freebsd-skq/sys/dev/age/if_age.c
Pyun YongHyeon 6da6d0a9e3 With r206844, CSUM_TCP is also set for CSUM_TSO case. Modify
drivers to take into account for the change. Basically CSUM_TSO
should be checked before checking CSUM_TCP.
2010-04-19 22:10:40 +00:00

3288 lines
92 KiB
C

/*-
* Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/rman.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <dev/age/if_agereg.h>
#include <dev/age/if_agevar.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#define AGE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
MODULE_DEPEND(age, pci, 1, 1, 1);
MODULE_DEPEND(age, ether, 1, 1, 1);
MODULE_DEPEND(age, miibus, 1, 1, 1);
/* Tunables. */
static int msi_disable = 0;
static int msix_disable = 0;
TUNABLE_INT("hw.age.msi_disable", &msi_disable);
TUNABLE_INT("hw.age.msix_disable", &msix_disable);
/*
* Devices supported by this driver.
*/
static struct age_dev {
uint16_t age_vendorid;
uint16_t age_deviceid;
const char *age_name;
} age_devs[] = {
{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
"Attansic Technology Corp, L1 Gigabit Ethernet" },
};
static int age_miibus_readreg(device_t, int, int);
static int age_miibus_writereg(device_t, int, int, int);
static void age_miibus_statchg(device_t);
static void age_mediastatus(struct ifnet *, struct ifmediareq *);
static int age_mediachange(struct ifnet *);
static int age_probe(device_t);
static void age_get_macaddr(struct age_softc *);
static void age_phy_reset(struct age_softc *);
static int age_attach(device_t);
static int age_detach(device_t);
static void age_sysctl_node(struct age_softc *);
static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int age_check_boundary(struct age_softc *);
static int age_dma_alloc(struct age_softc *);
static void age_dma_free(struct age_softc *);
static int age_shutdown(device_t);
static void age_setwol(struct age_softc *);
static int age_suspend(device_t);
static int age_resume(device_t);
static int age_encap(struct age_softc *, struct mbuf **);
static void age_tx_task(void *, int);
static void age_start(struct ifnet *);
static void age_watchdog(struct age_softc *);
static int age_ioctl(struct ifnet *, u_long, caddr_t);
static void age_mac_config(struct age_softc *);
static void age_link_task(void *, int);
static void age_stats_update(struct age_softc *);
static int age_intr(void *);
static void age_int_task(void *, int);
static void age_txintr(struct age_softc *, int);
static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
static int age_rxintr(struct age_softc *, int, int);
static void age_tick(void *);
static void age_reset(struct age_softc *);
static void age_init(void *);
static void age_init_locked(struct age_softc *);
static void age_stop(struct age_softc *);
static void age_stop_txmac(struct age_softc *);
static void age_stop_rxmac(struct age_softc *);
static void age_init_tx_ring(struct age_softc *);
static int age_init_rx_ring(struct age_softc *);
static void age_init_rr_ring(struct age_softc *);
static void age_init_cmb_block(struct age_softc *);
static void age_init_smb_block(struct age_softc *);
static int age_newbuf(struct age_softc *, struct age_rxdesc *);
static void age_rxvlan(struct age_softc *);
static void age_rxfilter(struct age_softc *);
static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
static device_method_t age_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, age_probe),
DEVMETHOD(device_attach, age_attach),
DEVMETHOD(device_detach, age_detach),
DEVMETHOD(device_shutdown, age_shutdown),
DEVMETHOD(device_suspend, age_suspend),
DEVMETHOD(device_resume, age_resume),
/* MII interface. */
DEVMETHOD(miibus_readreg, age_miibus_readreg),
DEVMETHOD(miibus_writereg, age_miibus_writereg),
DEVMETHOD(miibus_statchg, age_miibus_statchg),
{ NULL, NULL }
};
static driver_t age_driver = {
"age",
age_methods,
sizeof(struct age_softc)
};
static devclass_t age_devclass;
DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
static struct resource_spec age_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec age_irq_spec_legacy[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec age_irq_spec_msi[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec age_irq_spec_msix[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
/*
* Read a PHY register on the MII of the L1.
