freebsd-skq/sys/net/rtsock.c
sam c997776d7c replace explicit changes to rt_refcnt by RT_ADDREF and RT_REMREF
macros that expand to include assertions when the system is built
with INVARIANTS

Supported by:	FreeBSD Foundation
2003-11-08 23:36:32 +00:00

1098 lines
27 KiB
C

/*
* Copyright (c) 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)rtsock.c 8.7 (Berkeley) 10/12/95
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/domain.h>
#include <sys/kernel.h>
#include <sys/jail.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <net/if.h>
#include <net/raw_cb.h>
#include <net/route.h>
MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
/* NB: these are not modified */
static struct sockaddr route_dst = { 2, PF_ROUTE, };
static struct sockaddr route_src = { 2, PF_ROUTE, };
static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, };
static struct {
int ip_count; /* attacked w/ AF_INET */
int ip6_count; /* attached w/ AF_INET6 */
int ipx_count; /* attached w/ AF_IPX */
int any_count; /* total attached */
} route_cb;
struct mtx rtsock_mtx;
MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
#define RTSOCK_LOCK() mtx_lock(&rtsock_mtx)
#define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
#define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED)
struct walkarg {
int w_tmemsize;
int w_op, w_arg;
caddr_t w_tmem;
struct sysctl_req *w_req;
};
static struct mbuf *rt_msg1(int, struct rt_addrinfo *);
static int rt_msg2(int, struct rt_addrinfo *, caddr_t, struct walkarg *);
static int rt_xaddrs(caddr_t, caddr_t, struct rt_addrinfo *);
static int sysctl_dumpentry(struct radix_node *rn, void *vw);
static int sysctl_iflist(int af, struct walkarg *w);
static int route_output(struct mbuf *, struct socket *);
static void rt_setmetrics(u_long, struct rt_metrics *, struct rt_metrics *);
static void rt_dispatch(struct mbuf *, struct sockaddr *);
/*
* It really doesn't make any sense at all for this code to share much
* with raw_usrreq.c, since its functionality is so restricted. XXX
*/
static int
rts_abort(struct socket *so)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_abort(so);
splx(s);
return error;
}
/* pru_accept is EOPNOTSUPP */
static int
rts_attach(struct socket *so, int proto, struct thread *td)
{
struct rawcb *rp;
int s, error;
if (sotorawcb(so) != 0)
return EISCONN; /* XXX panic? */
/* XXX */
MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
if (rp == 0)
return ENOBUFS;
/*
* The splnet() is necessary to block protocols from sending
* error notifications (like RTM_REDIRECT or RTM_LOSING) while
* this PCB is extant but incompletely initialized.
* Probably we should try to do more of this work beforehand and
* eliminate the spl.
*/
s = splnet();
so->so_pcb = (caddr_t)rp;
error = raw_attach(so, proto);
rp = sotorawcb(so);
if (error) {
splx(s);
so->so_pcb = NULL;
free(rp, M_PCB);
return error;
}
RTSOCK_LOCK();
switch(rp->rcb_proto.sp_protocol) {
case AF_INET:
route_cb.ip_count++;
break;
case AF_INET6:
route_cb.ip6_count++;
break;
case AF_IPX:
route_cb.ipx_count++;
break;
}
rp->rcb_faddr = &route_src;
route_cb.any_count++;
RTSOCK_UNLOCK();
soisconnected(so);
so->so_options |= SO_USELOOPBACK;
splx(s);
return 0;
}
static int
rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_bind(so, nam, td); /* xxx just EINVAL */
splx(s);
return error;
}
static int
rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_connect(so, nam, td); /* XXX just EINVAL */
splx(s);
return error;
}
/* pru_connect2 is EOPNOTSUPP */
