freebsd-skq/sys/netinet/ip_var.h
Luigi Rizzo 2b25acc158 Remove (almost all) global variables that were used to hold
packet forwarding state ("annotations") during ip processing.
The code is considerably cleaner now.

The variables removed by this change are:

        ip_divert_cookie        used by divert sockets
        ip_fw_fwd_addr          used for transparent ip redirection
        last_pkt                used by dynamic pipes in dummynet

Removal of the first two has been done by carrying the annotations
into volatile structs prepended to the mbuf chains, and adding
appropriate code to add/remove annotations in the routines which
make use of them, i.e. ip_input(), ip_output(), tcp_input(),
bdg_forward(), ether_demux(), ether_output_frame(), div_output().

On passing, remove a bug in divert handling of fragmented packet.
Now it is the fragment at offset 0 which sets the divert status of
the whole packet, whereas formerly it was the last incoming fragment
to decide.

Removal of last_pkt required a change in the interface of ip_fw_chk()
and dummynet_io(). On passing, use the same mechanism for dummynet
annotations and for divert/forward annotations.

option IPFIREWALL_FORWARD is effectively useless, the code to
implement it is very small and is now in by default to avoid the
obfuscation of conditionally compiled code.

NOTES:
 * there is at least one global variable left, sro_fwd, in ip_output().
   I am not sure if/how this can be removed.

 * I have deliberately avoided gratuitous style changes in this commit
   to avoid cluttering the diffs. Minor stule cleanup will likely be
   necessary

 * this commit only focused on the IP layer. I am sure there is a
   number of global variables used in the TCP and maybe UDP stack.

 * despite the number of files touched, there are absolutely no API's
   or data structures changed by this commit (except the interfaces of
   ip_fw_chk() and dummynet_io(), which are internal anyways), so
   an MFC is quite safe and unintrusive (and desirable, given the
   improved readability of the code).

