freebsd-skq/sys/dev/wi/if_wi.c
Warner Losh 81f290a510 Fix interrupt race.
From NetBSD
2003-04-10 07:55:55 +00:00

2942 lines
76 KiB
C

/* $NetBSD: wi.c,v 1.109 2003/01/09 08:52:19 dyoung Exp $ */
/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Lucent WaveLAN/IEEE 802.11 PCMCIA driver.
*
* Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The WaveLAN/IEEE adapter is the second generation of the WaveLAN
* from Lucent. Unlike the older cards, the new ones are programmed
* entirely via a firmware-driven controller called the Hermes.
* Unfortunately, Lucent will not release the Hermes programming manual
* without an NDA (if at all). What they do release is an API library
* called the HCF (Hardware Control Functions) which is supposed to
* do the device-specific operations of a device driver for you. The
* publically available version of the HCF library (the 'HCF Light') is
* a) extremely gross, b) lacks certain features, particularly support
* for 802.11 frames, and c) is contaminated by the GNU Public License.
*
* This driver does not use the HCF or HCF Light at all. Instead, it
* programs the Hermes controller directly, using information gleaned
* from the HCF Light code and corresponding documentation.
*
* This driver supports the ISA, PCMCIA and PCI versions of the Lucent
* WaveLan cards (based on the Hermes chipset), as well as the newer
* Prism 2 chipsets with firmware from Intersil and Symbol.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
#define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
#define NBPFILTER 1
#include <sys/param.h>
#include <sys/systm.h>
#if __FreeBSD_version >= 500033
#include <sys/endian.h>
#endif
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/random.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/clock.h>
#include <sys/rman.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_ieee80211.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <net/bpf.h>
#include <dev/wi/if_wavelan_ieee.h>
#include <dev/wi/if_wivar.h>
#include <dev/wi/if_wireg.h>
#define IF_POLL(ifq, m) ((m) = (ifq)->ifq_head)
#define IFQ_POLL(ifq, m) IF_POLL((ifq), (m))
#define IFQ_DEQUEUE(ifq, m) IF_DEQUEUE((ifq), (m))
static void wi_start(struct ifnet *);
static int wi_reset(struct wi_softc *);
static void wi_watchdog(struct ifnet *);
static int wi_ioctl(struct ifnet *, u_long, caddr_t);
static int wi_media_change(struct ifnet *);
static void wi_media_status(struct ifnet *, struct ifmediareq *);
static void wi_rx_intr(struct wi_softc *);
static void wi_tx_intr(struct wi_softc *);
static void wi_tx_ex_intr(struct wi_softc *);
static void wi_info_intr(struct wi_softc *);
static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
static int wi_write_txrate(struct wi_softc *);
static int wi_write_wep(struct wi_softc *);
static int wi_write_multi(struct wi_softc *);
static int wi_alloc_fid(struct wi_softc *, int, int *);
static void wi_read_nicid(struct wi_softc *);
static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
static int wi_cmd(struct wi_softc *, int, int, int, int);
static int wi_seek_bap(struct wi_softc *, int, int);
static int wi_read_bap(struct wi_softc *, int, int, void *, int);
static int wi_write_bap(struct wi_softc *, int, int, void *, int);
static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
static int wi_read_rid(struct wi_softc *, int, void *, int *);
static int wi_write_rid(struct wi_softc *, int, void *, int);
static int wi_newstate(void *, enum ieee80211_state);
static int wi_scan_ap(struct wi_softc *);
static void wi_scan_result(struct wi_softc *, int, int);
static void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
static int wi_get_debug(struct wi_softc *, struct wi_req *);
static int wi_set_debug(struct wi_softc *, struct wi_req *);
#if __FreeBSD_version >= 500000
/* support to download firmware for symbol CF card */
static int wi_symbol_write_firm(struct wi_softc *, const void *, int,
const void *, int);
static int wi_symbol_set_hcr(struct wi_softc *, int);
#endif
static __inline int
wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
{
val = htole16(val);
return wi_write_rid(sc, rid, &val, sizeof(val));
}
SYSCTL_NODE(_hw, OID_AUTO, wi, CTLFLAG_RD, 0, "Wireless driver parameters");
static struct timeval lasttxerror; /* time of last tx error msg */
static int curtxeps; /* current tx error msgs/sec */
static int wi_txerate = 0; /* tx error rate: max msgs/sec */
SYSCTL_INT(_hw_wi, OID_AUTO, txerate, CTLFLAG_RW, &wi_txerate,
0, "max tx error msgs/sec; 0 to disable msgs");
#define WI_DEBUG
#ifdef WI_DEBUG
static int wi_debug = 0;
SYSCTL_INT(_hw_wi, OID_AUTO, debug, CTLFLAG_RW, &wi_debug,
0, "control debugging printfs");
#define DPRINTF(X) if (wi_debug) printf X
#define DPRINTF2(X) if (wi_debug > 1) printf X
#define IFF_DUMPPKTS(_ifp) \
(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
#else
#define DPRINTF(X)
#define DPRINTF2(X)
#define IFF_DUMPPKTS(_ifp) 0
#endif
#define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
struct wi_card_ident wi_card_ident[] = {
/* CARD_ID CARD_NAME FIRM_TYPE */
{ WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
{ WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
{ WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
{ WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
{ WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
{ WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
{ WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
{ WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
{ WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
{ WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
{ WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
{ WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
{ WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_3842_PCMCIA_ATL_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_3842_PCMCIA_ATS_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
{ WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
{ WI_NIC_3842_MINI_ATL_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
{ WI_NIC_3842_MINI_ATS_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
{ WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
{ WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
{ WI_NIC_3842_PCI_ATS_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
{ WI_NIC_3842_PCI_ATL_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
{ WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_P3_PCMCIA_ATL_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_P3_PCMCIA_ATS_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
{ WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
{ WI_NIC_P3_MINI_ATL_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
{ WI_NIC_P3_MINI_ATS_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
{ 0, NULL, 0 },
};
devclass_t wi_devclass;
int
wi_attach(device_t dev)
{
struct wi_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int i, nrate, mword, buflen;
u_int8_t r;
u_int16_t val;
u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
int error;
/*
* NB: no locking is needed here; don't put it here
* unless you can prove it!
*/
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
wi_intr, sc, &sc->wi_intrhand);
if (error) {
device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
wi_free(dev);
return (error);
}
#if __FreeBSD_version >= 500000
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
#endif
/* Reset the NIC. */
if (wi_reset(sc) != 0)
return ENXIO; /* XXX */
/*
* Read the station address.
* And do it twice. I've seen PRISM-based cards that return
* an error when trying to read it the first time, which causes
* the probe to fail.
*/
buflen = IEEE80211_ADDR_LEN;
error = wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen);
if (error != 0) {
buflen = IEEE80211_ADDR_LEN;
error = wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen);
}
if (error || IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
if (error != 0)
device_printf(dev, "mac read failed %d\n", error);
else
device_printf(dev, "mac read failed (all zeros)\n");
wi_free(dev);
return (error);
}
device_printf(dev, "802.11 address: %6D\n", ic->ic_myaddr, ":");
/* Read NIC identification */
wi_read_nicid(sc);
ifp->if_softc = sc;
ifp->if_unit = sc->sc_unit;
ifp->if_name = "wi";
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = wi_ioctl;
ifp->if_start = wi_start;
ifp->if_watchdog = wi_watchdog;
ifp->if_init = wi_init;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
ic->ic_phytype = IEEE80211_T_DS;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
ic->ic_state = IEEE80211_S_INIT;
ic->ic_newstate = wi_newstate;
ic->ic_fixed_rate = -1; /* Auto */
/* Find available channels */
buflen = sizeof(val);
if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
val = htole16(0x1fff); /* assume 1-11 */
for (i = 0; i < 16; i++) {
if (isset((u_int8_t*)&val, i))
setbit(ic->ic_chan_avail, i + 1);
}
KASSERT(ic->ic_chan_avail != 0,
("wi_attach: no available channels listed!"));
/*
* Read the default channel from the NIC. This may vary
* depending on the country where the NIC was purchased, so
* we can't hard-code a default and expect it to work for
* everyone.
*/
buflen = sizeof(val);
if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
ic->ic_ibss_chan = le16toh(val);
else {
/* use lowest available channel */
for (i = 0; i < 16 && !isset(ic->ic_chan_avail, i); i++)
;
ic->ic_ibss_chan = i;
}
/*
* Set flags based on firmware version.
*/
switch (sc->sc_firmware_type) {
case WI_LUCENT:
sc->sc_ntxbuf = 1;
sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
#ifdef WI_HERMES_AUTOINC_WAR
/* XXX: not confirmed, but never seen for recent firmware */
if (sc->sc_sta_firmware_ver < 40000) {
sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
}
#endif
if (sc->sc_sta_firmware_ver >= 60000)
sc->sc_flags |= WI_FLAGS_HAS_MOR;
if (sc->sc_sta_firmware_ver >= 60006)
ic->ic_flags |= IEEE80211_F_HASIBSS;
sc->sc_ibss_port = htole16(1);
break;
case WI_INTERSIL:
sc->sc_ntxbuf = WI_NTXBUF;
sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
if (sc->sc_sta_firmware_ver > 10101)
sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
if (sc->sc_sta_firmware_ver >= 800)
ic->ic_flags |= IEEE80211_F_HASIBSS;
/*
* version 0.8.3 and newer are the only ones that are known
* to currently work. Earlier versions can be made to work,
* at least according to the Linux driver.
