2000-06-25 11:04:01 +00:00

255 lines
7.2 KiB
Perl
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package bigfloat;
require "bigint.pl";
#
# This library is no longer being maintained, and is included for backward
# compatibility with Perl 4 programs which may require it.
#
# In particular, this should not be used as an example of modern Perl
# programming techniques.
#
# Suggested alternative: Math::BigFloat
#
# Arbitrary length float math package
#
# by Mark Biggar
#
# number format
# canonical strings have the form /[+-]\d+E[+-]\d+/
# Input values can have embedded whitespace
# Error returns
# 'NaN' An input parameter was "Not a Number" or
# divide by zero or sqrt of negative number
# Division is computed to
# max($div_scale,length(dividend)+length(divisor))
# digits by default.
# Also used for default sqrt scale
$div_scale = 40;
# Rounding modes one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'.
$rnd_mode = 'even';
# bigfloat routines
#
# fadd(NSTR, NSTR) return NSTR addition
# fsub(NSTR, NSTR) return NSTR subtraction
# fmul(NSTR, NSTR) return NSTR multiplication
# fdiv(NSTR, NSTR[,SCALE]) returns NSTR division to SCALE places
# fneg(NSTR) return NSTR negation
# fabs(NSTR) return NSTR absolute value
# fcmp(NSTR,NSTR) return CODE compare undef,<0,=0,>0
# fround(NSTR, SCALE) return NSTR round to SCALE digits
# ffround(NSTR, SCALE) return NSTR round at SCALEth place
# fnorm(NSTR) return (NSTR) normalize
# fsqrt(NSTR[, SCALE]) return NSTR sqrt to SCALE places
# Convert a number to canonical string form.
# Takes something that looks like a number and converts it to
# the form /^[+-]\d+E[+-]\d+$/.
sub main'fnorm { #(string) return fnum_str
local($_) = @_;
s/\s+//g; # strip white space
if (/^([+-]?)(\d*)(\.(\d*))?([Ee]([+-]?\d+))?$/
&& ($2 ne '' || defined($4))) {
my $x = defined($4) ? $4 : '';
&norm(($1 ? "$1$2$x" : "+$2$x"), (($x ne '') ? $6-length($x) : $6));
} else {
'NaN';
}
}
# normalize number -- for internal use
sub norm { #(mantissa, exponent) return fnum_str
local($_, $exp) = @_;
if ($_ eq 'NaN') {
'NaN';
} else {
s/^([+-])0+/$1/; # strip leading zeros
if (length($_) == 1) {
'+0E+0';
} else {
$exp += length($1) if (s/(0+)$//); # strip trailing zeros
sprintf("%sE%+ld", $_, $exp);
}
}
}
# negation
sub main'fneg { #(fnum_str) return fnum_str
local($_) = &'fnorm($_[$[]);
vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0E+0'; # flip sign
if ( ord("\t") == 9 ) { # ascii
s/^H/N/;
}
else { # ebcdic character set
s/\373/N/;
}
$_;
}
# absolute value
sub main'fabs { #(fnum_str) return fnum_str
local($_) = &'fnorm($_[$[]);
s/^-/+/; # mash sign
$_;
}
# multiplication
sub main'fmul { #(fnum_str, fnum_str) return fnum_str
local($x,$y) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]));
if ($x eq 'NaN' || $y eq 'NaN') {
'NaN';
} else {
local($xm,$xe) = split('E',$x);
local($ym,$ye) = split('E',$y);
&norm(&'bmul($xm,$ym),$xe+$ye);
}
}
# addition
sub main'fadd { #(fnum_str, fnum_str) return fnum_str
local($x,$y) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]));
if ($x eq 'NaN' || $y eq 'NaN') {
'NaN';
} else {
local($xm,$xe) = split('E',$x);
local($ym,$ye) = split('E',$y);
($xm,$xe,$ym,$ye) = ($ym,$ye,$xm,$xe) if ($xe < $ye);
&norm(&'badd($ym,$xm.('0' x ($xe-$ye))),$ye);
}
}
# subtraction
sub main'fsub { #(fnum_str, fnum_str) return fnum_str
&'fadd($_[$[],&'fneg($_[$[+1]));