*/
static int
age_miibus_readreg(device_t dev, int phy, int reg)
{
struct age_softc *sc;
uint32_t v;
int i;
sc = device_get_softc(dev);
if (phy != sc->age_phyaddr)
return (0);
CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
v = CSR_READ_4(sc, AGE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0) {
device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
return (0);
}
return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
}
/*
* Write a PHY register on the MII of the L1.
*/
static int
age_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct age_softc *sc;
uint32_t v;
int i;
sc = device_get_softc(dev);
if (phy != sc->age_phyaddr)
return (0);
CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
(val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
v = CSR_READ_4(sc, AGE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0)
device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
return (0);
}
/*
* Callback from MII layer when media changes.
*/
static void
age_miibus_statchg(device_t dev)
{
struct age_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
}
/*
* Get the current interface media status.
*/
static void
age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct age_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
AGE_LOCK(sc);
mii = device_get_softc(sc->age_miibus);
mii_pollstat(mii);
AGE_UNLOCK(sc);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
/*
* Set hardware to newly-selected media.
*/
static int
age_mediachange(struct ifnet *ifp)
{
struct age_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
AGE_LOCK(sc);
mii = device_get_softc(sc->age_miibus);
if (mii->mii_instance != 0) {
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
AGE_UNLOCK(sc);
return (error);
}
static int
age_probe(device_t dev)
{
struct age_dev *sp;
int i;
uint16_t vendor, devid;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
sp = age_devs;
for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
i++, sp++) {
if (vendor == sp->age_vendorid &&
devid == sp->age_deviceid) {
device_set_desc(dev, sp->age_name);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static void
age_get_macaddr(struct age_softc *sc)
{
uint32_t ea[2], reg;
int i, vpdc;
reg = CSR_READ_4(sc, AGE_SPI_CTRL);
if ((reg & SPI_VPD_ENB) != 0) {
/* Get VPD stored in TWSI EEPROM. */
reg &= ~SPI_VPD_ENB;
CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
}
if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
/*
* PCI VPD capability found, let TWSI reload EEPROM.
* This will set ethernet address of controller.
*/
CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
TWSI_CTRL_SW_LD_START);
for (i = 100; i > 0; i--) {
DELAY(1000);
reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
if ((reg & TWSI_CTRL_SW_LD_START) == 0)
break;
}
if (i == 0)
device_printf(sc->age_dev,
"reloading EEPROM timeout!\n");
} else {
if (bootverbose)
device_printf(sc->age_dev,
"PCI VPD capability not found!\n");
}
ea[0] = CSR_READ_4(sc, AGE_PAR0);
ea[1] = CSR_READ_4(sc, AGE_PAR1);
sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
}
static void
age_phy_reset(struct age_softc *sc)
{
uint16_t reg, pn;
int i, linkup;
/* Reset PHY. */
CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
DELAY(2000);
CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
DELAY(2000);
#define ATPHY_DBG_ADDR 0x1D
#define ATPHY_DBG_DATA 0x1E
#define ATPHY_CDTC 0x16
#define PHY_CDTC_ENB 0x0001
#define PHY_CDTC_POFF 8
#define ATPHY_CDTS 0x1C
#define PHY_CDTS_STAT_OK 0x0000
#define PHY_CDTS_STAT_SHORT 0x0100
#define PHY_CDTS_STAT_OPEN 0x0200
#define PHY_CDTS_STAT_INVAL 0x0300
#define PHY_CDTS_STAT_MASK 0x0300
/* Check power saving mode. Magic from Linux. */
age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
for (linkup = 0, pn = 0; pn < 4; pn++) {
age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
(pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
for (i = 200; i > 0; i--) {
DELAY(1000);
reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
ATPHY_CDTC);
if ((reg & PHY_CDTC_ENB) == 0)
break;
}
DELAY(1000);
reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
ATPHY_CDTS);
if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
linkup++;
break;
}
}
age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
if (linkup == 0) {
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_ADDR, 0);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_DATA, 0x124E);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_ADDR, 1);
reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_DATA);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_DATA, reg | 0x03);
/* XXX */
DELAY(1500 * 1000);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_ADDR, 0);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_DATA, 0x024E);
}
#undef ATPHY_DBG_ADDR
#undef ATPHY_DBG_DATA
#undef ATPHY_CDTC
#undef PHY_CDTC_ENB
#undef PHY_CDTC_POFF
#undef ATPHY_CDTS
#undef PHY_CDTS_STAT_OK
#undef PHY_CDTS_STAT_SHORT
#undef PHY_CDTS_STAT_OPEN
#undef PHY_CDTS_STAT_INVAL
#undef PHY_CDTS_STAT_MASK
}
static int
age_attach(device_t dev)
{
struct age_softc *sc;
struct ifnet *ifp;
uint16_t burst;
int error, i, msic, msixc, pmc;
error = 0;
sc = device_get_softc(dev);
sc->age_dev = dev;
mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
/* Map the device. */
pci_enable_busmaster(dev);
sc->age_res_spec = age_res_spec_mem;
sc->age_irq_spec = age_irq_spec_legacy;
error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
if (error != 0) {
device_printf(dev, "cannot allocate memory resources.\n");
goto fail;
}
/* Set PHY address. */
sc->age_phyaddr = AGE_PHY_ADDR;
/* Reset PHY. */
age_phy_reset(sc);
/* Reset the ethernet controller. */
age_reset(sc);
/* Get PCI and chip id/revision. */
sc->age_rev = pci_get_revid(dev);
sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
MASTER_CHIP_REV_SHIFT;
if (bootverbose) {
device_printf(dev, "PCI device revision : 0x%04x\n",
sc->age_rev);
device_printf(dev, "Chip id/revision : 0x%04x\n",
sc->age_chip_rev);
}
/*
* XXX
* Unintialized hardware returns an invalid chip id/revision
* as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
* unplugged cable results in putting hardware into automatic
* power down mode which in turn returns invalld chip revision.
*/
if (sc->age_chip_rev == 0xFFFF) {
device_printf(dev,"invalid chip revision : 0x%04x -- "
"not initialized?\n", sc->age_chip_rev);
error = ENXIO;
goto fail;
}
device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
/* Allocate IRQ resources. */
msixc = pci_msix_count(dev);
msic = pci_msi_count(dev);
if (bootverbose) {
device_printf(dev, "MSIX count : %d\n", msixc);
device_printf(dev, "MSI count : %d\n", msic);
}
/* Prefer MSIX over MSI. */
if (msix_disable == 0 || msi_disable == 0) {
if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
pci_alloc_msix(dev, &msixc) == 0) {
if (msic == AGE_MSIX_MESSAGES) {
device_printf(dev, "Using %d MSIX messages.\n",
msixc);
sc->age_flags |= AGE_FLAG_MSIX;
sc->age_irq_spec = age_irq_spec_msix;
} else
pci_release_msi(dev);
}
if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
msic == AGE_MSI_MESSAGES &&
pci_alloc_msi(dev, &msic) == 0) {
if (msic == AGE_MSI_MESSAGES) {
device_printf(dev, "Using %d MSI messages.\n",
msic);
sc->age_flags |= AGE_FLAG_MSI;
sc->age_irq_spec = age_irq_spec_msi;
} else
pci_release_msi(dev);
}
}
error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
if (error != 0) {
device_printf(dev, "cannot allocate IRQ resources.\n");
goto fail;
}
/* Get DMA parameters from PCIe device control register. */
if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
sc->age_flags |= AGE_FLAG_PCIE;
burst = pci_read_config(dev, i + 0x08, 2);
/* Max read request size. */
sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
DMA_CFG_RD_BURST_SHIFT;
/* Max payload size. */
sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
DMA_CFG_WR_BURST_SHIFT;
if (bootverbose) {
device_printf(dev, "Read request size : %d bytes.\n",
128 << ((burst >> 12) & 0x07));
device_printf(dev, "TLP payload size : %d bytes.\n",
128 << ((burst >> 5) & 0x07));
}
} else {
sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
}
/* Create device sysctl node. */
age_sysctl_node(sc);
if ((error = age_dma_alloc(sc) != 0))
goto fail;
/* Load station address. */
age_get_macaddr(sc);
ifp = sc->age_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure.\n");
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = age_ioctl;
ifp->if_start = age_start;
ifp->if_init = age_init;
ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
sc->age_flags |= AGE_FLAG_PMCAP;
ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
}
ifp->if_capenable = ifp->if_capabilities;
/* Set up MII bus. */
if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
age_mediastatus)) != 0) {