*/
if (sc->sc_sta_firmware_ver >= 803)
ic->ic_flags |= IEEE80211_F_HASHOSTAP;
sc->sc_ibss_port = htole16(0);
break;
case WI_SYMBOL:
sc->sc_ntxbuf = 1;
sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
if (sc->sc_sta_firmware_ver >= 25000)
ic->ic_flags |= IEEE80211_F_HASIBSS;
sc->sc_ibss_port = htole16(4);
break;
}
/*
* Find out if we support WEP on this card.
*/
buflen = sizeof(val);
if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
val != htole16(0))
ic->ic_flags |= IEEE80211_F_HASWEP;
/* Find supported rates. */
buflen = sizeof(ratebuf);
if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
nrate = le16toh(*(u_int16_t *)ratebuf);
if (nrate > IEEE80211_RATE_SIZE)
nrate = IEEE80211_RATE_SIZE;
memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
} else {
/* XXX fallback on error? */
nrate = 0;
}
buflen = sizeof(val);
if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
sc->sc_dbm_adjust = le16toh(val);
} else
sc->sc_dbm_adjust = 100; /* default */
sc->sc_max_datalen = 2304;
sc->sc_rts_thresh = 2347;
sc->sc_frag_thresh = 2346;
sc->sc_system_scale = 1;
sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
sc->sc_roaming_mode = 1;
sc->sc_portnum = WI_DEFAULT_PORT;
sc->sc_authtype = WI_DEFAULT_AUTHTYPE;
bzero(sc->sc_nodename, sizeof(sc->sc_nodename));
sc->sc_nodelen = sizeof(WI_DEFAULT_NODENAME) - 1;
bcopy(WI_DEFAULT_NODENAME, sc->sc_nodename, sc->sc_nodelen);
bzero(sc->sc_net_name, sizeof(sc->sc_net_name));
bcopy(WI_DEFAULT_NETNAME, sc->sc_net_name,
sizeof(WI_DEFAULT_NETNAME) - 1);
ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
if_printf(ifp, "supported rates: ");
#define ADD(s, o) ifmedia_add(&sc->sc_media, \
IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
ADD(IFM_AUTO, 0);
if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
if (ic->ic_flags & IEEE80211_F_HASIBSS)
ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
for (i = 0; i < nrate; i++) {
r = ic->ic_sup_rates[i];
mword = ieee80211_rate2media(r, IEEE80211_T_DS);
if (mword == 0)
continue;
printf("%s%d%sMbps", (i != 0 ? " " : ""),
(r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
ADD(mword, 0);
if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
ADD(mword, IFM_IEEE80211_HOSTAP);
if (ic->ic_flags & IEEE80211_F_HASIBSS)
ADD(mword, IFM_IEEE80211_ADHOC);
ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
}
printf("\n");
ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
#undef ADD
/*
* Call MI attach routine.
*/
ieee80211_ifattach(ifp);
return (0);
}
int
wi_detach(device_t dev)
{
struct wi_softc *sc = device_get_softc(dev);
struct ifnet *ifp = &sc->sc_ic.ic_if;
WI_LOCK_DECL();
WI_LOCK(sc);
/* check if device was removed */
sc->wi_gone = !bus_child_present(dev);
wi_stop(ifp, 0);
/* Delete all remaining media. */
ifmedia_removeall(&sc->sc_media);
ieee80211_ifdetach(ifp);
bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
wi_free(dev);
WI_UNLOCK(sc);
#if __FreeBSD_version >= 500000
mtx_destroy(&sc->sc_mtx);
#endif
return (0);
}
#ifdef __NetBSD__
int
wi_activate(struct device *self, enum devact act)
{
struct wi_softc *sc = (struct wi_softc *)self;
int rv = 0, s;
s = splnet();
switch (act) {
case DVACT_ACTIVATE:
rv = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_ic.ic_if);
break;
}
splx(s);
return rv;
}
void
wi_power(struct wi_softc *sc, int why)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
s = splnet();
switch (why) {
case PWR_SUSPEND:
case PWR_STANDBY:
wi_stop(ifp, 1);
break;
case PWR_RESUME:
if (ifp->if_flags & IFF_UP) {
wi_init(ifp);
(void)wi_intr(sc);
}
break;
case PWR_SOFTSUSPEND:
case PWR_SOFTSTANDBY:
case PWR_SOFTRESUME:
break;
}
splx(s);
}
#endif /* __NetBSD__ */
void
wi_shutdown(device_t dev)
{
struct wi_softc *sc = device_get_softc(dev);
wi_stop(&sc->sc_if, 1);
}
void
wi_intr(void *arg)
{
struct wi_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ic.ic_if;
u_int16_t status;
WI_LOCK_DECL();
WI_LOCK(sc);
if (sc->wi_gone || (ifp->if_flags & IFF_UP) == 0) {
CSR_WRITE_2(sc, WI_INT_EN, 0);
CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
WI_UNLOCK(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, WI_INT_EN, 0);
status = CSR_READ_2(sc, WI_EVENT_STAT);
if (status & WI_EV_RX)
wi_rx_intr(sc);
if (status & WI_EV_ALLOC)
wi_tx_intr(sc);
if (status & WI_EV_TX_EXC)
wi_tx_ex_intr(sc);
if (status & WI_EV_INFO)
wi_info_intr(sc);
if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
(sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
_IF_QLEN(&ifp->if_snd) != 0)
wi_start(ifp);
/* Re-enable interrupts. */
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
WI_UNLOCK(sc);
return;
}
void
wi_init(void *arg)
{
struct wi_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211com *ic = &sc->sc_ic;
struct wi_joinreq join;
int i;
int error = 0, wasenabled;
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
WI_LOCK_DECL();
WI_LOCK(sc);
if (sc->wi_gone) {
WI_UNLOCK(sc);
return;
}
/* Symbol firmware cannot be initialized more than once */
if ((wasenabled = sc->sc_enabled))
wi_stop(ifp, 0);
sc->sc_enabled = 1;
wi_reset(sc);
/* common 802.11 configuration */
ic->ic_flags &= ~IEEE80211_F_IBSSON;
sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
break;
case IEEE80211_M_IBSS:
wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
ic->ic_flags |= IEEE80211_F_IBSSON;
break;
case IEEE80211_M_AHDEMO:
wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
break;
case IEEE80211_M_HOSTAP:
wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
break;
}
/* Intersil interprets this RID as joining ESS even in IBSS mode */
if (sc->sc_firmware_type == WI_LUCENT &&
(ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
else
wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
ic->ic_des_esslen);
wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
ifa = ifaddr_byindex(ifp->if_index);
sdl = (struct sockaddr_dl *) ifa->ifa_addr;
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sdl));
wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
wi_write_val(sc, WI_RID_PM_ENABLED,
(ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
/* not yet common 802.11 configuration */
wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
/* driver specific 802.11 configuration */
if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
if (sc->sc_flags & WI_FLAGS_HAS_MOR)
wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
wi_write_txrate(sc);
wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
sc->sc_firmware_type == WI_INTERSIL) {
wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
}
/*
* Initialize promisc mode.
* Being in the Host-AP mode causes a great
* deal of pain if primisc mode is set.
* Therefore we avoid confusing the firmware
* and always reset promisc mode in Host-AP
* mode. Host-AP sees all the packets anyway.
