fe4de567b5
cpuset_t objects. That is going to offer the underlying support for a simple bump of MAXCPU and then support for number of cpus > 32 (as it is today). Right now, cpumask_t is an int, 32 bits on all our supported architecture. cpumask_t on the other side is implemented as an array of longs, and easilly extendible by definition. The architectures touched by this commit are the following: - amd64 - i386 - pc98 - arm - ia64 - XEN while the others are still missing. Userland is believed to be fully converted with the changes contained here. Some technical notes: - This commit may be considered an ABI nop for all the architectures different from amd64 and ia64 (and sparc64 in the future) - per-cpu members, which are now converted to cpuset_t, needs to be accessed avoiding migration, because the size of cpuset_t should be considered unknown - size of cpuset_t objects is different from kernel and userland (this is primirally done in order to leave some more space in userland to cope with KBI extensions). If you need to access kernel cpuset_t from the userland please refer to example in this patch on how to do that correctly (kgdb may be a good source, for example). - Support for other architectures is going to be added soon - Only MAXCPU for amd64 is bumped now The patch has been tested by sbruno and Nicholas Esborn on opteron 4 x 12 pack CPUs. More testing on big SMP is expected to came soon. pluknet tested the patch with his 8-ways on both amd64 and i386. Tested by: pluknet, sbruno, gianni, Nicholas Esborn Reviewed by: jeff, jhb, sbruno
554 lines
12 KiB
C
554 lines
12 KiB
C
/*-
|
|
* Copyright (c) 2004 The FreeBSD Project
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_kdb.h"
|
|
#include "opt_stack.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/stack.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/kdb.h>
|
|
#include <machine/pcb.h>
|
|
|
|
#ifdef SMP
|
|
#include <machine/smp.h>
|
|
#endif
|
|
|
|
int kdb_active = 0;
|
|
static void *kdb_jmpbufp = NULL;
|
|
struct kdb_dbbe *kdb_dbbe = NULL;
|
|
static struct pcb kdb_pcb;
|
|
struct pcb *kdb_thrctx = NULL;
|
|
struct thread *kdb_thread = NULL;
|
|
struct trapframe *kdb_frame = NULL;
|
|
|
|
KDB_BACKEND(null, NULL, NULL, NULL);
|
|
SET_DECLARE(kdb_dbbe_set, struct kdb_dbbe);
|
|
|
|
static int kdb_sysctl_available(SYSCTL_HANDLER_ARGS);
|
|
static int kdb_sysctl_current(SYSCTL_HANDLER_ARGS);
|
|
static int kdb_sysctl_enter(SYSCTL_HANDLER_ARGS);
|
|
static int kdb_sysctl_panic(SYSCTL_HANDLER_ARGS);
|
|
static int kdb_sysctl_trap(SYSCTL_HANDLER_ARGS);
|
|
static int kdb_sysctl_trap_code(SYSCTL_HANDLER_ARGS);
|
|
|
|
SYSCTL_NODE(_debug, OID_AUTO, kdb, CTLFLAG_RW, NULL, "KDB nodes");
|
|
|
|
SYSCTL_PROC(_debug_kdb, OID_AUTO, available, CTLTYPE_STRING | CTLFLAG_RD, NULL,
|
|
0, kdb_sysctl_available, "A", "list of available KDB backends");
|
|
|
|
SYSCTL_PROC(_debug_kdb, OID_AUTO, current, CTLTYPE_STRING | CTLFLAG_RW, NULL,
|
|
0, kdb_sysctl_current, "A", "currently selected KDB backend");
|
|
|
|
SYSCTL_PROC(_debug_kdb, OID_AUTO, enter, CTLTYPE_INT | CTLFLAG_RW, NULL, 0,
|
|
kdb_sysctl_enter, "I", "set to enter the debugger");
|
|
|
|
SYSCTL_PROC(_debug_kdb, OID_AUTO, panic, CTLTYPE_INT | CTLFLAG_RW, NULL, 0,
|
|
kdb_sysctl_panic, "I", "set to panic the kernel");
|
|
|
|
SYSCTL_PROC(_debug_kdb, OID_AUTO, trap, CTLTYPE_INT | CTLFLAG_RW, NULL, 0,
|
|
kdb_sysctl_trap, "I", "set to cause a page fault via data access");
|
|
|
|
SYSCTL_PROC(_debug_kdb, OID_AUTO, trap_code, CTLTYPE_INT | CTLFLAG_RW, NULL, 0,
|
|
kdb_sysctl_trap_code, "I", "set to cause a page fault via code access");
|
|
|
|
/*
|
|
* Flag indicating whether or not to IPI the other CPUs to stop them on
|
|
* entering the debugger. Sometimes, this will result in a deadlock as
|
|
* stop_cpus() waits for the other cpus to stop, so we allow it to be
|
|
* disabled. In order to maximize the chances of success, use a hard
|
|
* stop for that.