device_printf(dev, "no PHY found!\n");
goto fail;
}
ether_ifattach(ifp, sc->age_eaddr);
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
ifp->if_capenable = ifp->if_capabilities;
/* Tell the upper layer(s) we support long frames. */
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/* Create local taskq. */
TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->age_tq);
if (sc->age_tq == NULL) {
device_printf(dev, "could not create taskqueue.\n");
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->age_dev));
if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
msic = AGE_MSIX_MESSAGES;
else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
msic = AGE_MSI_MESSAGES;
else
msic = 1;
for (i = 0; i < msic; i++) {
error = bus_setup_intr(dev, sc->age_irq[i],
INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
&sc->age_intrhand[i]);
if (error != 0)
break;
}
if (error != 0) {
device_printf(dev, "could not set up interrupt handler.\n");
taskqueue_free(sc->age_tq);
sc->age_tq = NULL;
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error != 0)
age_detach(dev);
return (error);
}
static int
age_detach(device_t dev)
{
struct age_softc *sc;
struct ifnet *ifp;
int i, msic;
sc = device_get_softc(dev);
ifp = sc->age_ifp;
if (device_is_attached(dev)) {
AGE_LOCK(sc);
sc->age_flags |= AGE_FLAG_DETACH;
age_stop(sc);
AGE_UNLOCK(sc);
callout_drain(&sc->age_tick_ch);
taskqueue_drain(sc->age_tq, &sc->age_int_task);
taskqueue_drain(sc->age_tq, &sc->age_tx_task);
taskqueue_drain(taskqueue_swi, &sc->age_link_task);
ether_ifdetach(ifp);
}
if (sc->age_tq != NULL) {
taskqueue_drain(sc->age_tq, &sc->age_int_task);
taskqueue_free(sc->age_tq);
sc->age_tq = NULL;
}
if (sc->age_miibus != NULL) {
device_delete_child(dev, sc->age_miibus);
sc->age_miibus = NULL;
}
bus_generic_detach(dev);
age_dma_free(sc);
if (ifp != NULL) {
if_free(ifp);
sc->age_ifp = NULL;
}
if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
msic = AGE_MSIX_MESSAGES;
else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
msic = AGE_MSI_MESSAGES;
else
msic = 1;
for (i = 0; i < msic; i++) {
if (sc->age_intrhand[i] != NULL) {
bus_teardown_intr(dev, sc->age_irq[i],
sc->age_intrhand[i]);
sc->age_intrhand[i] = NULL;
}
}
bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
pci_release_msi(dev);
bus_release_resources(dev, sc->age_res_spec, sc->age_res);
mtx_destroy(&sc->age_mtx);
return (0);
}
static void
age_sysctl_node(struct age_softc *sc)
{
int error;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
"stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
"I", "Statistics");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
"int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
sysctl_hw_age_int_mod, "I", "age interrupt moderation");
/* Pull in device tunables. */
sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
error = resource_int_value(device_get_name(sc->age_dev),
device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
if (error == 0) {
if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
sc->age_int_mod > AGE_IM_TIMER_MAX) {
device_printf(sc->age_dev,
"int_mod value out of range; using default: %d\n",
AGE_IM_TIMER_DEFAULT);
sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
}
}
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
"process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
0, sysctl_hw_age_proc_limit, "I",
"max number of Rx events to process");
/* Pull in device tunables. */
sc->age_process_limit = AGE_PROC_DEFAULT;
error = resource_int_value(device_get_name(sc->age_dev),
device_get_unit(sc->age_dev), "process_limit",
&sc->age_process_limit);
if (error == 0) {
if (sc->age_process_limit < AGE_PROC_MIN ||
sc->age_process_limit > AGE_PROC_MAX) {
device_printf(sc->age_dev,
"process_limit value out of range; "
"using default: %d\n", AGE_PROC_DEFAULT);
sc->age_process_limit = AGE_PROC_DEFAULT;
}
}
}
struct age_dmamap_arg {
bus_addr_t age_busaddr;
};
static void
age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct age_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct age_dmamap_arg *)arg;
ctx->age_busaddr = segs[0].ds_addr;
}
/*
* Attansic L1 controller have single register to specify high
* address part of DMA blocks. So all descriptor structures and
* DMA memory blocks should have the same high address of given
* 4GB address space(i.e. crossing 4GB boundary is not allowed).