*/
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
(ifp->if_flags & IFF_PROMISC) != 0) {
wi_write_val(sc, WI_RID_PROMISC, 1);
} else {
wi_write_val(sc, WI_RID_PROMISC, 0);
}
/* Configure WEP. */
if (ic->ic_flags & IEEE80211_F_HASWEP)
wi_write_wep(sc);
/* Set multicast filter. */
wi_write_multi(sc);
if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
if (sc->sc_firmware_type == WI_SYMBOL)
sc->sc_buflen = 1585; /* XXX */
for (i = 0; i < sc->sc_ntxbuf; i++) {
error = wi_alloc_fid(sc, sc->sc_buflen,
&sc->sc_txd[i].d_fid);
if (error) {
device_printf(sc->sc_dev,
"tx buffer allocation failed (error %u)\n",
error);
goto out;
}
sc->sc_txd[i].d_len = 0;
}
}
sc->sc_txcur = sc->sc_txnext = 0;
/* Enable desired port */
wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
ic->ic_opmode == IEEE80211_M_HOSTAP)
wi_newstate(sc, IEEE80211_S_RUN);
/* Enable interrupts */
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
if (!wasenabled &&
ic->ic_opmode == IEEE80211_M_HOSTAP &&
sc->sc_firmware_type == WI_INTERSIL) {
/* XXX: some card need to be re-enabled for hostap */
wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
}
if (ic->ic_opmode == IEEE80211_M_STA &&
((ic->ic_flags & IEEE80211_F_DESBSSID) ||
ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
memset(&join, 0, sizeof(join));
if (ic->ic_flags & IEEE80211_F_DESBSSID)
IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
join.wi_chan = htole16(ic->ic_des_chan);
/* Lucent firmware does not support the JOIN RID. */
if (sc->sc_firmware_type != WI_LUCENT)
wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
}
WI_UNLOCK(sc);
return;
out:
if (error) {
if_printf(ifp, "interface not running\n");
wi_stop(ifp, 0);
}
WI_UNLOCK(sc);
DPRINTF(("wi_init: return %d\n", error));
return;
}
void
wi_stop(struct ifnet *ifp, int disable)
{
struct wi_softc *sc = ifp->if_softc;
WI_LOCK_DECL();
WI_LOCK(sc);
ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
if (sc->sc_enabled && !sc->wi_gone) {
CSR_WRITE_2(sc, WI_INT_EN, 0);
wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
if (disable) {
#ifdef __NetBSD__
if (sc->sc_disable)
(*sc->sc_disable)(sc);
#endif
sc->sc_enabled = 0;
}
}
sc->sc_tx_timer = 0;
sc->sc_scan_timer = 0;
sc->sc_syn_timer = 0;
sc->sc_false_syns = 0;
sc->sc_naps = 0;
ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
ifp->if_timer = 0;
WI_UNLOCK(sc);
}
static void
wi_start(struct ifnet *ifp)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = NULL;
struct ieee80211_frame *wh;
struct mbuf *m0;
struct wi_frame frmhdr;
int cur, fid, off;
WI_LOCK_DECL();
WI_LOCK(sc);
if (sc->wi_gone) {
WI_UNLOCK(sc);
return;
}
if (sc->sc_flags & WI_FLAGS_OUTRANGE) {
WI_UNLOCK(sc);
return;
}
memset(&frmhdr, 0, sizeof(frmhdr));
cur = sc->sc_txnext;
for (;;) {
IF_POLL(&ic->ic_mgtq, m0);
if (m0 != NULL) {
if (sc->sc_txd[cur].d_len != 0) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IF_DEQUEUE(&ic->ic_mgtq, m0);
m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
(caddr_t)&frmhdr.wi_ehdr);
frmhdr.wi_ehdr.ether_type = 0;
wh = mtod(m0, struct ieee80211_frame *);
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (sc->sc_txd[cur].d_len != 0) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
ifp->if_opackets++;
m_copydata(m0, 0, ETHER_HDR_LEN,
(caddr_t)&frmhdr.wi_ehdr);
#if NBPFILTER > 0
BPF_MTAP(ifp, m0);
#endif
if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
ifp->if_oerrors++;
continue;
}
wh = mtod(m0, struct ieee80211_frame *);
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA &&
((ni = ieee80211_find_node(ic, wh->i_addr1)) ==
NULL || ni->ni_associd == 0)) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
if (ic->ic_flags & IEEE80211_F_WEPON)
wh->i_fc[1] |= IEEE80211_FC1_WEP;
}
#if NBPFILTER > 0
if (ic->ic_rawbpf)
bpf_mtap(ic->ic_rawbpf, m0);
#endif
frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX);
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
(wh->i_fc[1] & IEEE80211_FC1_WEP)) {
if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
ifp->if_oerrors++;
continue;
}
frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
}
m_copydata(m0, 0, sizeof(struct ieee80211_frame),
(caddr_t)&frmhdr.wi_whdr);
m_adj(m0, sizeof(struct ieee80211_frame));
frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
#if NBPFILTER > 0
if (sc->sc_drvbpf) {
struct mbuf *mb;
MGETHDR(mb, M_DONTWAIT, m0->m_type);
if (mb != NULL) {
(void) m_dup_pkthdr(mb, m0, M_DONTWAIT);
mb->m_next = m0;
mb->m_data = (caddr_t)&frmhdr;
mb->m_len = sizeof(frmhdr);
mb->m_pkthdr.len += mb->m_len;
bpf_mtap(sc->sc_drvbpf, mb);
m_free(mb);
}
}
#endif
if (IFF_DUMPPKTS(ifp))
wi_dump_pkt(&frmhdr, ni, -1);
fid = sc->sc_txd[cur].d_fid;
off = sizeof(frmhdr);
if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
ifp->if_oerrors++;
m_freem(m0);
continue;
}
m_freem(m0);
sc->sc_txd[cur].d_len = off;
if (sc->sc_txcur == cur) {
if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
if_printf(ifp, "xmit failed\n");
sc->sc_txd[cur].d_len = 0;
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
sc->sc_txnext = cur = (cur + 1) % sc->sc_ntxbuf;
}
WI_UNLOCK(sc);
}
static int
wi_reset(struct wi_softc *sc)
{
#define WI_INIT_TRIES 5
int i, error;
/* Symbol firmware cannot be reset more than once. */
if (sc->sc_firmware_type == WI_SYMBOL && sc->sc_reset)
return (0);
sc->sc_reset = 1;
for (i = 0; i < WI_INIT_TRIES; i++) {
if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
break;
DELAY(WI_DELAY * 1000);
}
if (error) {
device_printf(sc->sc_dev, "init failed\n");
return error;
}
CSR_WRITE_2(sc, WI_INT_EN, 0);
CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
/* Calibrate timer. */
wi_write_val(sc, WI_RID_TICK_TIME, 0);
return 0;
#undef WI_INIT_TRIES
}
static void
wi_watchdog(struct ifnet *ifp)
{
struct wi_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (!sc->sc_enabled)
return;
if (sc->sc_tx_timer) {
if (--sc->sc_tx_timer == 0) {
if_printf(ifp, "device timeout\n");
ifp->if_oerrors++;
wi_init(ifp->if_softc);
return;
}
ifp->if_timer = 1;
}
if (sc->sc_scan_timer) {
if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
sc->sc_firmware_type == WI_INTERSIL) {
DPRINTF(("wi_watchdog: inquire scan\n"));
wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
}
if (sc->sc_scan_timer)
ifp->if_timer = 1;
}
if (sc->sc_syn_timer) {
if (--sc->sc_syn_timer == 0) {
DPRINTF2(("wi_watchdog: %d false syns\n",
sc->sc_false_syns));
sc->sc_false_syns = 0;
ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
sc->sc_syn_timer = 5;
}
ifp->if_timer = 1;
}
/* TODO: rate control */
ieee80211_watchdog(ifp);
}
static int
wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifreq *ifr = (struct ifreq *)data;
struct ieee80211req *ireq;
u_int8_t nodename[IEEE80211_NWID_LEN];
int error = 0;
#if __FreeBSD_version >= 500000
struct thread *td = curthread;
#else
struct proc *td = curproc; /* Little white lie */
#endif
struct wi_req wreq;
WI_LOCK_DECL();
WI_LOCK(sc);
if (sc->wi_gone) {
error = ENODEV;
goto out;
}
switch (cmd) {
case SIOCSIFFLAGS:
/*
* Can't do promisc and hostap at the same time. If all that's
* changing is the promisc flag, try to short-circuit a call to
* wi_init() by just setting PROMISC in the hardware.