|
|
*/
|
|
#ifdef SMP
|
|
static int kdb_stop_cpus = 1;
|
|
SYSCTL_INT(_debug_kdb, OID_AUTO, stop_cpus, CTLFLAG_RW | CTLFLAG_TUN,
|
|
&kdb_stop_cpus, 0, "stop other CPUs when entering the debugger");
|
|
TUNABLE_INT("debug.kdb.stop_cpus", &kdb_stop_cpus);
|
|
#endif
|
|
|
|
/*
|
|
* Flag to indicate to debuggers why the debugger was entered.
|
|
*/
|
|
const char * volatile kdb_why = KDB_WHY_UNSET;
|
|
|
|
static int
|
|
kdb_sysctl_available(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct kdb_dbbe **iter;
|
|
struct sbuf sbuf;
|
|
int error;
|
|
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 64, req);
|
|
SET_FOREACH(iter, kdb_dbbe_set) {
|
|
if ((*iter)->dbbe_active == 0)
|
|
sbuf_printf(&sbuf, "%s ", (*iter)->dbbe_name);
|
|
}
|
|
error = sbuf_finish(&sbuf);
|
|
sbuf_delete(&sbuf);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
kdb_sysctl_current(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char buf[16];
|
|
int error;
|
|
|
|
if (kdb_dbbe != NULL)
|
|
strlcpy(buf, kdb_dbbe->dbbe_name, sizeof(buf));
|
|
else
|
|
*buf = '\0';
|
|
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (kdb_active)
|
|
return (EBUSY);
|
|
return (kdb_dbbe_select(buf));
|
|
}
|
|
|
|
static int
|
|
kdb_sysctl_enter(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, i;
|
|
|
|
error = sysctl_wire_old_buffer(req, sizeof(int));
|
|
if (error == 0) {
|
|
i = 0;
|
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
|
}
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (kdb_active)
|
|
return (EBUSY);
|
|
kdb_enter(KDB_WHY_SYSCTL, "sysctl debug.kdb.enter");
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
kdb_sysctl_panic(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, i;
|
|
|
|
error = sysctl_wire_old_buffer(req, sizeof(int));
|
|
if (error == 0) {
|
|
i = 0;
|
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
|
}
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
panic("kdb_sysctl_panic");
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
kdb_sysctl_trap(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, i;
|
|
int *addr = (int *)0x10;
|
|
|
|
error = sysctl_wire_old_buffer(req, sizeof(int));
|
|
if (error == 0) {
|
|
i = 0;
|
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
|
}
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
return (*addr);
|
|
}
|
|
|
|
static int
|
|
kdb_sysctl_trap_code(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, i;
|
|
void (*fp)(u_int, u_int, u_int) = (void *)0xdeadc0de;
|
|
|
|
error = sysctl_wire_old_buffer(req, sizeof(int));
|
|
if (error == 0) {
|
|
i = 0;
|
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
|
}
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
(*fp)(0x11111111, 0x22222222, 0x33333333);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
kdb_panic(const char *msg)
|
|
{
|
|
|
|
#ifdef SMP
|
|
stop_cpus_hard(PCPU_GET(other_cpus));
|
|
#endif
|
|
printf("KDB: panic\n");
|
|
panic("%s", msg);
|
|
}
|
|
|
|
void
|
|
kdb_reboot(void)
|
|
{
|
|
|
|
printf("KDB: reboot requested\n");
|
|
shutdown_nice(0);
|
|
}
|
|
|
|
/*
|
|
* Solaris implements a new BREAK which is initiated by a character sequence
|
|
* CR ~ ^b which is similar to a familiar pattern used on Sun servers by the
|
|
* Remote Console.
|
|
*
|
|
* Note that this function may be called from almost anywhere, with interrupts
|
|
* disabled and with unknown locks held, so it must not access data other than
|
|
* its arguments. Its up to the caller to ensure that the state variable is
|
|
* consistent.
