freebsd-skq/sys/arm/xscale/ixp425/avila_machdep.c

436 lines
14 KiB
C

/* $NetBSD: hpc_machdep.c,v 1.70 2003/09/16 08:18:22 agc Exp $ */
/*-
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* machdep.c
*
* Machine dependant functions for kernel setup
*
* This file needs a lot of work.
*
* Created : 17/09/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define _ARM32_BUS_DMA_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/cons.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/buf.h>
#include <sys/exec.h>
#include <sys/kdb.h>
#include <sys/msgbuf.h>
#include <machine/physmem.h>
#include <machine/reg.h>
#include <machine/cpu.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <machine/devmap.h>
#include <machine/vmparam.h>
#include <machine/pcb.h>
#include <machine/undefined.h>
#include <machine/machdep.h>
#include <machine/metadata.h>
#include <machine/armreg.h>
#include <machine/bus.h>
#include <sys/reboot.h>
#include <arm/xscale/ixp425/ixp425reg.h>
#include <arm/xscale/ixp425/ixp425var.h>
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_IO 1
#define KERNEL_PT_IO_NUM 3
#define KERNEL_PT_BEFOREKERN KERNEL_PT_IO + KERNEL_PT_IO_NUM
#define KERNEL_PT_AFKERNEL KERNEL_PT_BEFOREKERN + 1 /* L2 table for mapping after kernel */
#define KERNEL_PT_AFKERNEL_NUM 9
/* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
#define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
/* Physical and virtual addresses for some global pages */
struct pv_addr systempage;
struct pv_addr msgbufpv;
struct pv_addr irqstack;
struct pv_addr undstack;
struct pv_addr abtstack;
struct pv_addr kernelstack;
struct pv_addr minidataclean;
/* Static device mappings. */
static const struct arm_devmap_entry ixp425_devmap[] = {
/* Physical/Virtual address for I/O space */
{ IXP425_IO_VBASE, IXP425_IO_HWBASE, IXP425_IO_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* Expansion Bus */
{ IXP425_EXP_VBASE, IXP425_EXP_HWBASE, IXP425_EXP_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* CFI Flash on the Expansion Bus */
{ IXP425_EXP_BUS_CS0_VBASE, IXP425_EXP_BUS_CS0_HWBASE,
IXP425_EXP_BUS_CS0_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* IXP425 PCI Configuration */
{ IXP425_PCI_VBASE, IXP425_PCI_HWBASE, IXP425_PCI_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* SDRAM Controller */
{ IXP425_MCU_VBASE, IXP425_MCU_HWBASE, IXP425_MCU_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* PCI Memory Space */
{ IXP425_PCI_MEM_VBASE, IXP425_PCI_MEM_HWBASE, IXP425_PCI_MEM_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* Q-Mgr Memory Space */
{ IXP425_QMGR_VBASE, IXP425_QMGR_HWBASE, IXP425_QMGR_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
{ 0 },
};
/* Static device mappings. */
static const struct arm_devmap_entry ixp435_devmap[] = {
/* Physical/Virtual address for I/O space */
{ IXP425_IO_VBASE, IXP425_IO_HWBASE, IXP425_IO_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
{ IXP425_EXP_VBASE, IXP425_EXP_HWBASE, IXP425_EXP_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* IXP425 PCI Configuration */
{ IXP425_PCI_VBASE, IXP425_PCI_HWBASE, IXP425_PCI_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* DDRII Controller NB: mapped same place as IXP425 */
{ IXP425_MCU_VBASE, IXP435_MCU_HWBASE, IXP425_MCU_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* PCI Memory Space */
{ IXP425_PCI_MEM_VBASE, IXP425_PCI_MEM_HWBASE, IXP425_PCI_MEM_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* Q-Mgr Memory Space */