/* pru_control is EOPNOTSUPP */
static int
rts_detach(struct socket *so)
{
struct rawcb *rp = sotorawcb(so);
int s, error;
s = splnet();
if (rp != 0) {
RTSOCK_LOCK();
switch(rp->rcb_proto.sp_protocol) {
case AF_INET:
route_cb.ip_count--;
break;
case AF_INET6:
route_cb.ip6_count--;
break;
case AF_IPX:
route_cb.ipx_count--;
break;
}
route_cb.any_count--;
RTSOCK_UNLOCK();
}
error = raw_usrreqs.pru_detach(so);
splx(s);
return error;
}
static int
rts_disconnect(struct socket *so)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_disconnect(so);
splx(s);
return error;
}
/* pru_listen is EOPNOTSUPP */
static int
rts_peeraddr(struct socket *so, struct sockaddr **nam)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_peeraddr(so, nam);
splx(s);
return error;
}
/* pru_rcvd is EOPNOTSUPP */
/* pru_rcvoob is EOPNOTSUPP */
static int
rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct thread *td)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_send(so, flags, m, nam, control, td);
splx(s);
return error;
}
/* pru_sense is null */
static int
rts_shutdown(struct socket *so)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_shutdown(so);
splx(s);
return error;
}
static int
rts_sockaddr(struct socket *so, struct sockaddr **nam)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_sockaddr(so, nam);
splx(s);
return error;
}
static struct pr_usrreqs route_usrreqs = {
rts_abort, pru_accept_notsupp, rts_attach, rts_bind, rts_connect,
pru_connect2_notsupp, pru_control_notsupp, rts_detach, rts_disconnect,
pru_listen_notsupp, rts_peeraddr, pru_rcvd_notsupp, pru_rcvoob_notsupp,
rts_send, pru_sense_null, rts_shutdown, rts_sockaddr,
sosend, soreceive, sopoll
};
/*ARGSUSED*/
static int
route_output(m, so)
register struct mbuf *m;
struct socket *so;
{
#define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
register struct rt_msghdr *rtm = 0;
register struct rtentry *rt = 0;
struct radix_node_head *rnh;
struct rt_addrinfo info;
int len, error = 0;
struct ifnet *ifp = 0;
struct ifaddr *ifa = 0;
#define senderr(e) { error = e; goto flush;}
if (m == 0 || ((m->m_len < sizeof(long)) &&
(m = m_pullup(m, sizeof(long))) == 0))
return (ENOBUFS);
if ((m->m_flags & M_PKTHDR) == 0)
panic("route_output");
len = m->m_pkthdr.len;
if (len < sizeof(*rtm) ||
len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
info.rti_info[RTAX_DST] = 0;
senderr(EINVAL);
}
R_Malloc(rtm, struct rt_msghdr *, len);
if (rtm == 0) {
info.rti_info[RTAX_DST] = 0;
senderr(ENOBUFS);
}
m_copydata(m, 0, len, (caddr_t)rtm);
if (rtm->rtm_version != RTM_VERSION) {
info.rti_info[RTAX_DST] = 0;
senderr(EPROTONOSUPPORT);
}
rtm->rtm_pid = curproc->p_pid;
bzero(&info, sizeof(info));
info.rti_addrs = rtm->rtm_addrs;
if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
info.rti_info[RTAX_DST] = 0;
senderr(EINVAL);
}
info.rti_flags = rtm->rtm_flags;
if (info.rti_info[RTAX_DST] == 0 ||
info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
(info.rti_info[RTAX_GATEWAY] != 0 &&
info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
senderr(EINVAL);
if (info.rti_info[RTAX_GENMASK]) {
struct radix_node *t;
t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1);
if (t && Bcmp((caddr_t *) info.rti_info[RTAX_GENMASK] + 1,
(caddr_t *)t->rn_key + 1,
*(u_char *)t->rn_key - 1) == 0)
info.rti_info[RTAX_GENMASK] =
(struct sockaddr *)(t->rn_key);
else
senderr(ENOBUFS);
}
/*
* Verify that the caller has the appropriate privilege; RTM_GET
* is the only operation the non-superuser is allowed.