|
|
*/
|
|
|
|
#define KEY_CR 13 /* CR '\r' */
|
|
#define KEY_TILDE 126 /* ~ */
|
|
#define KEY_CRTLB 2 /* ^B */
|
|
#define KEY_CRTLP 16 /* ^P */
|
|
#define KEY_CRTLR 18 /* ^R */
|
|
|
|
int
|
|
kdb_alt_break(int key, int *state)
|
|
{
|
|
int brk;
|
|
|
|
brk = 0;
|
|
switch (*state) {
|
|
case 0:
|
|
if (key == KEY_CR)
|
|
*state = 1;
|
|
break;
|
|
case 1:
|
|
if (key == KEY_TILDE)
|
|
*state = 2;
|
|
break;
|
|
case 2:
|
|
if (key == KEY_CRTLB)
|
|
brk = KDB_REQ_DEBUGGER;
|
|
else if (key == KEY_CRTLP)
|
|
brk = KDB_REQ_PANIC;
|
|
else if (key == KEY_CRTLR)
|
|
brk = KDB_REQ_REBOOT;
|
|
*state = 0;
|
|
}
|
|
return (brk);
|
|
}
|
|
|
|
/*
|
|
* Print a backtrace of the calling thread. The backtrace is generated by
|
|
* the selected debugger, provided it supports backtraces. If no debugger
|
|
* is selected or the current debugger does not support backtraces, this
|
|
* function silently returns.
|
|
*/
|
|
|
|
void
|
|
kdb_backtrace(void)
|
|
{
|
|
|
|
if (kdb_dbbe != NULL && kdb_dbbe->dbbe_trace != NULL) {
|
|
printf("KDB: stack backtrace:\n");
|
|
kdb_dbbe->dbbe_trace();
|
|
}
|
|
#ifdef STACK
|
|
else {
|
|
struct stack st;
|
|
|
|
printf("KDB: stack backtrace:\n");
|
|
stack_save(&st);
|
|
stack_print_ddb(&st);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Set/change the current backend.
|
|
*/
|
|
|
|
int
|
|
kdb_dbbe_select(const char *name)
|
|
{
|
|
struct kdb_dbbe *be, **iter;
|
|
|
|
SET_FOREACH(iter, kdb_dbbe_set) {
|
|
be = *iter;
|
|
if (be->dbbe_active == 0 && strcmp(be->dbbe_name, name) == 0) {
|
|
kdb_dbbe = be;
|
|
return (0);
|
|
}
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Enter the currently selected debugger. If a message has been provided,
|
|
* it is printed first. If the debugger does not support the enter method,
|
|
* it is entered by using breakpoint(), which enters the debugger through
|
|
* kdb_trap(). The 'why' argument will contain a more mechanically usable
|
|
* string than 'msg', and is relied upon by DDB scripting to identify the
|
|
* reason for entering the debugger so that the right script can be run.
|
|
*/
|
|
void
|
|
kdb_enter(const char *why, const char *msg)
|
|
{
|
|
|
|
if (kdb_dbbe != NULL && kdb_active == 0) {
|
|
if (msg != NULL)
|
|
printf("KDB: enter: %s\n", msg);
|
|
kdb_why = why;
|
|
breakpoint();
|
|
kdb_why = KDB_WHY_UNSET;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the kernel debugger interface.
|
|
*/
|
|
|
|
void
|
|
kdb_init(void)
|
|
{
|
|
struct kdb_dbbe *be, **iter;
|
|
int cur_pri, pri;
|
|
|
|
kdb_active = 0;
|
|
kdb_dbbe = NULL;
|
|
cur_pri = -1;
|
|
SET_FOREACH(iter, kdb_dbbe_set) {
|
|
be = *iter;
|
|
pri = (be->dbbe_init != NULL) ? be->dbbe_init() : -1;
|
|
be->dbbe_active = (pri >= 0) ? 0 : -1;
|
|
if (pri > cur_pri) {
|
|
cur_pri = pri;
|
|
kdb_dbbe = be;
|
|
}
|
|
}
|
|
if (kdb_dbbe != NULL) {
|
|
printf("KDB: debugger backends:");
|
|
SET_FOREACH(iter, kdb_dbbe_set) {
|
|
be = *iter;
|
|
if (be->dbbe_active == 0)
|
|
printf(" %s", be->dbbe_name);
|
|
}
|
|
printf("\n");
|
|
printf("KDB: current backend: %s\n",
|
|
kdb_dbbe->dbbe_name);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle contexts.
|
|
*/
|
|
|
|
void *
|
|
kdb_jmpbuf(jmp_buf new)
|
|
{
|
|
void *old;
|
|
|
|
old = kdb_jmpbufp;
|
|
kdb_jmpbufp = new;
|
|
return (old);
|
|
}
|
|
|
|
void
|
|
kdb_reenter(void)
|
|
{
|
|
|
|
if (!kdb_active || kdb_jmpbufp == NULL)
|
|
return;
|
|
|
|
longjmp(kdb_jmpbufp, 1);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Thread related support functions.