*/
if (ifp->if_flags & IFF_UP) {
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
ifp->if_flags & IFF_RUNNING) {
if (ifp->if_flags & IFF_PROMISC &&
!(sc->sc_if_flags & IFF_PROMISC)) {
wi_write_val(sc, WI_RID_PROMISC, 1);
} else if (!(ifp->if_flags & IFF_PROMISC) &&
sc->sc_if_flags & IFF_PROMISC) {
wi_write_val(sc, WI_RID_PROMISC, 0);
} else {
wi_init(sc);
}
} else {
wi_init(sc);
}
} else {
if (ifp->if_flags & IFF_RUNNING) {
wi_stop(ifp, 0);
}
}
sc->sc_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = wi_write_multi(sc);
break;
case SIOCGIFGENERIC:
error = wi_get_cfg(ifp, cmd, data);
break;
case SIOCSIFGENERIC:
error = suser(td);
if (error)
break;
error = wi_set_cfg(ifp, cmd, data);
break;
case SIOCGPRISM2DEBUG:
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
break;
if (!(ifp->if_flags & IFF_RUNNING) ||
sc->sc_firmware_type == WI_LUCENT) {
error = EIO;
break;
}
error = wi_get_debug(sc, &wreq);
if (error == 0)
error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
break;
case SIOCSPRISM2DEBUG:
if ((error = suser(td)))
goto out;
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
break;
error = wi_set_debug(sc, &wreq);
break;
case SIOCG80211:
ireq = (struct ieee80211req *) data;
switch (ireq->i_type) {
case IEEE80211_IOC_STATIONNAME:
ireq->i_len = sc->sc_nodelen + 1;
error = copyout(sc->sc_nodename, ireq->i_data,
ireq->i_len);
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
break;
}
break;
case SIOCS80211:
error = suser(td);
if (error)
break;
ireq = (struct ieee80211req *) data;
switch (ireq->i_type) {
case IEEE80211_IOC_STATIONNAME:
if (ireq->i_val != 0 ||
ireq->i_len > IEEE80211_NWID_LEN) {
error = EINVAL;
break;
}
memset(nodename, 0, IEEE80211_NWID_LEN);
error = copyin(ireq->i_data, nodename, ireq->i_len);
if (error)
break;
if (sc->sc_enabled) {
error = wi_write_ssid(sc, WI_RID_NODENAME,
nodename, ireq->i_len);
if (error)
break;
}
memcpy(sc->sc_nodename, nodename, IEEE80211_NWID_LEN);
sc->sc_nodelen = ireq->i_len;
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
break;
}
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
break;
}
if (error == ENETRESET) {
if (sc->sc_enabled)
wi_init(ifp->if_softc); /* XXX no error return */
error = 0;
}
out:
WI_UNLOCK(sc);
return (error);
}
static int
wi_media_change(struct ifnet *ifp)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifmedia_entry *ime;
enum ieee80211_opmode newmode;
int i, rate, error = 0;
ime = sc->sc_media.ifm_cur;
if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
i = -1;
} else {
rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
if (rate == 0)
return EINVAL;
for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
break;
}
if (i == IEEE80211_RATE_SIZE)
return EINVAL;
}
if (ic->ic_fixed_rate != i) {
ic->ic_fixed_rate = i;
error = ENETRESET;
}
if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
(ime->ifm_media & IFM_FLAG0))
newmode = IEEE80211_M_AHDEMO;
else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
newmode = IEEE80211_M_IBSS;
else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
newmode = IEEE80211_M_HOSTAP;
else
newmode = IEEE80211_M_STA;
if (ic->ic_opmode != newmode) {
ic->ic_opmode = newmode;
error = ENETRESET;
}
if (error == ENETRESET) {
if (sc->sc_enabled)
wi_init(ifp->if_softc); /* XXX error code lost */
error = 0;
}
#if 0
ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
#endif
return error;
}
static void
wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
u_int16_t val;
int rate, len;
if (sc->wi_gone || !sc->sc_enabled) {
imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
imr->ifm_status = 0;
return;
}
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN &&
(sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
imr->ifm_status |= IFM_ACTIVE;
len = sizeof(val);
if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
rate = 0;
else {
/* convert to 802.11 rate */
rate = val * 2;
if (sc->sc_firmware_type == WI_LUCENT) {
if (rate == 4 * 2)
rate = 11; /* 5.5Mbps */
else if (rate == 5 * 2)
rate = 22; /* 11Mbps */
} else {
if (rate == 4*2)
rate = 11; /* 5.5Mbps */
else if (rate == 8*2)
rate = 22; /* 11Mbps */
}
}
imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_AHDEMO:
imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
break;
case IEEE80211_M_HOSTAP:
imr->ifm_active |= IFM_IEEE80211_HOSTAP;
break;
}
}
static void
wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = &ic->ic_bss;
struct ifnet *ifp = &ic->ic_if;
if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
return;
DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
/* In promiscuous mode, the BSSID field is not a reliable
* indicator of the firmware's BSSID. Damp spurious
* change-of-BSSID indications.
*/
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
sc->sc_false_syns >= WI_MAX_FALSE_SYNS)
return;
ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
}
static void
wi_rx_intr(struct wi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct wi_frame frmhdr;
struct mbuf *m;
struct ieee80211_frame *wh;
int fid, len, off, rssi;
u_int8_t dir;
u_int16_t status;
u_int32_t rstamp;
fid = CSR_READ_2(sc, WI_RX_FID);
/* First read in the frame header */
if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
ifp->if_ierrors++;
DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
return;
}
if (IFF_DUMPPKTS(ifp))
wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
/*
* Drop undecryptable or packets with receive errors here
*/
status = le16toh(frmhdr.wi_status);
if (status & WI_STAT_ERRSTAT) {
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
ifp->if_ierrors++;
DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
return;
}
rssi = frmhdr.wi_rx_signal;
rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
le16toh(frmhdr.wi_rx_tstamp1);
len = le16toh(frmhdr.wi_dat_len);
off = ALIGN(sizeof(struct ieee80211_frame));
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
ifp->if_ierrors++;
DPRINTF(("wi_rx_intr: MGET failed\n"));
return;
}
if (off + len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
m_freem(m);
ifp->if_ierrors++;
DPRINTF(("wi_rx_intr: MCLGET failed\n"));
return;
}
}
m->m_data += off - sizeof(struct ieee80211_frame);
memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
wi_read_bap(sc, fid, sizeof(frmhdr),
m->m_data + sizeof(struct ieee80211_frame), len);
m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
m->m_pkthdr.rcvif = ifp;
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
#if NBPFILTER > 0
if (sc->sc_drvbpf) {
struct mbuf *mb;
MGETHDR(mb, M_DONTWAIT, m->m_type);
if (mb != NULL) {
(void) m_dup_pkthdr(mb, m, M_DONTWAIT);
mb->m_next = m;
mb->m_data = (caddr_t)&frmhdr;
mb->m_len = sizeof(frmhdr);
mb->m_pkthdr.len += mb->m_len;
bpf_mtap(sc->sc_drvbpf, mb);
m_free(mb);
}
}
#endif
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
/*
* WEP is decrypted by hardware. Clear WEP bit
* header for ieee80211_input().
*/
wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
}
/* synchronize driver's BSSID with firmware's BSSID */
dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
wi_sync_bssid(sc, wh->i_addr3);
ieee80211_input(ifp, m, rssi, rstamp);
}
static void
wi_tx_ex_intr(struct wi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct wi_frame frmhdr;
int fid;
fid = CSR_READ_2(sc, WI_TX_CMP_FID);
/* Read in the frame header */
if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) == 0) {
u_int16_t status = le16toh(frmhdr.wi_status);
/*
* Spontaneous station disconnects appear as xmit
* errors. Don't announce them and/or count them
* as an output error.
*/
if ((status & WI_TXSTAT_DISCONNECT) == 0) {
if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
if_printf(ifp, "tx failed");
if (status & WI_TXSTAT_RET_ERR)
printf(", retry limit exceeded");
if (status & WI_TXSTAT_AGED_ERR)
printf(", max transmit lifetime exceeded");
if (status & WI_TXSTAT_DISCONNECT)
printf(", port disconnected");
if (status & WI_TXSTAT_FORM_ERR)
printf(", invalid format (data len %u src %6D)",
le16toh(frmhdr.wi_dat_len),
frmhdr.wi_ehdr.ether_shost, ":");
if (status & ~0xf)
printf(", status=0x%x", status);
printf("\n");
}
ifp->if_oerrors++;
} else {
DPRINTF(("port disconnected\n"));
ifp->if_collisions++; /* XXX */
}
} else
DPRINTF(("wi_tx_ex_intr: read fid %x failed\n", fid));
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
}
static void
wi_tx_intr(struct wi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int fid, cur;
fid = CSR_READ_2(sc, WI_ALLOC_FID);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
cur = sc->sc_txcur;
if (sc->sc_txd[cur].d_fid != fid) {
if_printf(ifp, "bad alloc %x != %x, cur %d nxt %d\n",
fid, sc->sc_txd[cur].d_fid, cur, sc->sc_txnext);
return;
}
sc->sc_tx_timer = 0;
sc->sc_txd[cur].d_len = 0;
sc->sc_txcur = cur = (cur + 1) % sc->sc_ntxbuf;
if (sc->sc_txd[cur].d_len == 0)
ifp->if_flags &= ~IFF_OACTIVE;
else {
if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
0, 0)) {
if_printf(ifp, "xmit failed\n");
sc->sc_txd[cur].d_len = 0;
} else {
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
}
static void
wi_info_intr(struct wi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int i, fid, len, off;
u_int16_t ltbuf[2];
u_int16_t stat;
u_int32_t *ptr;
fid = CSR_READ_2(sc, WI_INFO_FID);
wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
switch (le16toh(ltbuf[1])) {
case WI_INFO_LINK_STAT:
wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
switch (le16toh(stat)) {
case WI_INFO_LINK_STAT_CONNECTED:
sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
if (ic->ic_state == IEEE80211_S_RUN &&
ic->ic_opmode != IEEE80211_M_IBSS)
break;
/* FALLTHROUGH */
case WI_INFO_LINK_STAT_AP_CHG:
ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
break;
case WI_INFO_LINK_STAT_AP_INR:
sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
break;
case WI_INFO_LINK_STAT_AP_OOR:
if (sc->sc_firmware_type == WI_SYMBOL &&
sc->sc_scan_timer > 0) {
if (wi_cmd(sc, WI_CMD_INQUIRE,
WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
sc->sc_scan_timer = 0;
break;
}
if (ic->ic_opmode == IEEE80211_M_STA)
sc->sc_flags |= WI_FLAGS_OUTRANGE;
break;
case WI_INFO_LINK_STAT_DISCONNECTED:
case WI_INFO_LINK_STAT_ASSOC_FAILED:
if (ic->ic_opmode == IEEE80211_M_STA)
ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
break;
}
break;
case WI_INFO_COUNTERS:
/* some card versions have a larger stats structure */
len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
ptr = (u_int32_t *)&sc->sc_stats;
off = sizeof(ltbuf);
for (i = 0; i < len; i++, off += 2, ptr++) {
wi_read_bap(sc, fid, off, &stat, sizeof(stat));