*/
if (rtm->rtm_type != RTM_GET && (error = suser(curthread)) != 0)
senderr(error);
switch (rtm->rtm_type) {
struct rtentry *saved_nrt;
case RTM_ADD:
if (info.rti_info[RTAX_GATEWAY] == 0)
senderr(EINVAL);
saved_nrt = 0;
error = rtrequest1(RTM_ADD, &info, &saved_nrt);
if (error == 0 && saved_nrt) {
RT_LOCK(saved_nrt);
rt_setmetrics(rtm->rtm_inits,
&rtm->rtm_rmx, &saved_nrt->rt_rmx);
saved_nrt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
saved_nrt->rt_rmx.rmx_locks |=
(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
RT_REMREF(saved_nrt);
saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK];
RT_UNLOCK(saved_nrt);
}
break;
case RTM_DELETE:
saved_nrt = 0;
error = rtrequest1(RTM_DELETE, &info, &saved_nrt);
if (error == 0) {
RT_LOCK(saved_nrt);
rt = saved_nrt;
goto report;
}
break;
case RTM_GET:
case RTM_CHANGE:
case RTM_LOCK:
rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family];
if (rnh == 0)
senderr(EAFNOSUPPORT);
RADIX_NODE_HEAD_LOCK(rnh);
rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST],
info.rti_info[RTAX_NETMASK], rnh);
RADIX_NODE_HEAD_UNLOCK(rnh);
if (rt == NULL) /* XXX looks bogus */
senderr(ESRCH);
RT_LOCK(rt);
RT_ADDREF(rt);
switch(rtm->rtm_type) {
case RTM_GET:
report:
RT_LOCK_ASSERT(rt);
info.rti_info[RTAX_DST] = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
ifp = rt->rt_ifp;
if (ifp) {
info.rti_info[RTAX_IFP] = TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr;
info.rti_info[RTAX_IFA] =
rt->rt_ifa->ifa_addr;
if (ifp->if_flags & IFF_POINTOPOINT)
info.rti_info[RTAX_BRD] =
rt->rt_ifa->ifa_dstaddr;
rtm->rtm_index = ifp->if_index;
} else {
info.rti_info[RTAX_IFP] = 0;
info.rti_info[RTAX_IFA] = 0;
}
}
len = rt_msg2(rtm->rtm_type, &info, (caddr_t)0,
(struct walkarg *)0);
if (len > rtm->rtm_msglen) {
struct rt_msghdr *new_rtm;
R_Malloc(new_rtm, struct rt_msghdr *, len);
if (new_rtm == 0) {
RT_UNLOCK(rt);
senderr(ENOBUFS);
}
Bcopy(rtm, new_rtm, rtm->rtm_msglen);
Free(rtm); rtm = new_rtm;
}
(void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm,
(struct walkarg *)0);
rtm->rtm_flags = rt->rt_flags;
rtm->rtm_rmx = rt->rt_rmx;
rtm->rtm_addrs = info.rti_addrs;
break;
case RTM_CHANGE:
/*
* New gateway could require new ifaddr, ifp;
* flags may also be different; ifp may be specified
* by ll sockaddr when protocol address is ambiguous
*/
if (((rt->rt_flags & RTF_GATEWAY) &&
info.rti_info[RTAX_GATEWAY] != NULL) ||
info.rti_info[RTAX_IFP] != NULL ||
(info.rti_info[RTAX_IFA] != NULL &&
!sa_equal(info.rti_info[RTAX_IFA],
rt->rt_ifa->ifa_addr))) {
if ((error = rt_getifa(&info)) != 0) {
RT_UNLOCK(rt);
senderr(error);
}
}
if (info.rti_info[RTAX_GATEWAY] != NULL &&
(error = rt_setgate(rt, rt_key(rt),
info.rti_info[RTAX_GATEWAY])) != 0) {
RT_UNLOCK(rt);
senderr(error);
}
if ((ifa = info.rti_ifa) != NULL) {
struct ifaddr *oifa = rt->rt_ifa;
if (oifa != ifa) {
if (oifa) {