{ IXP425_QMGR_VBASE, IXP425_QMGR_HWBASE, IXP425_QMGR_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* CFI Flash on the Expansion Bus */
{ IXP425_EXP_BUS_CS0_VBASE, IXP425_EXP_BUS_CS0_HWBASE,
IXP425_EXP_BUS_CS0_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* USB1 Memory Space */
{ IXP435_USB1_VBASE, IXP435_USB1_HWBASE, IXP435_USB1_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* USB2 Memory Space */
{ IXP435_USB2_VBASE, IXP435_USB2_HWBASE, IXP435_USB2_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* GPS Memory Space */
{ CAMBRIA_GPS_VBASE, CAMBRIA_GPS_HWBASE, CAMBRIA_GPS_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
/* RS485 Memory Space */
{ CAMBRIA_RS485_VBASE, CAMBRIA_RS485_HWBASE, CAMBRIA_RS485_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_DEVICE, },
{ 0 }
};
extern vm_offset_t xscale_cache_clean_addr;
void *
initarm(struct arm_boot_params *abp)
{
#define next_chunk2(a,b) (((a) + (b)) &~ ((b)-1))
#define next_page(a) next_chunk2(a,PAGE_SIZE)
struct pv_addr kernel_l1pt;
struct pv_addr dpcpu;
int loop, i;
u_int l1pagetable;
vm_offset_t freemempos;
vm_offset_t freemem_pt;
vm_offset_t afterkern;
vm_offset_t freemem_after;
vm_offset_t lastaddr;
uint32_t memsize;
/* kernel text starts where we were loaded at boot */
#define KERNEL_TEXT_OFF (abp->abp_physaddr - PHYSADDR)
#define KERNEL_TEXT_BASE (KERNBASE + KERNEL_TEXT_OFF)
#define KERNEL_TEXT_PHYS (PHYSADDR + KERNEL_TEXT_OFF)
lastaddr = parse_boot_param(abp);
arm_physmem_kernaddr = abp->abp_physaddr;
set_cpufuncs(); /* NB: sets cputype */
pcpu_init(pcpup, 0, sizeof(struct pcpu));
PCPU_SET(curthread, &thread0);
if (envmode == 1)
kern_envp = static_env;
/* Do basic tuning, hz etc */
init_param1();
/*
* We allocate memory downwards from where we were loaded
* by RedBoot; first the L1 page table, then NUM_KERNEL_PTS
* entries in the L2 page table. Past that we re-align the
* allocation boundary so later data structures (stacks, etc)
* can be mapped with different attributes (write-back vs
* write-through). Note this leaves a gap for expansion
* (or might be repurposed).
*/
freemempos = abp->abp_physaddr;
/* macros to simplify initial memory allocation */
#define alloc_pages(var, np) do { \
freemempos -= (np * PAGE_SIZE); \
(var) = freemempos; \
/* NB: this works because locore maps PA=VA */ \
memset((char *)(var), 0, ((np) * PAGE_SIZE)); \
} while (0)
#define valloc_pages(var, np) do { \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = (var).pv_pa + (KERNVIRTADDR - abp->abp_physaddr); \
} while (0)
/* force L1 page table alignment */
while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
freemempos -= PAGE_SIZE;
/* allocate contiguous L1 page table */
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
/* now allocate L2 page tables; they are linked to L1 below */
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
valloc_pages(kernel_pt_table[loop],
L2_TABLE_SIZE / PAGE_SIZE);
} else {
kernel_pt_table[loop].pv_pa = freemempos +
(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
L2_TABLE_SIZE_REAL;
kernel_pt_table[loop].pv_va =
kernel_pt_table[loop].pv_pa +
(KERNVIRTADDR - abp->abp_physaddr);
}
}
freemem_pt = freemempos; /* base of allocated pt's */
/*
* Re-align allocation boundary so we can map the area
* write-back instead of write-through for the stacks and
* related structures allocated below.