#ifdef WI_HERMES_STATS_WAR
if (stat & 0xf000)
stat = ~stat;
#endif
*ptr += stat;
}
ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
sc->sc_stats.wi_tx_multi_retries +
sc->sc_stats.wi_tx_retry_limit;
break;
case WI_INFO_SCAN_RESULTS:
case WI_INFO_HOST_SCAN_RESULTS:
wi_scan_result(sc, fid, le16toh(ltbuf[0]));
break;
default:
DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
le16toh(ltbuf[1]), le16toh(ltbuf[0])));
break;
}
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
}
static int
wi_write_multi(struct wi_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
int n;
struct ifmultiaddr *ifma;
struct wi_mcast mlist;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
allmulti:
memset(&mlist, 0, sizeof(mlist));
return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
sizeof(mlist));
}
n = 0;
#if __FreeBSD_version < 500000
LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
#else
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
#endif
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (n >= 16)
goto allmulti;
IEEE80211_ADDR_COPY(&mlist.wi_mcast[n],
(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)));
n++;
}
return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
IEEE80211_ADDR_LEN * n);
}
static void
wi_read_nicid(struct wi_softc *sc)
{
struct wi_card_ident *id;
char *p;
int len;
u_int16_t ver[4];
/* getting chip identity */
memset(ver, 0, sizeof(ver));
len = sizeof(ver);
wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
device_printf(sc->sc_dev, "using ");
sc->sc_firmware_type = WI_NOTYPE;
for (id = wi_card_ident; id->card_name != NULL; id++) {
if (le16toh(ver[0]) == id->card_id) {
printf("%s", id->card_name);
sc->sc_firmware_type = id->firm_type;
break;
}
}
if (sc->sc_firmware_type == WI_NOTYPE) {
if (le16toh(ver[0]) & 0x8000) {
printf("Unknown PRISM2 chip");
sc->sc_firmware_type = WI_INTERSIL;
} else {
printf("Unknown Lucent chip");
sc->sc_firmware_type = WI_LUCENT;
}
}
/* get primary firmware version (Only Prism chips) */
if (sc->sc_firmware_type != WI_LUCENT) {
memset(ver, 0, sizeof(ver));
len = sizeof(ver);
wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
le16toh(ver[3]) * 100 + le16toh(ver[1]);
}
/* get station firmware version */
memset(ver, 0, sizeof(ver));
len = sizeof(ver);
wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
le16toh(ver[3]) * 100 + le16toh(ver[1]);
if (sc->sc_firmware_type == WI_INTERSIL &&
(sc->sc_sta_firmware_ver == 10102 ||
sc->sc_sta_firmware_ver == 20102)) {
char ident[12];
memset(ident, 0, sizeof(ident));
len = sizeof(ident);
/* value should be the format like "V2.00-11" */
if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
*(p = (char *)ident) >= 'A' &&
p[2] == '.' && p[5] == '-' && p[8] == '\0') {
sc->sc_firmware_type = WI_SYMBOL;
sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
(p[3] - '0') * 1000 + (p[4] - '0') * 100 +
(p[6] - '0') * 10 + (p[7] - '0');
}
}
printf("\n");
device_printf(sc->sc_dev, "%s Firmware: ",
sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
(sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
printf("Primary (%u.%u.%u), ",
sc->sc_pri_firmware_ver / 10000,
(sc->sc_pri_firmware_ver % 10000) / 100,
sc->sc_pri_firmware_ver % 100);
printf("Station (%u.%u.%u)\n",
sc->sc_sta_firmware_ver / 10000,
(sc->sc_sta_firmware_ver % 10000) / 100,
sc->sc_sta_firmware_ver % 100);
}
static int
wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
{
struct wi_ssid ssid;
if (buflen > IEEE80211_NWID_LEN)
return ENOBUFS;
memset(&ssid, 0, sizeof(ssid));
ssid.wi_len = htole16(buflen);
memcpy(ssid.wi_ssid, buf, buflen);
return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
}
static int
wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifreq *ifr = (struct ifreq *)data;
struct wi_req wreq;
int len, n, error, mif, val;
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
return error;
len = (wreq.wi_len - 1) * 2;
if (len < sizeof(u_int16_t))
return ENOSPC;
if (len > sizeof(wreq.wi_val))
len = sizeof(wreq.wi_val);
switch (wreq.wi_type) {
case WI_RID_IFACE_STATS:
memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
if (len < sizeof(sc->sc_stats))
error = ENOSPC;
else
len = sizeof(sc->sc_stats);
break;
case WI_RID_ENCRYPTION:
case WI_RID_TX_CRYPT_KEY:
case WI_RID_DEFLT_CRYPT_KEYS:
case WI_RID_TX_RATE:
return ieee80211_cfgget(ifp, cmd, data);
case WI_RID_MICROWAVE_OVEN:
if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
len = sizeof(u_int16_t);
break;
case WI_RID_DBM_ADJUST:
if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
wreq.wi_val[0] = htole16(sc->sc_dbm_adjust);
len = sizeof(u_int16_t);
break;
case WI_RID_ROAMING_MODE:
if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
len = sizeof(u_int16_t);
break;
case WI_RID_SYSTEM_SCALE:
if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
wreq.wi_val[0] = htole16(sc->sc_system_scale);
len = sizeof(u_int16_t);
break;
case WI_RID_FRAG_THRESH:
if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
len = sizeof(u_int16_t);
break;
case WI_RID_READ_APS:
case WI_RID_SCAN_RES: /* XXX */
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
return ieee80211_cfgget(ifp, cmd, data);
if (sc->sc_scan_timer > 0) {
error = EINPROGRESS;
break;
}
n = sc->sc_naps;
if (len < sizeof(n)) {
error = ENOSPC;
break;
}
if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
len = sizeof(n) + sizeof(struct wi_apinfo) * n;
memcpy(wreq.wi_val, &n, sizeof(n));
memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
sizeof(struct wi_apinfo) * n);
break;
case WI_RID_PRISM2:
wreq.wi_val[0] = sc->sc_firmware_type != WI_LUCENT;
len = sizeof(u_int16_t);
break;
case WI_RID_MIF:
mif = wreq.wi_val[0];
error = wi_cmd(sc, WI_CMD_READMIF, mif, 0, 0);
val = CSR_READ_2(sc, WI_RESP0);
wreq.wi_val[0] = val;
len = sizeof(u_int16_t);
break;
case WI_RID_ZERO_CACHE:
case WI_RID_PROCFRAME: /* ignore for compatibility */
/* XXX ??? */
break;
case WI_RID_READ_CACHE:
return ieee80211_cfgget(ifp, cmd, data);
default:
if (sc->sc_enabled) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
switch (wreq.wi_type) {
case WI_RID_MAX_DATALEN:
wreq.wi_val[0] = htole16(sc->sc_max_datalen);
len = sizeof(u_int16_t);
break;
case WI_RID_RTS_THRESH:
wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
len = sizeof(u_int16_t);
break;
case WI_RID_CNFAUTHMODE:
wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
len = sizeof(u_int16_t);
break;
case WI_RID_NODENAME:
if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
error = ENOSPC;
break;
}
len = sc->sc_nodelen + sizeof(u_int16_t);
wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
memcpy(&wreq.wi_val[1], sc->sc_nodename,
sc->sc_nodelen);
break;
default:
return ieee80211_cfgget(ifp, cmd, data);
}
break;
}
if (error)
return error;
wreq.wi_len = (len + 1) / 2 + 1;
return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
}
static int
wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifreq *ifr = (struct ifreq *)data;
struct wi_req wreq;
struct mbuf *m;
int i, len, error, mif, val;
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
return error;
len = (wreq.wi_len - 1) * 2;
switch (wreq.wi_type) {
case WI_RID_DBM_ADJUST:
return ENODEV;
case WI_RID_NODENAME:
if (le16toh(wreq.wi_val[0]) * 2 > len ||
le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
error = ENOSPC;
break;
}
if (sc->sc_enabled) {
error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
len);
if (error)
break;
}
sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
break;
case WI_RID_MICROWAVE_OVEN:
case WI_RID_ROAMING_MODE:
case WI_RID_SYSTEM_SCALE:
case WI_RID_FRAG_THRESH:
if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
(sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
break;
if (wreq.wi_type == WI_RID_ROAMING_MODE &&
(sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
break;
if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
(sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
break;
if (wreq.wi_type == WI_RID_FRAG_THRESH &&
(sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
break;
/* FALLTHROUGH */
case WI_RID_RTS_THRESH:
case WI_RID_CNFAUTHMODE:
case WI_RID_MAX_DATALEN:
if (sc->sc_enabled) {
error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
sizeof(u_int16_t));
if (error)
break;
}
switch (wreq.wi_type) {
case WI_RID_FRAG_THRESH:
sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
break;
case WI_RID_RTS_THRESH:
sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
break;
case WI_RID_MICROWAVE_OVEN:
sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
break;
case WI_RID_ROAMING_MODE:
sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
break;
case WI_RID_SYSTEM_SCALE:
sc->sc_system_scale = le16toh(wreq.wi_val[0]);
break;
case WI_RID_CNFAUTHMODE:
sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
break;
case WI_RID_MAX_DATALEN:
sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
break;
}
break;
case WI_RID_TX_RATE:
switch (le16toh(wreq.wi_val[0])) {
case 3:
ic->ic_fixed_rate = -1;
break;
default:
for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
/ 2 == le16toh(wreq.wi_val[0]))
break;
}
if (i == IEEE80211_RATE_SIZE)
return EINVAL;
ic->ic_fixed_rate = i;
}
if (sc->sc_enabled)
error = wi_write_txrate(sc);
break;
case WI_RID_SCAN_APS:
if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
error = wi_scan_ap(sc);
break;
case WI_RID_MGMT_XMIT:
if (!sc->sc_enabled) {
error = ENETDOWN;
break;
}
if (ic->ic_mgtq.ifq_len > 5) {
error = EAGAIN;
break;
}
/* XXX wi_len looks in u_int8_t, not in u_int16_t */
m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
if (m == NULL) {
error = ENOMEM;
break;
}
IF_ENQUEUE(&ic->ic_mgtq, m);
break;
case WI_RID_MIF:
mif = wreq.wi_val[0];
val = wreq.wi_val[1];
error = wi_cmd(sc, WI_CMD_WRITEMIF, mif, val, 0);
break;
case WI_RID_PROCFRAME: /* ignore for compatibility */
break;
default:
if (sc->sc_enabled) {
error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
len);
if (error)
break;
}
error = ieee80211_cfgset(ifp, cmd, data);
break;
}
return error;
}
static int
wi_write_txrate(struct wi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int i;
u_int16_t rate;
if (ic->ic_fixed_rate < 0)
rate = 0; /* auto */
else
rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
IEEE80211_RATE_VAL) / 2;
/* rate: 0, 1, 2, 5, 11 */
switch (sc->sc_firmware_type) {
case WI_LUCENT:
switch (rate) {
case 0: /* auto == 11mbps auto */
rate = 3;
break;
/* case 1, 2 map to 1, 2*/
case 5: /* 5.5Mbps -> 4 */
rate = 4;
break;
case 11: /* 11mbps -> 5 */
rate = 5;
break;
default:
break;
}
break;
default:
/* Choose a bit according to this table.