if (oifa->ifa_rtrequest)
oifa->ifa_rtrequest(
RTM_DELETE, rt,
&info);
IFAFREE(oifa);
}
IFAREF(ifa);
rt->rt_ifa = ifa;
rt->rt_ifp = info.rti_ifp;
}
}
rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
&rt->rt_rmx);
if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
if (info.rti_info[RTAX_GENMASK])
rt->rt_genmask = info.rti_info[RTAX_GENMASK];
/* FALLTHROUGH */
case RTM_LOCK:
rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
rt->rt_rmx.rmx_locks |=
(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
break;
}
RT_UNLOCK(rt);
break;
default:
senderr(EOPNOTSUPP);
}
flush:
if (rtm) {
if (error)
rtm->rtm_errno = error;
else
rtm->rtm_flags |= RTF_DONE;
}
if (rt) /* XXX can this be true? */
RTFREE(rt);
{
register struct rawcb *rp = 0;
/*
* Check to see if we don't want our own messages.
*/
if ((so->so_options & SO_USELOOPBACK) == 0) {
if (route_cb.any_count <= 1) {
if (rtm)
Free(rtm);
m_freem(m);
return (error);
}
/* There is another listener, so construct message */
rp = sotorawcb(so);
}
if (rtm) {
m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
if (m->m_pkthdr.len < rtm->rtm_msglen) {
m_freem(m);
m = NULL;
} else if (m->m_pkthdr.len > rtm->rtm_msglen)
m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
Free(rtm);
}
if (m) {
if (rp) {
/*
* XXX insure we don't get a copy by
* invalidating our protocol
*/
unsigned short family = rp->rcb_proto.sp_family;
rp->rcb_proto.sp_family = 0;
rt_dispatch(m, info.rti_info[RTAX_DST]);
rp->rcb_proto.sp_family = family;
} else
rt_dispatch(m, info.rti_info[RTAX_DST]);
}
}
return (error);
#undef sa_equal
}
static void
rt_setmetrics(u_long which, struct rt_metrics *in, struct rt_metrics *out)
{
#define metric(f, e) if (which & (f)) out->e = in->e;
metric(RTV_RPIPE, rmx_recvpipe);
metric(RTV_SPIPE, rmx_sendpipe);
metric(RTV_SSTHRESH, rmx_ssthresh);
metric(RTV_RTT, rmx_rtt);
metric(RTV_RTTVAR, rmx_rttvar);
metric(RTV_HOPCOUNT, rmx_hopcount);
metric(RTV_MTU, rmx_mtu);
metric(RTV_EXPIRE, rmx_expire);
#undef metric
}
#define ROUNDUP(a) \
((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
/*
* Extract the addresses of the passed sockaddrs.
* Do a little sanity checking so as to avoid bad memory references.
* This data is derived straight from userland.
*/
static int
rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
{
#define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len))
register struct sockaddr *sa;
register int i;
for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
if ((rtinfo->rti_addrs & (1 << i)) == 0)
continue;
sa = (struct sockaddr *)cp;
/*
* It won't fit.
*/
if (cp + sa->sa_len > cplim)
return (EINVAL);
/*
* there are no more.. quit now
* If there are more bits, they are in error.
* I've seen this. route(1) can evidently generate these.
* This causes kernel to core dump.
* for compatibility, If we see this, point to a safe address.