*/
freemempos = PHYSADDR + 0x100000;
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
valloc_pages(systempage, 1);
/* Allocate dynamic per-cpu area. */
valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
dpcpu_init((void *)dpcpu.pv_va, 0);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, KSTACK_PAGES);
alloc_pages(minidataclean.pv_pa, 1);
valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
/*
* Now construct the L1 page table. First map the L2
* page tables into the L1 so we can replace L1 mappings
* later on if necessary
*/
l1pagetable = kernel_l1pt.pv_va;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1),
&kernel_pt_table[KERNEL_PT_SYS]);
pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE,
&kernel_pt_table[KERNEL_PT_IO]);
pmap_link_l2pt(l1pagetable, IXP425_MCU_VBASE,
&kernel_pt_table[KERNEL_PT_IO + 1]);
pmap_link_l2pt(l1pagetable, IXP425_PCI_MEM_VBASE,
&kernel_pt_table[KERNEL_PT_IO + 2]);
pmap_link_l2pt(l1pagetable, KERNBASE,
&kernel_pt_table[KERNEL_PT_BEFOREKERN]);
pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, 0x100000,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, PHYSADDR + 0x100000,
0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_PHYS,
next_chunk2(((uint32_t)lastaddr) - KERNEL_TEXT_BASE, L1_S_SIZE),
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
freemem_after = next_page((int)lastaddr);
afterkern = round_page(next_chunk2((vm_offset_t)lastaddr, L1_S_SIZE));
for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
&kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
}
pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the Mini-Data cache clean area. */
xscale_setup_minidata(l1pagetable, afterkern,
minidataclean.pv_pa);
/* Map the vector page. */
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
if (cpu_is_ixp43x())
arm_devmap_bootstrap(l1pagetable, ixp435_devmap);
else
arm_devmap_bootstrap(l1pagetable, ixp425_devmap);
/*
* Give the XScale global cache clean code an appropriately
* sized chunk of unmapped VA space starting at 0xff000000
* (our device mappings end before this address).
*/
xscale_cache_clean_addr = 0xff000000U;
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
set_stackptrs(0);
/*
* We must now clean the cache again....
* Cleaning may be done by reading new data to displace any
* dirty data in the cache. This will have happened in setttb()
* but since we are boot strapping the addresses used for the read
* may have just been remapped and thus the cache could be out
* of sync. A re-clean after the switch will cure this.
* After booting there are no gross relocations of the kernel thus
* this problem will not occur after initarm().
*/
cpu_idcache_wbinv_all();
cpu_setup("");
/* ready to setup the console (XXX move earlier if possible) */
cninit();
/*
* Fetch the RAM size from the MCU registers. The
* expansion bus was mapped above so we can now read 'em.
*/
if (cpu_is_ixp43x())
memsize = ixp435_ddram_size();
else
memsize = ixp425_sdram_size();
undefined_init();
init_proc0(kernelstack.pv_va);
arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
pmap_curmaxkvaddr = afterkern + PAGE_SIZE;
vm_max_kernel_address = 0xe0000000;
pmap_bootstrap(pmap_curmaxkvaddr, &kernel_l1pt);
msgbufp = (void*)msgbufpv.pv_va;
msgbufinit(msgbufp, msgbufsize);
mutex_init();
/*
* Add the physical ram we have available.
*
* Exclude the kernel, and all the things we allocated which immediately
* follow the kernel, from the VM allocation pool but not from crash
* dumps. virtual_avail is a global variable which tracks the kva we've
* "allocated" while setting up pmaps.
*
* Prepare the list of physical memory available to the vm subsystem.
*/
arm_physmem_hardware_region(PHYSADDR, memsize);
arm_physmem_exclude_region(freemem_pt, KERNPHYSADDR -
freemem_pt, EXFLAG_NOALLOC);
arm_physmem_exclude_region(freemempos, KERNPHYSADDR - 0x100000 -
freemempos, EXFLAG_NOALLOC);
arm_physmem_exclude_region(abp->abp_physaddr,
virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
arm_physmem_init_kernel_globals();
init_param2(physmem);
kdb_init();
/* use static kernel environment if so configured */
if (envmode == 1)
kern_envp = static_env;
return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
sizeof(struct pcb)));
#undef next_page
#undef next_chunk2
}