*/
static int
age_check_boundary(struct age_softc *sc)
{
bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
bus_addr_t cmb_block_end, smb_block_end;
/* Tx/Rx descriptor queue should reside within 4GB boundary. */
tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
if ((AGE_ADDR_HI(tx_ring_end) !=
AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
(AGE_ADDR_HI(rx_ring_end) !=
AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
(AGE_ADDR_HI(rr_ring_end) !=
AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
(AGE_ADDR_HI(cmb_block_end) !=
AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
(AGE_ADDR_HI(smb_block_end) !=
AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
return (EFBIG);
if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
(AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
(AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
(AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
return (EFBIG);
return (0);
}
static int
age_dma_alloc(struct age_softc *sc)
{
struct age_txdesc *txd;
struct age_rxdesc *rxd;
bus_addr_t lowaddr;
struct age_dmamap_arg ctx;
int error, i;
lowaddr = BUS_SPACE_MAXADDR;
again:
/* Create parent ring/DMA block tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->age_dev), /* parent */
1, 0, /* alignment, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_parent_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create parent DMA tag.\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(
sc->age_cdata.age_parent_tag, /* parent */
AGE_TX_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_TX_RING_SZ, /* maxsize */
1, /* nsegments */
AGE_TX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_tx_ring_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create Tx ring DMA tag.\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(
sc->age_cdata.age_parent_tag, /* parent */
AGE_RX_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_RX_RING_SZ, /* maxsize */
1, /* nsegments */
AGE_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_rx_ring_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create Rx ring DMA tag.\n");
goto fail;
}
/* Create tag for Rx return ring. */
error = bus_dma_tag_create(
sc->age_cdata.age_parent_tag, /* parent */
AGE_RR_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_RR_RING_SZ, /* maxsize */
1, /* nsegments */
AGE_RR_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_rr_ring_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create Rx return ring DMA tag.\n");
goto fail;
}
/* Create tag for coalesing message block. */
error = bus_dma_tag_create(
sc->age_cdata.age_parent_tag, /* parent */
AGE_CMB_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_CMB_BLOCK_SZ, /* maxsize */
1, /* nsegments */
AGE_CMB_BLOCK_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_cmb_block_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create CMB DMA tag.\n");
goto fail;
}
/* Create tag for statistics message block. */
error = bus_dma_tag_create(
sc->age_cdata.age_parent_tag, /* parent */
AGE_SMB_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_SMB_BLOCK_SZ, /* maxsize */
1, /* nsegments */
AGE_SMB_BLOCK_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_smb_block_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create SMB DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map. */
error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
(void **)&sc->age_rdata.age_tx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->age_cdata.age_tx_ring_map);
if (error != 0) {
device_printf(sc->age_dev,
"could not allocate DMA'able memory for Tx ring.\n");
goto fail;
}
ctx.age_busaddr = 0;
error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.age_busaddr == 0) {
device_printf(sc->age_dev,
"could not load DMA'able memory for Tx ring.\n");
goto fail;
}
sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
/* Rx ring */
error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
(void **)&sc->age_rdata.age_rx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->age_cdata.age_rx_ring_map);
if (error != 0) {
device_printf(sc->age_dev,
"could not allocate DMA'able memory for Rx ring.\n");
goto fail;
}
ctx.age_busaddr = 0;
error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.age_busaddr == 0) {
device_printf(sc->age_dev,
"could not load DMA'able memory for Rx ring.\n");
goto fail;
}
sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
/* Rx return ring */
error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
(void **)&sc->age_rdata.age_rr_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->age_cdata.age_rr_ring_map);
if (error != 0) {
device_printf(sc->age_dev,
"could not allocate DMA'able memory for Rx return ring.\n");
goto fail;
}
ctx.age_busaddr = 0;
error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
AGE_RR_RING_SZ, age_dmamap_cb,
&ctx, 0);
if (error != 0 || ctx.age_busaddr == 0) {
device_printf(sc->age_dev,
"could not load DMA'able memory for Rx return ring.\n");
goto fail;
}
sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
/* CMB block */
error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
(void **)&sc->age_rdata.age_cmb_block,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->age_cdata.age_cmb_block_map);
if (error != 0) {
device_printf(sc->age_dev,
"could not allocate DMA'able memory for CMB block.\n");
goto fail;
}
ctx.age_busaddr = 0;
error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.age_busaddr == 0) {
device_printf(sc->age_dev,
"could not load DMA'able memory for CMB block.\n");
goto fail;
}
sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
/* SMB block */
error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
(void **)&sc->age_rdata.age_smb_block,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->age_cdata.age_smb_block_map);
if (error != 0) {
device_printf(sc->age_dev,
"could not allocate DMA'able memory for SMB block.\n");
goto fail;
}
ctx.age_busaddr = 0;
error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.age_busaddr == 0) {
device_printf(sc->age_dev,
"could not load DMA'able memory for SMB block.\n");
goto fail;
}
sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
/*
* All ring buffer and DMA blocks should have the same
* high address part of 64bit DMA address space.