*/
if (sa->sa_len == 0) {
rtinfo->rti_info[i] = &sa_zero;
return (0); /* should be EINVAL but for compat */
}
/* accept it */
rtinfo->rti_info[i] = sa;
ADVANCE(cp, sa);
}
return (0);
#undef ADVANCE
}
static struct mbuf *
rt_msg1(int type, struct rt_addrinfo *rtinfo)
{
register struct rt_msghdr *rtm;
register struct mbuf *m;
register int i;
register struct sockaddr *sa;
int len, dlen;
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
case RTM_DELMADDR:
case RTM_NEWMADDR:
len = sizeof(struct ifma_msghdr);
break;
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
case RTM_IFANNOUNCE:
len = sizeof(struct if_announcemsghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
if (len > MCLBYTES)
panic("rt_msg1");
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m && len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
m = NULL;
}
}
if (m == 0)
return (m);
m->m_pkthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = 0;
rtm = mtod(m, struct rt_msghdr *);
bzero((caddr_t)rtm, len);
for (i = 0; i < RTAX_MAX; i++) {
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = ROUNDUP(sa->sa_len);
m_copyback(m, len, dlen, (caddr_t)sa);
len += dlen;
}
if (m->m_pkthdr.len != len) {
m_freem(m);
return (NULL);
}
rtm->rtm_msglen = len;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
return (m);
}
static int
rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
{
register int i;
int len, dlen, second_time = 0;
caddr_t cp0;
rtinfo->rti_addrs = 0;
again:
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
cp0 = cp;
if (cp0)
cp += len;
for (i = 0; i < RTAX_MAX; i++) {
register struct sockaddr *sa;
if ((sa = rtinfo->rti_info[i]) == 0)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = ROUNDUP(sa->sa_len);
if (cp) {
bcopy((caddr_t)sa, cp, (unsigned)dlen);
cp += dlen;
}
len += dlen;
}
len = ALIGN(len);
if (cp == 0 && w != NULL && !second_time) {
register struct walkarg *rw = w;
if (rw->w_req) {
if (rw->w_tmemsize < len) {
if (rw->w_tmem)
free(rw->w_tmem, M_RTABLE);
rw->w_tmem = (caddr_t)
malloc(len, M_RTABLE, M_NOWAIT);
if (rw->w_tmem)
rw->w_tmemsize = len;
}
if (rw->w_tmem) {
cp = rw->w_tmem;
second_time = 1;
goto again;
}
}
}
if (cp) {
register struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
rtm->rtm_msglen = len;
}
return (len);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that a redirect has occured, a routing lookup
* has failed, or that a protocol has detected timeouts to a particular
* destination.
*/
void
rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
{
struct rt_msghdr *rtm;
struct mbuf *m;
struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
if (route_cb.any_count == 0)
return;
m = rt_msg1(type, rtinfo);
if (m == 0)
return;
rtm = mtod(m, struct rt_msghdr *);
rtm->rtm_flags = RTF_DONE | flags;
rtm->rtm_errno = error;
rtm->rtm_addrs = rtinfo->rti_addrs;
rt_dispatch(m, sa);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that the status of a network interface has changed.
*/
void
rt_ifmsg(struct ifnet *ifp)
{
struct if_msghdr *ifm;
struct mbuf *m;
struct rt_addrinfo info;
if (route_cb.any_count == 0)
return;
bzero((caddr_t)&info, sizeof(info));
m = rt_msg1(RTM_IFINFO, &info);
if (m == 0)
return;
ifm = mtod(m, struct if_msghdr *);
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags;
ifm->ifm_data = ifp->if_data;
ifm->ifm_addrs = 0;
rt_dispatch(m, NULL);
}
/*
* This is called to generate messages from the routing socket
* indicating a network interface has had addresses associated with it.
* if we ever reverse the logic and replace messages TO the routing
* socket indicate a request to configure interfaces, then it will
* be unnecessary as the routing socket will automatically generate
* copies of it.