*
* bit | data rate
* ----+-------------------
* 0 | 1Mbps
* 1 | 2Mbps
* 2 | 5.5Mbps
* 3 | 11Mbps
*/
for (i = 8; i > 0; i >>= 1) {
if (rate >= i)
break;
}
if (i == 0)
rate = 0xf; /* auto */
else
rate = i;
break;
}
return wi_write_val(sc, WI_RID_TX_RATE, rate);
}
static int
wi_write_wep(struct wi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int error = 0;
int i, keylen;
u_int16_t val;
struct wi_key wkey[IEEE80211_WEP_NKID];
switch (sc->sc_firmware_type) {
case WI_LUCENT:
val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
if (error)
break;
error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
if (error)
break;
memset(wkey, 0, sizeof(wkey));
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
keylen = ic->ic_nw_keys[i].wk_len;
wkey[i].wi_keylen = htole16(keylen);
memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
keylen);
}
error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
wkey, sizeof(wkey));
break;
case WI_INTERSIL:
case WI_SYMBOL:
if (ic->ic_flags & IEEE80211_F_WEPON) {
/*
* ONLY HWB3163 EVAL-CARD Firmware version
* less than 0.8 variant2
*
* If promiscuous mode disable, Prism2 chip
* does not work with WEP .
* It is under investigation for details.
* (ichiro@netbsd.org)
*/
if (sc->sc_firmware_type == WI_INTERSIL &&
sc->sc_sta_firmware_ver < 802 ) {
/* firm ver < 0.8 variant 2 */
wi_write_val(sc, WI_RID_PROMISC, 1);
}
wi_write_val(sc, WI_RID_CNFAUTHMODE,
sc->sc_cnfauthmode);
val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
/*
* Encryption firmware has a bug for HostAP mode.
*/
if (sc->sc_firmware_type == WI_INTERSIL &&
ic->ic_opmode == IEEE80211_M_HOSTAP)
val |= HOST_ENCRYPT;
} else {
wi_write_val(sc, WI_RID_CNFAUTHMODE,
IEEE80211_AUTH_OPEN);
val = HOST_ENCRYPT | HOST_DECRYPT;
}
error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
if (error)
break;
error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
ic->ic_wep_txkey);
if (error)
break;
/*
* It seems that the firmware accept 104bit key only if
* all the keys have 104bit length. We get the length of
* the transmit key and use it for all other keys.
* Perhaps we should use software WEP for such situation.
*/
keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
if (keylen > IEEE80211_WEP_KEYLEN)
keylen = 13; /* 104bit keys */
else
keylen = IEEE80211_WEP_KEYLEN;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
ic->ic_nw_keys[i].wk_key, keylen);
if (error)
break;
}
break;
}
return error;
}
static int
wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
{
int i, s = 0;
static volatile int count = 0;
if (count > 0)
panic("Hey partner, hold on there!");
count++;
/* wait for the busy bit to clear */
for (i = 500; i > 0; i--) { /* 5s */
if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) {
break;
}
DELAY(10*1000); /* 10 m sec */
}
if (i == 0) {
device_printf(sc->sc_dev, "wi_cmd: busy bit won't clear.\n" );
count--;
return(ETIMEDOUT);
}
CSR_WRITE_2(sc, WI_PARAM0, val0);
CSR_WRITE_2(sc, WI_PARAM1, val1);
CSR_WRITE_2(sc, WI_PARAM2, val2);
CSR_WRITE_2(sc, WI_COMMAND, cmd);
if (cmd == WI_CMD_INI) {
/* XXX: should sleep here. */
DELAY(100*1000);
}
for (i = 0; i < WI_TIMEOUT; i++) {
/*
* Wait for 'command complete' bit to be
* set in the event status register.
*/
s = CSR_READ_2(sc, WI_EVENT_STAT);
if (s & WI_EV_CMD) {
/* Ack the event and read result code. */
s = CSR_READ_2(sc, WI_STATUS);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
#ifdef foo
if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK))
return(EIO);
#endif
if (s & WI_STAT_CMD_RESULT) {
count--;
return(EIO);
}
break;
}
DELAY(WI_DELAY);
}
count--;
if (i == WI_TIMEOUT) {
device_printf(sc->sc_dev,
"timeout in wi_cmd 0x%04x; event status 0x%04x\n", cmd, s);
return(ETIMEDOUT);
}
return (0);
}
static int
wi_seek_bap(struct wi_softc *sc, int id, int off)
{
int i, status;
CSR_WRITE_2(sc, WI_SEL0, id);
CSR_WRITE_2(sc, WI_OFF0, off);
for (i = 0; ; i++) {
status = CSR_READ_2(sc, WI_OFF0);
if ((status & WI_OFF_BUSY) == 0)
break;
if (i == WI_TIMEOUT) {
device_printf(sc->sc_dev, "timeout in wi_seek to %x/%x\n",
id, off);
sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
return ETIMEDOUT;
}
DELAY(1);
}
if (status & WI_OFF_ERR) {
device_printf(sc->sc_dev, "failed in wi_seek to %x/%x\n", id, off);
sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
return EIO;
}
sc->sc_bap_id = id;
sc->sc_bap_off = off;
return 0;
}
static int
wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
{
u_int16_t *ptr;
int i, error, cnt;
if (buflen == 0)
return 0;
if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
if ((error = wi_seek_bap(sc, id, off)) != 0)
return error;
}
cnt = (buflen + 1) / 2;
ptr = (u_int16_t *)buf;
for (i = 0; i < cnt; i++)
*ptr++ = CSR_READ_2(sc, WI_DATA0);
sc->sc_bap_off += cnt * 2;
return 0;
}
static int
wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
{
u_int16_t *ptr;
int i, error, cnt;
if (buflen == 0)
return 0;
#ifdef WI_HERMES_AUTOINC_WAR
again:
#endif
if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
if ((error = wi_seek_bap(sc, id, off)) != 0)
return error;
}
cnt = (buflen + 1) / 2;
ptr = (u_int16_t *)buf;
for (i = 0; i < cnt; i++)
CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
sc->sc_bap_off += cnt * 2;
#ifdef WI_HERMES_AUTOINC_WAR
/*
* According to the comments in the HCF Light code, there is a bug
* in the Hermes (or possibly in certain Hermes firmware revisions)
* where the chip's internal autoincrement counter gets thrown off
* during data writes: the autoincrement is missed, causing one
* data word to be overwritten and subsequent words to be written to
* the wrong memory locations. The end result is that we could end
* up transmitting bogus frames without realizing it. The workaround
* for this is to write a couple of extra guard words after the end
* of the transfer, then attempt to read then back. If we fail to
* locate the guard words where we expect them, we preform the
* transfer over again.
