
|
return (mii_mediachg(sc->sc_mii));
|
|
}
|
|
|
|
static void
|
|
hme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct hme_softc *sc = ifp->if_softc;
|
|
|
|
HME_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
HME_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
mii_pollstat(sc->sc_mii);
|
|
ifmr->ifm_active = sc->sc_mii->mii_media_active;
|
|
ifmr->ifm_status = sc->sc_mii->mii_media_status;
|
|
HME_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Process an ioctl request.
|
|
*/
|
|
static int
|
|
hme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct hme_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int error = 0;
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
HME_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
((ifp->if_flags ^ sc->sc_ifflags) &
|
|
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
|
|
hme_setladrf(sc, 1);
|
|
else
|
|
hme_init_locked(sc);
|
|
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
hme_stop(sc);
|
|
if ((ifp->if_flags & IFF_LINK0) != 0)
|
|
sc->sc_csum_features |= CSUM_UDP;
|
|
else
|
|
sc->sc_csum_features &= ~CSUM_UDP;
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
|
|
ifp->if_hwassist = sc->sc_csum_features;
|
|
sc->sc_ifflags = ifp->if_flags;
|
|
HME_UNLOCK(sc);
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
HME_LOCK(sc);
|
|
hme_setladrf(sc, 1);
|
|
HME_UNLOCK(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
HME_LOCK(sc);
|
|
ifp->if_capenable = ifr->ifr_reqcap;
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
|
|
ifp->if_hwassist = sc->sc_csum_features;
|
|
else
|
|
ifp->if_hwassist = 0;
|
|
HME_UNLOCK(sc);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set up the logical address filter.
|
|
*/
|
|
static void
|
|
hme_setladrf(struct hme_softc *sc, int reenable)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ifmultiaddr *inm;
|
|
u_int32_t crc;
|
|
u_int32_t hash[4];
|
|
u_int32_t macc;
|
|
|
|
HME_LOCK_ASSERT(sc, MA_OWNED);
|
|
/* Clear the hash table. */
|
|
hash[3] = hash[2] = hash[1] = hash[0] = 0;
|
|
|
|
/* Get the current RX configuration. */
|
|
macc = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
|
|
|
|
/*
|
|
* Turn off promiscuous mode, promiscuous group mode (all multicast),
|
|
* and hash filter. Depending on the case, the right bit will be
|
|
* enabled.
|
|
*/
|
|
macc &= ~(HME_MAC_RXCFG_PGRP | HME_MAC_RXCFG_PMISC);
|
|
|
|
/*
|
|
* Disable the receiver while changing it's state as the documentation
|
|
* mandates.
|
|
* We then must wait until the bit clears in the register. This should
|
|
* take at most 3.5ms.
|
|
*/
|
|
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc,
|
|
HME_MAC_RXCFG_ENABLE, 0))
|
|
device_printf(sc->sc_dev, "cannot disable RX MAC\n");
|
|
/* Disable the hash filter before writing to the filter registers. */
|
|
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc,
|
|
HME_MAC_RXCFG_HENABLE, 0))
|
|
device_printf(sc->sc_dev, "cannot disable hash filter\n");
|
|
|
|
/* Make the RX MAC really SIMPLEX. */
|
|
macc |= HME_MAC_RXCFG_ME;
|
|
if (reenable)
|
|
macc |= HME_MAC_RXCFG_ENABLE;
|
|
else
|
|
macc &= ~HME_MAC_RXCFG_ENABLE;
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0) {
|
|
macc |= HME_MAC_RXCFG_PMISC;
|
|
goto chipit;
|
|
}
|
|
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
|
|
macc |= HME_MAC_RXCFG_PGRP;
|
|
goto chipit;
|
|
}
|
|
|
|
macc |= HME_MAC_RXCFG_HENABLE;
|
|
|
|
/*
|
|
* Set up multicast address filter by passing all multicast addresses
|
|
* through a crc generator, and then using the high order 6 bits as an
|
|
* index into the 64 bit logical address filter. The high order bit
|
|
* selects the word, while the rest of the bits select the bit within
|
|
* the word.
|
|
*/
|
|
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
|
|
if (inm->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
|
|
inm->ifma_addr), ETHER_ADDR_LEN);
|
|
|
|
/* Just want the 6 most significant bits. */
|
|
crc >>= 26;
|
|
|
|
/* Set the corresponding bit in the filter. */
|
|
hash[crc >> 4] |= 1 << (crc & 0xf);
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
|
|
chipit:
|
|
/* Now load the hash table into the chip */
|
|
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB0, hash[0]);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB1, hash[1]);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB2, hash[2]);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB3, hash[3]);
|
|
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, 0,
|
|
macc & (HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_HENABLE |
|
|
HME_MAC_RXCFG_ME)))
|
|
device_printf(sc->sc_dev, "cannot configure RX MAC\n");
|
|
}
|