*/
void
rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
{
struct rt_addrinfo info;
struct sockaddr *sa = 0;
int pass;
struct mbuf *m = 0;
struct ifnet *ifp = ifa->ifa_ifp;
if (route_cb.any_count == 0)
return;
for (pass = 1; pass < 3; pass++) {
bzero((caddr_t)&info, sizeof(info));
if ((cmd == RTM_ADD && pass == 1) ||
(cmd == RTM_DELETE && pass == 2)) {
register struct ifa_msghdr *ifam;
int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
info.rti_info[RTAX_IFP] = TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
if ((m = rt_msg1(ncmd, &info)) == NULL)
continue;
ifam = mtod(m, struct ifa_msghdr *);
ifam->ifam_index = ifp->if_index;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_addrs = info.rti_addrs;
}
if ((cmd == RTM_ADD && pass == 2) ||
(cmd == RTM_DELETE && pass == 1)) {
register struct rt_msghdr *rtm;
if (rt == 0)
continue;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_DST] = sa = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
if ((m = rt_msg1(cmd, &info)) == NULL)
continue;
rtm = mtod(m, struct rt_msghdr *);
rtm->rtm_index = ifp->if_index;
rtm->rtm_flags |= rt->rt_flags;
rtm->rtm_errno = error;
rtm->rtm_addrs = info.rti_addrs;
}
rt_dispatch(m, sa);
}
}
/*
* This is the analogue to the rt_newaddrmsg which performs the same
* function but for multicast group memberhips. This is easier since
* there is no route state to worry about.
*/
void
rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
{
struct rt_addrinfo info;
struct mbuf *m = 0;
struct ifnet *ifp = ifma->ifma_ifp;
struct ifma_msghdr *ifmam;
if (route_cb.any_count == 0)
return;
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_IFA] = ifma->ifma_addr;
if (ifp && TAILQ_FIRST(&ifp->if_addrhead))
info.rti_info[RTAX_IFP] =
TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr;
else
info.rti_info[RTAX_IFP] = NULL;
/*
* If a link-layer address is present, present it as a ``gateway''
* (similarly to how ARP entries, e.g., are presented).
*/
info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
m = rt_msg1(cmd, &info);
if (m == NULL)
return;
ifmam = mtod(m, struct ifma_msghdr *);
ifmam->ifmam_index = ifp->if_index;
ifmam->ifmam_addrs = info.rti_addrs;
rt_dispatch(m, ifma->ifma_addr);
}
/*
* This is called to generate routing socket messages indicating
* network interface arrival and departure.
*/
void
rt_ifannouncemsg(struct ifnet *ifp, int what)
{
struct if_announcemsghdr *ifan;
struct mbuf *m;
struct rt_addrinfo info;
if (route_cb.any_count == 0)
return;
bzero((caddr_t)&info, sizeof(info));
m = rt_msg1(RTM_IFANNOUNCE, &info);
if (m == NULL)
return;
ifan = mtod(m, struct if_announcemsghdr *);
ifan->ifan_index = ifp->if_index;
strlcpy(ifan->ifan_name, ifp->if_xname, sizeof(ifan->ifan_name));
ifan->ifan_what = what;
rt_dispatch(m, NULL);
}
static void
rt_dispatch(struct mbuf *m, struct sockaddr *sa)
{
struct sockproto route_proto;
route_proto.sp_family = PF_ROUTE;
route_proto.sp_protocol = sa ? sa->sa_family : 0;
raw_input(m, &route_proto, &route_src, &route_dst);
}
/*
* This is used in dumping the kernel table via sysctl().