*/
if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
CSR_WRITE_2(sc, WI_DATA0, 0x1234);
CSR_WRITE_2(sc, WI_DATA0, 0x5678);
wi_seek_bap(sc, id, sc->sc_bap_off);
sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
CSR_READ_2(sc, WI_DATA0) != 0x5678) {
device_printf(sc->sc_dev,
"detect auto increment bug, try again\n");
goto again;
}
}
#endif
return 0;
}
static int
wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
{
int error, len;
struct mbuf *m;
for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
if (m->m_len == 0)
continue;
len = min(m->m_len, totlen);
if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
totlen);
}
if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
return error;
off += m->m_len;
totlen -= len;
}
return 0;
}
static int
wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
{
int i;
if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
device_printf(sc->sc_dev, "failed to allocate %d bytes on NIC\n",
len);
return ENOMEM;
}
for (i = 0; i < WI_TIMEOUT; i++) {
if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
break;
if (i == WI_TIMEOUT) {
device_printf(sc->sc_dev, "timeout in alloc\n");
return ETIMEDOUT;
}
DELAY(1);
}
*idp = CSR_READ_2(sc, WI_ALLOC_FID);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
return 0;
}
static int
wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
{
int error, len;
u_int16_t ltbuf[2];
/* Tell the NIC to enter record read mode. */
error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
if (error)
return error;
error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
if (error)
return error;
if (le16toh(ltbuf[1]) != rid) {
device_printf(sc->sc_dev, "record read mismatch, rid=%x, got=%x\n",
rid, le16toh(ltbuf[1]));
return EIO;
}
len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
if (*buflenp < len) {
device_printf(sc->sc_dev, "record buffer is too small, "
"rid=%x, size=%d, len=%d\n",
rid, *buflenp, len);
return ENOSPC;
}
*buflenp = len;
return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
}
static int
wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
{
int error;
u_int16_t ltbuf[2];
ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
ltbuf[1] = htole16(rid);
error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
if (error)
return error;
error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
if (error)
return error;
return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
}
static int
wi_newstate(void *arg, enum ieee80211_state nstate)
{
struct wi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = &ic->ic_bss;
int i, buflen;
u_int16_t val;
struct wi_ssid ssid;
u_int8_t old_bssid[IEEE80211_ADDR_LEN];
enum ieee80211_state ostate;
#ifdef WI_DEBUG
static const char *stname[] =
{ "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
#endif /* WI_DEBUG */
ostate = ic->ic_state;
DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
ic->ic_state = nstate;
switch (nstate) {
case IEEE80211_S_INIT:
ic->ic_flags &= ~IEEE80211_F_SIBSS;
sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
return 0;
case IEEE80211_S_RUN:
sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
buflen = IEEE80211_ADDR_LEN;
wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
buflen = sizeof(val);
wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
ni->ni_chan = le16toh(val);
if (IEEE80211_ADDR_EQ(old_bssid, ni->ni_bssid))
sc->sc_false_syns++;
else
sc->sc_false_syns = 0;
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
ni->ni_esslen = ic->ic_des_esslen;
memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
ni->ni_nrate = 0;
for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
if (ic->ic_sup_rates[i])
ni->ni_rates[ni->ni_nrate++] =
ic->ic_sup_rates[i];
}
ni->ni_intval = ic->ic_lintval;
ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
if (ic->ic_flags & IEEE80211_F_WEPON)
ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
} else {
/* XXX check return value */
buflen = sizeof(ssid);
wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
ni->ni_esslen = le16toh(ssid.wi_len);
if (ni->ni_esslen > IEEE80211_NWID_LEN)
ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
}
break;
case IEEE80211_S_SCAN:
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
break;
}
/* skip standard ieee80211 handling */
return EINPROGRESS;
}
static int
wi_scan_ap(struct wi_softc *sc)
{
int error = 0;
u_int16_t val[2];
if (!sc->sc_enabled)
return ENXIO;
switch (sc->sc_firmware_type) {
case WI_LUCENT:
(void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
break;
case WI_INTERSIL:
val[0] = 0x3fff; /* channel */
val[1] = 0x000f; /* tx rate */
error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
break;
case WI_SYMBOL:
/*
* XXX only supported on 3.x ?
*/
val[0] = BSCAN_BCAST | BSCAN_ONETIME;
error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
val, sizeof(val[0]));
break;
}
if (error == 0) {
sc->sc_scan_timer = WI_SCAN_WAIT;
sc->sc_ic.ic_if.if_timer = 1;
DPRINTF(("wi_scan_ap: start scanning\n"));
}
return error;
}
static void
wi_scan_result(struct wi_softc *sc, int fid, int cnt)
{
#define N(a) (sizeof (a) / sizeof (a[0]))
int i, naps, off, szbuf;
struct wi_scan_header ws_hdr; /* Prism2 header */
struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
struct wi_apinfo *ap;
off = sizeof(u_int16_t) * 2;
memset(&ws_hdr, 0, sizeof(ws_hdr));
switch (sc->sc_firmware_type) {
case WI_INTERSIL:
wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
off += sizeof(ws_hdr);
szbuf = sizeof(struct wi_scan_data_p2);
break;
case WI_SYMBOL:
szbuf = sizeof(struct wi_scan_data_p2) + 6;
break;
case WI_LUCENT:
szbuf = sizeof(struct wi_scan_data);
break;
default:
device_printf(sc->sc_dev,
"wi_scan_result: unknown firmware type %u\n",
sc->sc_firmware_type);
naps = 0;
goto done;
}
naps = (cnt * 2 + 2 - off) / szbuf;
if (naps > N(sc->sc_aps))
naps = N(sc->sc_aps);
sc->sc_naps = naps;
/* Read Data */
ap = sc->sc_aps;
memset(&ws_dat, 0, sizeof(ws_dat));
for (i = 0; i < naps; i++, ap++) {
wi_read_bap(sc, fid, off, &ws_dat,
(sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
ether_sprintf(ws_dat.wi_bssid)));
off += szbuf;
ap->scanreason = le16toh(ws_hdr.wi_reason);
memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
ap->channel = le16toh(ws_dat.wi_chid);
ap->signal = le16toh(ws_dat.wi_signal);
ap->noise = le16toh(ws_dat.wi_noise);
ap->quality = ap->signal - ap->noise;
ap->capinfo = le16toh(ws_dat.wi_capinfo);
ap->interval = le16toh(ws_dat.wi_interval);
ap->rate = le16toh(ws_dat.wi_rate);
ap->namelen = le16toh(ws_dat.wi_namelen);
if (ap->namelen > sizeof(ap->name))
ap->namelen = sizeof(ap->name);
memcpy(ap->name, ws_dat.wi_name, ap->namelen);
}
done:
/* Done scanning */
sc->sc_scan_timer = 0;
DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
#undef N
}
static void
wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
{
ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
ni ? ni->ni_rates[ni->ni_txrate] & IEEE80211_RATE_VAL : -1, rssi);
printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
printf(" rx_signal %u rx_rate %u rx_flow %u\n",
wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
wh->wi_tx_rtry, wh->wi_tx_rate,
le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
printf(" ehdr dst %6D src %6D type 0x%x\n",
wh->wi_ehdr.ether_dhost, ":", wh->wi_ehdr.ether_shost, ":",
wh->wi_ehdr.ether_type);
}
int
wi_alloc(device_t dev, int rid)
{
struct wi_softc *sc = device_get_softc(dev);
if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
sc->iobase_rid = rid;
sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT,
&sc->iobase_rid, 0, ~0, (1 << 6),
rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
if (!sc->iobase) {
device_printf(dev, "No I/O space?!\n");
return (ENXIO);
}