}
# division
# args are dividend, divisor, scale (optional)
# result has at most max(scale, length(dividend), length(divisor)) digits
sub main'fdiv #(fnum_str, fnum_str[,scale]) return fnum_str
{
local($x,$y,$scale) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]),$_[$[+2]);
if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0E+0') {
'NaN';
} else {
local($xm,$xe) = split('E',$x);
local($ym,$ye) = split('E',$y);
$scale = $div_scale if (!$scale);
$scale = length($xm)-1 if (length($xm)-1 > $scale);
$scale = length($ym)-1 if (length($ym)-1 > $scale);
$scale = $scale + length($ym) - length($xm);
&norm(&round(&'bdiv($xm.('0' x $scale),$ym),&'babs($ym)),
$xe-$ye-$scale);
}
}
# round int $q based on fraction $r/$base using $rnd_mode
sub round { #(int_str, int_str, int_str) return int_str
local($q,$r,$base) = @_;
if ($q eq 'NaN' || $r eq 'NaN') {
'NaN';
} elsif ($rnd_mode eq 'trunc') {
$q; # just truncate
} else {
local($cmp) = &'bcmp(&'bmul($r,'+2'),$base);
if ( $cmp < 0 ||
($cmp == 0 &&
( $rnd_mode eq 'zero' ||
($rnd_mode eq '-inf' && (substr($q,$[,1) eq '+')) ||
($rnd_mode eq '+inf' && (substr($q,$[,1) eq '-')) ||
($rnd_mode eq 'even' && $q =~ /[24680]$/) ||
($rnd_mode eq 'odd' && $q =~ /[13579]$/) )) ) {
$q; # round down
} else {
&'badd($q, ((substr($q,$[,1) eq '-') ? '-1' : '+1'));
# round up
}
}
}
# round the mantissa of $x to $scale digits
sub main'fround { #(fnum_str, scale) return fnum_str
local($x,$scale) = (&'fnorm($_[$[]),$_[$[+1]);
if ($x eq 'NaN' || $scale <= 0) {
$x;
} else {
local($xm,$xe) = split('E',$x);
if (length($xm)-1 <= $scale) {
$x;
} else {
&norm(&round(substr($xm,$[,$scale+1),
"+0".substr($xm,$[+$scale+1,1),"+10"),
$xe+length($xm)-$scale-1);
}
}
}
# round $x at the 10 to the $scale digit place
sub main'ffround { #(fnum_str, scale) return fnum_str
local($x,$scale) = (&'fnorm($_[$[]),$_[$[+1]);
if ($x eq 'NaN') {
'NaN';
} else {
local($xm,$xe) = split('E',$x);
if ($xe >= $scale) {
$x;
} else {
$xe = length($xm)+$xe-$scale;
if ($xe < 1) {
'+0E+0';
} elsif ($xe == 1) {
# The first substr preserves the sign, which means that
# we'll pass a non-normalized "-0" to &round when rounding
# -0.006 (for example), purely so that &round won't lose
# the sign.
&norm(&round(substr($xm,$[,1).'0',
"+0".substr($xm,$[+1,1),"+10"), $scale);
} else {
&norm(&round(substr($xm,$[,$xe),
"+0".substr($xm,$[+$xe,1),"+10"), $scale);
}
}
}
}
# compare 2 values returns one of undef, <0, =0, >0
# returns undef if either or both input value are not numbers
sub main'fcmp #(fnum_str, fnum_str) return cond_code
{
local($x, $y) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]));
if ($x eq "NaN" || $y eq "NaN") {
undef;
} else {
ord($y) <=> ord($x)
||
( local($xm,$xe,$ym,$ye) = split('E', $x."E$y"),
(($xe <=> $ye) * (substr($x,$[,1).'1')
|| &bigint'cmp($xm,$ym))
);
}
}
# square root by Newtons method.
sub main'fsqrt { #(fnum_str[, scale]) return fnum_str
local($x, $scale) = (&'fnorm($_[$[]), $_[$[+1]);
if ($x eq 'NaN' || $x =~ /^-/) {
'NaN';
} elsif ($x eq '+0E+0') {
'+0E+0';
} else {
local($xm, $xe) = split('E',$x);
$scale = $div_scale if (!$scale);
$scale = length($xm)-1 if ($scale < length($xm)-1);
local($gs, $guess) = (1, sprintf("1E%+d", (length($xm)+$xe-1)/2));
while ($gs < 2*$scale) {
$guess = &'fmul(&'fadd($guess,&'fdiv($x,$guess,$gs*2)),".5");
$gs *= 2;
}
&'fround($guess, $scale);
}
}
1;