|
|
*/
|
|
|
|
struct pcb *
|
|
kdb_thr_ctx(struct thread *thr)
|
|
{
|
|
#if defined(SMP) && defined(KDB_STOPPEDPCB)
|
|
struct pcpu *pc;
|
|
#endif
|
|
|
|
if (thr == curthread)
|
|
return (&kdb_pcb);
|
|
|
|
#if defined(SMP) && defined(KDB_STOPPEDPCB)
|
|
SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
|
|
if (pc->pc_curthread == thr &&
|
|
CPU_OVERLAP(&stopped_cpus, &pc->pc_cpumask))
|
|
return (KDB_STOPPEDPCB(pc));
|
|
}
|
|
#endif
|
|
return (thr->td_pcb);
|
|
}
|
|
|
|
struct thread *
|
|
kdb_thr_first(void)
|
|
{
|
|
struct proc *p;
|
|
struct thread *thr;
|
|
|
|
p = LIST_FIRST(&allproc);
|
|
while (p != NULL) {
|
|
if (p->p_flag & P_INMEM) {
|
|
thr = FIRST_THREAD_IN_PROC(p);
|
|
if (thr != NULL)
|
|
return (thr);
|
|
}
|
|
p = LIST_NEXT(p, p_list);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
struct thread *
|
|
kdb_thr_from_pid(pid_t pid)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = LIST_FIRST(&allproc);
|
|
while (p != NULL) {
|
|
if (p->p_flag & P_INMEM && p->p_pid == pid)
|
|
return (FIRST_THREAD_IN_PROC(p));
|
|
p = LIST_NEXT(p, p_list);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
struct thread *
|
|
kdb_thr_lookup(lwpid_t tid)
|
|
{
|
|
struct thread *thr;
|
|
|
|
thr = kdb_thr_first();
|
|
while (thr != NULL && thr->td_tid != tid)
|
|
thr = kdb_thr_next(thr);
|
|
return (thr);
|
|
}
|
|
|
|
struct thread *
|
|
kdb_thr_next(struct thread *thr)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = thr->td_proc;
|
|
thr = TAILQ_NEXT(thr, td_plist);
|
|
do {
|
|
if (thr != NULL)
|
|
return (thr);
|
|
p = LIST_NEXT(p, p_list);
|
|
if (p != NULL && (p->p_flag & P_INMEM))
|
|
thr = FIRST_THREAD_IN_PROC(p);
|
|
} while (p != NULL);
|
|
return (NULL);
|
|
}
|
|
|
|
int
|
|
kdb_thr_select(struct thread *thr)
|
|
{
|
|
if (thr == NULL)
|
|
return (EINVAL);
|
|
kdb_thread = thr;
|
|
kdb_thrctx = kdb_thr_ctx(thr);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Enter the debugger due to a trap.
|
|
*/
|
|
|
|
int
|
|
kdb_trap(int type, int code, struct trapframe *tf)
|
|
{
|
|
struct kdb_dbbe *be;
|
|
register_t intr;
|
|
#ifdef SMP
|
|
int did_stop_cpus;
|
|
#endif
|
|
int handled;
|
|
|
|
be = kdb_dbbe;
|
|
if (be == NULL || be->dbbe_trap == NULL)
|
|
return (0);
|
|
|
|
/* We reenter the debugger through kdb_reenter(). */
|
|
if (kdb_active)
|
|
return (0);
|
|
|
|
intr = intr_disable();
|
|
|
|
#ifdef SMP
|
|
if ((did_stop_cpus = kdb_stop_cpus) != 0)
|
|
stop_cpus_hard(PCPU_GET(other_cpus));
|
|
#endif
|
|
|
|
kdb_active++;
|
|
|
|
kdb_frame = tf;
|
|
|
|
/* Let MD code do its thing first... */
|
|
kdb_cpu_trap(type, code);
|
|
|
|
makectx(tf, &kdb_pcb);
|
|
kdb_thr_select(curthread);
|
|
|
|
for (;;) {
|
|
handled = be->dbbe_trap(type, code);
|
|
if (be == kdb_dbbe)
|
|
break;
|
|
be = kdb_dbbe;
|
|
if (be == NULL || be->dbbe_trap == NULL)
|
|
break;
|
|
printf("Switching to %s back-end\n", be->dbbe_name);
|
|
}
|
|
|
|
kdb_active--;
|
|
|
|
#ifdef SMP
|
|
if (did_stop_cpus)
|
|
restart_cpus(stopped_cpus);
|
|
#endif
|
|
|
|
intr_restore(intr);
|
|
|
|
return (handled);
|
|
}
|