sc->wi_io_addr = rman_get_start(sc->iobase);
sc->wi_btag = rman_get_bustag(sc->iobase);
sc->wi_bhandle = rman_get_bushandle(sc->iobase);
} else {
sc->mem_rid = rid;
sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY,
&sc->mem_rid, 0, ~0, 1, RF_ACTIVE);
if (!sc->mem) {
device_printf(dev, "No Mem space on prism2.5?\n");
return (ENXIO);
}
sc->wi_btag = rman_get_bustag(sc->mem);
sc->wi_bhandle = rman_get_bushandle(sc->mem);
}
sc->irq_rid = 0;
sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
0, ~0, 1, RF_ACTIVE |
((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
if (!sc->irq) {
wi_free(dev);
device_printf(dev, "No irq?!\n");
return (ENXIO);
}
sc->sc_dev = dev;
sc->sc_unit = device_get_unit(dev);
return (0);
}
void
wi_free(device_t dev)
{
struct wi_softc *sc = device_get_softc(dev);
if (sc->iobase != NULL) {
bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
sc->iobase = NULL;
}
if (sc->irq != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
sc->irq = NULL;
}
if (sc->mem != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
sc->mem = NULL;
}
return;
}
static int
wi_get_debug(struct wi_softc *sc, struct wi_req *wreq)
{
int error = 0;
wreq->wi_len = 1;
switch (wreq->wi_type) {
case WI_DEBUG_SLEEP:
wreq->wi_len++;
wreq->wi_val[0] = sc->wi_debug.wi_sleep;
break;
case WI_DEBUG_DELAYSUPP:
wreq->wi_len++;
wreq->wi_val[0] = sc->wi_debug.wi_delaysupp;
break;
case WI_DEBUG_TXSUPP:
wreq->wi_len++;
wreq->wi_val[0] = sc->wi_debug.wi_txsupp;
break;
case WI_DEBUG_MONITOR:
wreq->wi_len++;
wreq->wi_val[0] = sc->wi_debug.wi_monitor;
break;
case WI_DEBUG_LEDTEST:
wreq->wi_len += 3;
wreq->wi_val[0] = sc->wi_debug.wi_ledtest;
wreq->wi_val[1] = sc->wi_debug.wi_ledtest_param0;
wreq->wi_val[2] = sc->wi_debug.wi_ledtest_param1;
break;
case WI_DEBUG_CONTTX:
wreq->wi_len += 2;
wreq->wi_val[0] = sc->wi_debug.wi_conttx;
wreq->wi_val[1] = sc->wi_debug.wi_conttx_param0;
break;
case WI_DEBUG_CONTRX:
wreq->wi_len++;
wreq->wi_val[0] = sc->wi_debug.wi_contrx;
break;
case WI_DEBUG_SIGSTATE:
wreq->wi_len += 2;
wreq->wi_val[0] = sc->wi_debug.wi_sigstate;
wreq->wi_val[1] = sc->wi_debug.wi_sigstate_param0;
break;
case WI_DEBUG_CONFBITS:
wreq->wi_len += 2;
wreq->wi_val[0] = sc->wi_debug.wi_confbits;
wreq->wi_val[1] = sc->wi_debug.wi_confbits_param0;
break;
default:
error = EIO;
break;
}
return (error);
}
static int
wi_set_debug(struct wi_softc *sc, struct wi_req *wreq)
{
int error = 0;
u_int16_t cmd, param0 = 0, param1 = 0;
switch (wreq->wi_type) {
case WI_DEBUG_RESET:
case WI_DEBUG_INIT:
case WI_DEBUG_CALENABLE:
break;
case WI_DEBUG_SLEEP:
sc->wi_debug.wi_sleep = 1;
break;
case WI_DEBUG_WAKE:
sc->wi_debug.wi_sleep = 0;
break;
case WI_DEBUG_CHAN:
param0 = wreq->wi_val[0];
break;
case WI_DEBUG_DELAYSUPP:
sc->wi_debug.wi_delaysupp = 1;
break;
case WI_DEBUG_TXSUPP:
sc->wi_debug.wi_txsupp = 1;
break;
case WI_DEBUG_MONITOR:
sc->wi_debug.wi_monitor = 1;
break;
case WI_DEBUG_LEDTEST:
param0 = wreq->wi_val[0];
param1 = wreq->wi_val[1];
sc->wi_debug.wi_ledtest = 1;
sc->wi_debug.wi_ledtest_param0 = param0;
sc->wi_debug.wi_ledtest_param1 = param1;
break;
case WI_DEBUG_CONTTX:
param0 = wreq->wi_val[0];
sc->wi_debug.wi_conttx = 1;
sc->wi_debug.wi_conttx_param0 = param0;
break;
case WI_DEBUG_STOPTEST:
sc->wi_debug.wi_delaysupp = 0;
sc->wi_debug.wi_txsupp = 0;
sc->wi_debug.wi_monitor = 0;
sc->wi_debug.wi_ledtest = 0;
sc->wi_debug.wi_ledtest_param0 = 0;
sc->wi_debug.wi_ledtest_param1 = 0;
sc->wi_debug.wi_conttx = 0;
sc->wi_debug.wi_conttx_param0 = 0;
sc->wi_debug.wi_contrx = 0;
sc->wi_debug.wi_sigstate = 0;
sc->wi_debug.wi_sigstate_param0 = 0;
break;
case WI_DEBUG_CONTRX:
sc->wi_debug.wi_contrx = 1;
break;
case WI_DEBUG_SIGSTATE:
param0 = wreq->wi_val[0];
sc->wi_debug.wi_sigstate = 1;
sc->wi_debug.wi_sigstate_param0 = param0;
break;
case WI_DEBUG_CONFBITS:
param0 = wreq->wi_val[0];
param1 = wreq->wi_val[1];
sc->wi_debug.wi_confbits = param0;
sc->wi_debug.wi_confbits_param0 = param1;
break;
default:
error = EIO;
break;
}
if (error)
return (error);
cmd = WI_CMD_DEBUG | (wreq->wi_type << 8);
error = wi_cmd(sc, cmd, param0, param1, 0);
return (error);
}
#if __FreeBSD_version >= 500000
/*
* Special routines to download firmware for Symbol CF card.
* XXX: This should be modified generic into any PRISM-2 based card.
*/
#define WI_SBCF_PDIADDR 0x3100
/* unaligned load little endian */
#define GETLE32(p) ((p)[0] | ((p)[1]<<8) | ((p)[2]<<16) | ((p)[3]<<24))
#define GETLE16(p) ((p)[0] | ((p)[1]<<8))
int
wi_symbol_load_firm(struct wi_softc *sc, const void *primsym, int primlen,
const void *secsym, int seclen)
{
uint8_t ebuf[256];
int i;
/* load primary code and run it */
wi_symbol_set_hcr(sc, WI_HCR_EEHOLD);
if (wi_symbol_write_firm(sc, primsym, primlen, NULL, 0))
return EIO;
wi_symbol_set_hcr(sc, WI_HCR_RUN);
for (i = 0; ; i++) {
if (i == 10)
return ETIMEDOUT;
tsleep(sc, PWAIT, "wiinit", 1);
if (CSR_READ_2(sc, WI_CNTL) == WI_CNTL_AUX_ENA_STAT)
break;
/* write the magic key value to unlock aux port */
CSR_WRITE_2(sc, WI_PARAM0, WI_AUX_KEY0);
CSR_WRITE_2(sc, WI_PARAM1, WI_AUX_KEY1);
CSR_WRITE_2(sc, WI_PARAM2, WI_AUX_KEY2);
CSR_WRITE_2(sc, WI_CNTL, WI_CNTL_AUX_ENA_CNTL);
}
/* issue read EEPROM command: XXX copied from wi_cmd() */
CSR_WRITE_2(sc, WI_PARAM0, 0);
CSR_WRITE_2(sc, WI_PARAM1, 0);
CSR_WRITE_2(sc, WI_PARAM2, 0);
CSR_WRITE_2(sc, WI_COMMAND, WI_CMD_READEE);
for (i = 0; i < WI_TIMEOUT; i++) {
if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
break;
DELAY(1);
}
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
CSR_WRITE_2(sc, WI_AUX_PAGE, WI_SBCF_PDIADDR / WI_AUX_PGSZ);
CSR_WRITE_2(sc, WI_AUX_OFFSET, WI_SBCF_PDIADDR % WI_AUX_PGSZ);
CSR_READ_MULTI_STREAM_2(sc, WI_AUX_DATA,
(uint16_t *)ebuf, sizeof(ebuf) / 2);
if (GETLE16(ebuf) > sizeof(ebuf))
return EIO;
if (wi_symbol_write_firm(sc, secsym, seclen, ebuf + 4, GETLE16(ebuf)))
return EIO;
return 0;
}
static int
wi_symbol_write_firm(struct wi_softc *sc, const void *buf, int buflen,
const void *ebuf, int ebuflen)
{
const uint8_t *p, *ep, *q, *eq;
char *tp;
uint32_t addr, id, eid;
int i, len, elen, nblk, pdrlen;
/*
* Parse the header of the firmware image.
*/
p = buf;
ep = p + buflen;
while (p < ep && *p++ != ' '); /* FILE: */
while (p < ep && *p++ != ' '); /* filename */
while (p < ep && *p++ != ' '); /* type of the firmware */
nblk = strtoul(p, &tp, 10);
p = tp;
pdrlen = strtoul(p + 1, &tp, 10);
p = tp;
while (p < ep && *p++ != 0x1a); /* skip rest of header */
/*
* Block records: address[4], length[2], data[length];
*/
for (i = 0; i < nblk; i++) {
addr = GETLE32(p); p += 4;
len = GETLE16(p); p += 2;
CSR_WRITE_2(sc, WI_AUX_PAGE, addr / WI_AUX_PGSZ);
CSR_WRITE_2(sc, WI_AUX_OFFSET, addr % WI_AUX_PGSZ);
CSR_WRITE_MULTI_STREAM_2(sc, WI_AUX_DATA,
(const uint16_t *)p, len / 2);
p += len;
}
/*
* PDR: id[4], address[4], length[4];
*/
for (i = 0; i < pdrlen; ) {
id = GETLE32(p); p += 4; i += 4;
addr = GETLE32(p); p += 4; i += 4;
len = GETLE32(p); p += 4; i += 4;
/* replace PDR entry with the values from EEPROM, if any */
for (q = ebuf, eq = q + ebuflen; q < eq; q += elen * 2) {
elen = GETLE16(q); q += 2;
eid = GETLE16(q); q += 2;
elen--; /* elen includes eid */
if (eid == 0)
break;
if (eid != id)
continue;
CSR_WRITE_2(sc, WI_AUX_PAGE, addr / WI_AUX_PGSZ);
CSR_WRITE_2(sc, WI_AUX_OFFSET, addr % WI_AUX_PGSZ);
CSR_WRITE_MULTI_STREAM_2(sc, WI_AUX_DATA,
(const uint16_t *)q, len / 2);
break;
}
}
return 0;
}
static int
wi_symbol_set_hcr(struct wi_softc *sc, int mode)
{
uint16_t hcr;
CSR_WRITE_2(sc, WI_COR, WI_COR_RESET);
tsleep(sc, PWAIT, "wiinit", 1);
hcr = CSR_READ_2(sc, WI_HCR);
hcr = (hcr & WI_HCR_4WIRE) | (mode & ~WI_HCR_4WIRE);
CSR_WRITE_2(sc, WI_HCR, hcr);
tsleep(sc, PWAIT, "wiinit", 1);
CSR_WRITE_2(sc, WI_COR, WI_COR_IOMODE);
tsleep(sc, PWAIT, "wiinit", 1);
return 0;
}
#endif