MFC after: 10 days
2002-06-22 11:51:02 +00:00

206 lines
7.8 KiB
C

/*
* Copyright (c) 1982, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_var.h 8.2 (Berkeley) 1/9/95
* $FreeBSD$
*/
#ifndef _NETINET_IP_VAR_H_
#define _NETINET_IP_VAR_H_
#include <sys/queue.h>
/*
* Overlay for ip header used by other protocols (tcp, udp).
*/
struct ipovly {
u_char ih_x1[9]; /* (unused) */
u_char ih_pr; /* protocol */
u_short ih_len; /* protocol length */
struct in_addr ih_src; /* source internet address */
struct in_addr ih_dst; /* destination internet address */
};
/*
* Ip reassembly queue structure. Each fragment
* being reassembled is attached to one of these structures.
* They are timed out after ipq_ttl drops to 0, and may also
* be reclaimed if memory becomes tight.
*/
struct ipq {
TAILQ_ENTRY(ipq) ipq_list; /* to other reass headers */
u_char ipq_ttl; /* time for reass q to live */
u_char ipq_p; /* protocol of this fragment */
u_short ipq_id; /* sequence id for reassembly */
struct mbuf *ipq_frags; /* to ip headers of fragments */
struct in_addr ipq_src,ipq_dst;
#ifdef IPDIVERT
u_int32_t ipq_div_info; /* ipfw divert port & flags */
u_int16_t ipq_div_cookie; /* ipfw divert cookie */
#endif
};
/*
* Structure stored in mbuf in inpcb.ip_options
* and passed to ip_output when ip options are in use.
* The actual length of the options (including ipopt_dst)
* is in m_len.
*/
#define MAX_IPOPTLEN 40
struct ipoption {
struct in_addr ipopt_dst; /* first-hop dst if source routed */
char ipopt_list[MAX_IPOPTLEN]; /* options proper */
};
/*
* Structure attached to inpcb.ip_moptions and
* passed to ip_output when IP multicast options are in use.
*/
struct ip_moptions {
struct ifnet *imo_multicast_ifp; /* ifp for outgoing multicasts */
struct in_addr imo_multicast_addr; /* ifindex/addr on MULTICAST_IF */
u_char imo_multicast_ttl; /* TTL for outgoing multicasts */
u_char imo_multicast_loop; /* 1 => hear sends if a member */
u_short imo_num_memberships; /* no. memberships this socket */
struct in_multi *imo_membership[IP_MAX_MEMBERSHIPS];
u_long imo_multicast_vif; /* vif num outgoing multicasts */
};
struct ipstat {
u_long ips_total; /* total packets received */
u_long ips_badsum; /* checksum bad */
u_long ips_tooshort; /* packet too short */
u_long ips_toosmall; /* not enough data */
u_long ips_badhlen; /* ip header length < data size */
u_long ips_badlen; /* ip length < ip header length */
u_long ips_fragments; /* fragments received */
u_long ips_fragdropped; /* frags dropped (dups, out of space) */
u_long ips_fragtimeout; /* fragments timed out */
u_long ips_forward; /* packets forwarded */
u_long ips_fastforward; /* packets fast forwarded */
u_long ips_cantforward; /* packets rcvd for unreachable dest */
u_long ips_redirectsent; /* packets forwarded on same net */
u_long ips_noproto; /* unknown or unsupported protocol */
u_long ips_delivered; /* datagrams delivered to upper level*/
u_long ips_localout; /* total ip packets generated here */
u_long ips_odropped; /* lost packets due to nobufs, etc. */
u_long ips_reassembled; /* total packets reassembled ok */
u_long ips_fragmented; /* datagrams successfully fragmented */
u_long ips_ofragments; /* output fragments created */
u_long ips_cantfrag; /* don't fragment flag was set, etc. */
u_long ips_badoptions; /* error in option processing */
u_long ips_noroute; /* packets discarded due to no route */
u_long ips_badvers; /* ip version != 4 */
u_long ips_rawout; /* total raw ip packets generated */
u_long ips_toolong; /* ip length > max ip packet size */
u_long ips_notmember; /* multicasts for unregistered grps */
u_long ips_nogif; /* no match gif found */
u_long ips_badaddr; /* invalid address on header */
};
#ifdef _KERNEL
/* flags passed to ip_output as last parameter */
#define IP_FORWARDING 0x1 /* most of ip header exists */
#define IP_RAWOUTPUT 0x2 /* raw ip header exists */
#define IP_ROUTETOIF SO_DONTROUTE /* bypass routing tables */
#define IP_ALLOWBROADCAST SO_BROADCAST /* can send broadcast packets */
struct ip;
struct inpcb;
struct route;
struct sockopt;
extern struct ipstat ipstat;
#ifndef RANDOM_IP_ID
extern u_short ip_id; /* ip packet ctr, for ids */
#endif
extern int ip_defttl; /* default IP ttl */
extern int ipforwarding; /* ip forwarding */
extern struct route ipforward_rt; /* ip forwarding cached route */
extern u_char ip_protox[];
extern struct socket *ip_rsvpd; /* reservation protocol daemon */
extern struct socket *ip_mrouter; /* multicast routing daemon */
extern int (*legal_vif_num)(int);
extern u_long (*ip_mcast_src)(int);
extern int rsvp_on;
extern struct pr_usrreqs rip_usrreqs;
int ip_ctloutput(struct socket *, struct sockopt *sopt);
void ip_drain(void);
void ip_freemoptions(struct ip_moptions *);
void ip_init(void);
extern int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
struct ip_moptions *);
int ip_output(struct mbuf *,
struct mbuf *, struct route *, int, struct ip_moptions *);
struct in_ifaddr *
ip_rtaddr(struct in_addr, struct route *);
void ip_savecontrol(struct inpcb *, struct mbuf **, struct ip *,
struct mbuf *);
void ip_slowtimo(void);
struct mbuf *
ip_srcroute(void);
void ip_stripoptions(struct mbuf *, struct mbuf *);
#ifdef RANDOM_IP_ID
u_int16_t
ip_randomid(void);
#endif
int rip_ctloutput(struct socket *, struct sockopt *);
void rip_ctlinput(int, struct sockaddr *, void *);
void rip_init(void);
void rip_input(struct mbuf *, int);
int rip_output(struct mbuf *, struct socket *, u_long);
void ipip_input(struct mbuf *, int);
void rsvp_input(struct mbuf *, int);
int ip_rsvp_init(struct socket *);
int ip_rsvp_done(void);
int ip_rsvp_vif_init(struct socket *, struct sockopt *);
int ip_rsvp_vif_done(struct socket *, struct sockopt *);
void ip_rsvp_force_done(struct socket *);
#ifdef IPDIVERT
void div_init(void);
void div_input(struct mbuf *, int);
void divert_packet(struct mbuf *m, int incoming, int port, int rule);
extern struct pr_usrreqs div_usrreqs;
#endif
extern struct sockaddr_in *ip_fw_fwd_addr;
void in_delayed_cksum(struct mbuf *m);
#endif /* _KERNEL */
#endif /* !_NETINET_IP_VAR_H_ */