freebsd-skq/lib/libc/stdio/printfcommon.h
David Schultz 21ca178ece Add support for multibyte thousands_sep encodings, e.g., U+066C.
The integer thousands' separator code is rewritten in order to
avoid having to preallocate a buffer for the largest possible
digit string with the most possible instances of the longest
possible multibyte thousands' separator. The new version inserts
thousands' separators for integers using the same code as floating point.
2009-01-22 08:14:28 +00:00

302 lines
7.1 KiB
C

/*-
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Chris Torek.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* This file defines common routines used by both printf and wprintf.
* You must define CHAR to either char or wchar_t prior to including this.
*/
#ifndef NO_FLOATING_POINT
#define dtoa __dtoa
#define freedtoa __freedtoa
#include <float.h>
#include <math.h>
#include "floatio.h"
#include "gdtoa.h"
#define DEFPREC 6
static int exponent(CHAR *, int, CHAR);
#endif /* !NO_FLOATING_POINT */
static CHAR *__ujtoa(uintmax_t, CHAR *, int, int, const char *);
static CHAR *__ultoa(u_long, CHAR *, int, int, const char *);
#define NIOV 8
struct io_state {
FILE *fp;
struct __suio uio; /* output information: summary */
struct __siov iov[NIOV];/* ... and individual io vectors */
};
static inline void
io_init(struct io_state *iop, FILE *fp)
{
iop->uio.uio_iov = iop->iov;
iop->uio.uio_resid = 0;
iop->uio.uio_iovcnt = 0;
iop->fp = fp;
}
/*
* WARNING: The buffer passed to io_print() is not copied immediately; it must
* remain valid until io_flush() is called.
*/
static inline int
io_print(struct io_state *iop, const CHAR * __restrict ptr, int len)
{
iop->iov[iop->uio.uio_iovcnt].iov_base = (char *)ptr;
iop->iov[iop->uio.uio_iovcnt].iov_len = len;
iop->uio.uio_resid += len;
if (++iop->uio.uio_iovcnt >= NIOV)
return (__sprint(iop->fp, &iop->uio));
else
return (0);
}
/*
* Choose PADSIZE to trade efficiency vs. size. If larger printf
* fields occur frequently, increase PADSIZE and make the initialisers
* below longer.
*/
#define PADSIZE 16 /* pad chunk size */
static const CHAR blanks[PADSIZE] =
{' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' '};
static const CHAR zeroes[PADSIZE] =
{'0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0'};
/*
* Pad with blanks or zeroes. 'with' should point to either the blanks array
* or the zeroes array.
*/
static inline int
io_pad(struct io_state *iop, int howmany, const CHAR * __restrict with)
{
int n;
while (howmany > 0) {
n = (howmany >= PADSIZE) ? PADSIZE : howmany;
if (io_print(iop, with, n))
return (-1);
howmany -= n;
}
return (0);
}
/*
* Print exactly len characters of the string spanning p to ep, truncating
* or padding with 'with' as necessary.
*/
static inline int
io_printandpad(struct io_state *iop, const CHAR *p, const CHAR *ep,
int len, const CHAR * __restrict with)
{
int p_len;
p_len = ep - p;
if (p_len > len)
p_len = len;
if (p_len > 0) {
if (io_print(iop, p, p_len))
return (-1);
} else {
p_len = 0;
}
return (io_pad(iop, len - p_len, with));
}
static inline int
io_flush(struct io_state *iop)
{
return (__sprint(iop->fp, &iop->uio));
}
/*
* Convert an unsigned long to ASCII for printf purposes, returning
* a pointer to the first character of the string representation.
* Octal numbers can be forced to have a leading zero; hex numbers
* use the given digits.
*/
static CHAR *
__ultoa(u_long val, CHAR *endp, int base, int octzero, const char *xdigs)
{
CHAR *cp = endp;
long sval;
/*
* Handle the three cases separately, in the hope of getting
* better/faster code.
*/
switch (base) {
case 10:
if (val < 10) { /* many numbers are 1 digit */
*--cp = to_char(val);
return (cp);
}
/*
* On many machines, unsigned arithmetic is harder than
* signed arithmetic, so we do at most one unsigned mod and
* divide; this is sufficient to reduce the range of
* the incoming value to where signed arithmetic works.
*/
if (val > LONG_MAX) {
*--cp = to_char(val % 10);
sval = val / 10;
} else
sval = val;
do {
*--cp = to_char(sval % 10);
sval /= 10;
} while (sval != 0);
break;
case 8:
do {
*--cp = to_char(val & 7);
val >>= 3;
} while (val);
if (octzero && *cp != '0')
*--cp = '0';
break;
case 16:
do {
*--cp = xdigs[val & 15];
val >>= 4;
} while (val);
break;
default: /* oops */
abort();
}
return (cp);
}
/* Identical to __ultoa, but for intmax_t. */
static CHAR *
__ujtoa(uintmax_t val, CHAR *endp, int base, int octzero, const char *xdigs)
{
CHAR *cp = endp;
intmax_t sval;
/* quick test for small values; __ultoa is typically much faster */
/* (perhaps instead we should run until small, then call __ultoa?) */
if (val <= ULONG_MAX)
return (__ultoa((u_long)val, endp, base, octzero, xdigs));
switch (base) {
case 10:
if (val < 10) {
*--cp = to_char(val % 10);
return (cp);
}
if (val > INTMAX_MAX) {
*--cp = to_char(val % 10);
sval = val / 10;
} else
sval = val;
do {
*--cp = to_char(sval % 10);
sval /= 10;
} while (sval != 0);
break;
case 8:
do {
*--cp = to_char(val & 7);
val >>= 3;
} while (val);
if (octzero && *cp != '0')
*--cp = '0';
break;
case 16:
do {
*--cp = xdigs[val & 15];
val >>= 4;
} while (val);
break;
default:
abort();
}
return (cp);
}
#ifndef NO_FLOATING_POINT
static int
exponent(CHAR *p0, int exp, CHAR fmtch)
{
CHAR *p, *t;
CHAR expbuf[MAXEXPDIG];
p = p0;
*p++ = fmtch;
if (exp < 0) {
exp = -exp;
*p++ = '-';
}
else
*p++ = '+';
t = expbuf + MAXEXPDIG;
if (exp > 9) {
do {
*--t = to_char(exp % 10);
} while ((exp /= 10) > 9);
*--t = to_char(exp);
for (; t < expbuf + MAXEXPDIG; *p++ = *t++);
}
else {
/*
* Exponents for decimal floating point conversions
* (%[eEgG]) must be at least two characters long,
* whereas exponents for hexadecimal conversions can
* be only one character long.
*/
if (fmtch == 'e' || fmtch == 'E')
*p++ = '0';
*p++ = to_char(exp);
}
return (p - p0);
}
#endif /* !NO_FLOATING_POINT */