*/
static int
sysctl_dumpentry(struct radix_node *rn, void *vw)
{
struct walkarg *w = vw;
struct rtentry *rt = (struct rtentry *)rn;
int error = 0, size;
struct rt_addrinfo info;
if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
return 0;
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_DST] = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
if (rt->rt_ifp) {
info.rti_info[RTAX_IFP] =
TAILQ_FIRST(&rt->rt_ifp->if_addrhead)->ifa_addr;
info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
}
size = rt_msg2(RTM_GET, &info, 0, w);
if (w->w_req && w->w_tmem) {
struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
rtm->rtm_flags = rt->rt_flags;
rtm->rtm_use = rt->rt_use;
rtm->rtm_rmx = rt->rt_rmx;
rtm->rtm_index = rt->rt_ifp->if_index;
rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
rtm->rtm_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
return (error);
}
return (error);
}
static int
sysctl_iflist(int af, struct walkarg *w)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct rt_addrinfo info;
int len, error = 0;
bzero((caddr_t)&info, sizeof(info));
/* IFNET_RLOCK(); */ /* could sleep XXX */
TAILQ_FOREACH(ifp, &ifnet, if_link) {
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
ifa = TAILQ_FIRST(&ifp->if_addrhead);
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
len = rt_msg2(RTM_IFINFO, &info, (caddr_t)0, w);
info.rti_info[RTAX_IFP] = 0;
if (w->w_req && w->w_tmem) {
struct if_msghdr *ifm;
ifm = (struct if_msghdr *)w->w_tmem;
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags;
ifm->ifm_data = ifp->if_data;
ifm->ifm_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len);
if (error)
goto done;
}
while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != 0) {
if (af && af != ifa->ifa_addr->sa_family)
continue;
if (jailed(curthread->td_ucred) &&
prison_if(curthread->td_ucred, ifa->ifa_addr))
continue;
info.rti_info[RTAX_IFA] = ifa->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
len = rt_msg2(RTM_NEWADDR, &info, 0, w);
if (w->w_req && w->w_tmem) {
struct ifa_msghdr *ifam;
ifam = (struct ifa_msghdr *)w->w_tmem;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
if (error)
goto done;
}
}
info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
info.rti_info[RTAX_BRD] = 0;
}
done:
/* IFNET_RUNLOCK(); */ /* XXX */
return (error);
}
static int
sysctl_rtsock(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct radix_node_head *rnh;
int i, s, error = EINVAL;
u_char af;
struct walkarg w;
name ++;
namelen--;
if (req->newptr)
return (EPERM);
if (namelen != 3)
return ((namelen < 3) ? EISDIR : ENOTDIR);
af = name[0];
if (af > AF_MAX)
return (EINVAL);
Bzero(&w, sizeof(w));
w.w_op = name[1];
w.w_arg = name[2];
w.w_req = req;
s = splnet();
switch (w.w_op) {
case NET_RT_DUMP:
case NET_RT_FLAGS:
if (af != 0) {
if ((rnh = rt_tables[af]) != NULL) {
/* RADIX_NODE_HEAD_LOCK(rnh); */
error = rnh->rnh_walktree(rnh,
sysctl_dumpentry, &w);/* could sleep XXX */
/* RADIX_NODE_HEAD_UNLOCK(rnh); */
} else
error = EAFNOSUPPORT;
} else {
for (i = 1; i <= AF_MAX; i++)
if ((rnh = rt_tables[i]) != NULL) {
/* RADIX_NODE_HEAD_LOCK(rnh); */
error = rnh->rnh_walktree(rnh,
sysctl_dumpentry, &w);
/* RADIX_NODE_HEAD_UNLOCK(rnh); */
if (error)
break;
}
}
break;
case NET_RT_IFLIST:
error = sysctl_iflist(af, &w);
}
splx(s);
if (w.w_tmem)
free(w.w_tmem, M_RTABLE);
return (error);
}
SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
/*
* Definitions of protocols supported in the ROUTE domain.
*/
extern struct domain routedomain; /* or at least forward */
static struct protosw routesw[] = {
{ SOCK_RAW, &routedomain, 0, PR_ATOMIC|PR_ADDR,
0, route_output, raw_ctlinput, 0,
0,
raw_init, 0, 0, 0,
&route_usrreqs
}
};
static struct domain routedomain =
{ PF_ROUTE, "route", 0, 0, 0,
routesw, &routesw[sizeof(routesw)/sizeof(routesw[0])] };
DOMAIN_SET(route);