*/
if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
(error = age_check_boundary(sc)) != 0) {
device_printf(sc->age_dev, "4GB boundary crossed, "
"switching to 32bit DMA addressing mode.\n");
age_dma_free(sc);
/* Limit DMA address space to 32bit and try again. */
lowaddr = BUS_SPACE_MAXADDR_32BIT;
goto again;
}
/*
* Create Tx/Rx buffer parent tag.
* L1 supports full 64bit DMA addressing in Tx/Rx buffers
* so it needs separate parent DMA tag.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->age_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_buffer_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create parent buffer DMA tag.\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(
sc->age_cdata.age_buffer_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_TSO_MAXSIZE, /* maxsize */
AGE_MAXTXSEGS, /* nsegments */
AGE_TSO_MAXSEGSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_tx_tag);
if (error != 0) {
device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(
sc->age_cdata.age_buffer_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_rx_tag);
if (error != 0) {
device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
goto fail;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->age_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
&sc->age_cdata.age_rx_sparemap)) != 0) {
device_printf(sc->age_dev,
"could not create spare Rx dmamap.\n");
goto fail;
}
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->age_dev,
"could not create Rx dmamap.\n");
goto fail;
}
}
fail:
return (error);
}
static void
age_dma_free(struct age_softc *sc)
{
struct age_txdesc *txd;
struct age_rxdesc *rxd;
int i;
/* Tx buffers */
if (sc->age_cdata.age_tx_tag != NULL) {
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
sc->age_cdata.age_tx_tag = NULL;
}
/* Rx buffers */
if (sc->age_cdata.age_rx_tag != NULL) {
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->age_cdata.age_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
sc->age_cdata.age_rx_sparemap);
sc->age_cdata.age_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
sc->age_cdata.age_rx_tag = NULL;
}
/* Tx ring. */
if (sc->age_cdata.age_tx_ring_tag != NULL) {
if (sc->age_cdata.age_tx_ring_map != NULL)
bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map);
if (sc->age_cdata.age_tx_ring_map != NULL &&
sc->age_rdata.age_tx_ring != NULL)
bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
sc->age_rdata.age_tx_ring,
sc->age_cdata.age_tx_ring_map);
sc->age_rdata.age_tx_ring = NULL;
sc->age_cdata.age_tx_ring_map = NULL;
bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
sc->age_cdata.age_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc->age_cdata.age_rx_ring_tag != NULL) {
if (sc->age_cdata.age_rx_ring_map != NULL)
bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
sc->age_cdata.age_rx_ring_map);
if (sc->age_cdata.age_rx_ring_map != NULL &&
sc->age_rdata.age_rx_ring != NULL)
bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
sc->age_rdata.age_rx_ring,
sc->age_cdata.age_rx_ring_map);
sc->age_rdata.age_rx_ring = NULL;
sc->age_cdata.age_rx_ring_map = NULL;
bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
sc->age_cdata.age_rx_ring_tag = NULL;
}
/* Rx return ring. */
if (sc->age_cdata.age_rr_ring_tag != NULL) {
if (sc->age_cdata.age_rr_ring_map != NULL)
bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
sc->age_cdata.age_rr_ring_map);
if (sc->age_cdata.age_rr_ring_map != NULL &&
sc->age_rdata.age_rr_ring != NULL)
bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
sc->age_rdata.age_rr_ring,
sc->age_cdata.age_rr_ring_map);
sc->age_rdata.age_rr_ring = NULL;
sc->age_cdata.age_rr_ring_map = NULL;
bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
sc->age_cdata.age_rr_ring_tag = NULL;
}
/* CMB block */
if (sc->age_cdata.age_cmb_block_tag != NULL) {
if (sc->age_cdata.age_cmb_block_map != NULL)
bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map);
if (sc->age_cdata.age_cmb_block_map != NULL &&
sc->age_rdata.age_cmb_block != NULL)
bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
sc->age_rdata.age_cmb_block,
sc->age_cdata.age_cmb_block_map);
sc->age_rdata.age_cmb_block = NULL;
sc->age_cdata.age_cmb_block_map = NULL;
bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
sc->age_cdata.age_cmb_block_tag = NULL;
}
/* SMB block */
if (sc->age_cdata.age_smb_block_tag != NULL) {
if (sc->age_cdata.age_smb_block_map != NULL)
bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
sc->age_cdata.age_smb_block_map);
if (sc->age_cdata.age_smb_block_map != NULL &&
sc->age_rdata.age_smb_block != NULL)
bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
sc->age_rdata.age_smb_block,
sc->age_cdata.age_smb_block_map);
sc->age_rdata.age_smb_block = NULL;
sc->age_cdata.age_smb_block_map = NULL;
bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
sc->age_cdata.age_smb_block_tag = NULL;
}
if (sc->age_cdata.age_buffer_tag != NULL) {
bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
sc->age_cdata.age_buffer_tag = NULL;
}
if (sc->age_cdata.age_parent_tag != NULL) {
bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
sc->age_cdata.age_parent_tag = NULL;
}
}
/*
* Make sure the interface is stopped at reboot time.
*/
static int
age_shutdown(device_t dev)
{
return (age_suspend(dev));
}
static void
age_setwol(struct age_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint32_t reg, pmcs;
uint16_t pmstat;
int aneg, i, pmc;
AGE_LOCK_ASSERT(sc);
if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
/*
* No PME capability, PHY power down.
* XXX
* Due to an unknown reason powering down PHY resulted
* in unexpected results such as inaccessbility of
* hardware of freshly rebooted system. Disable
* powering down PHY until I got more information for
* Attansic/Atheros PHY hardwares.
*/
#ifdef notyet
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
MII_BMCR, BMCR_PDOWN);
#endif
return;
}
ifp = sc->age_ifp;
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
/*
* Note, this driver resets the link speed to 10/100Mbps with
* auto-negotiation but we don't know whether that operation
* would succeed or not as it have no control after powering
* off. If the renegotiation fail WOL may not work. Running
* at 1Gbps will draw more power than 375mA at 3.3V which is
* specified in PCI specification and that would result in
* complete shutdowning power to ethernet controller.
*
* TODO
* Save current negotiated media speed/duplex/flow-control
* to softc and restore the same link again after resuming.
* PHY handling such as power down/resetting to 100Mbps
* may be better handled in suspend method in phy driver.
*/
mii = device_get_softc(sc->age_miibus);
mii_pollstat(mii);
aneg = 0;
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch IFM_SUBTYPE(mii->mii_media_active) {
case IFM_10_T:
case IFM_100_TX:
goto got_link;
case IFM_1000_T:
aneg++;
default:
break;
}
}
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
MII_100T2CR, 0);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
ANAR_10 | ANAR_CSMA);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
DELAY(1000);
if (aneg != 0) {
/* Poll link state until age(4) get a 10/100 link. */
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
mii_pollstat(mii);
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(
mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
age_mac_config(sc);
goto got_link;
default:
break;
}
}
AGE_UNLOCK(sc);
pause("agelnk", hz);
AGE_LOCK(sc);
}
if (i == MII_ANEGTICKS_GIGE)
device_printf(sc->age_dev,
"establishing link failed, "
"WOL may not work!");
}
/*
* No link, force MAC to have 100Mbps, full-duplex link.
* This is the last resort and may/may not work.
*/
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
age_mac_config(sc);
}
got_link:
pmcs = 0;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
reg |= MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
/* Request PME. */
pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
#ifdef notyet
/* See above for powering down PHY issues. */
if ((ifp->if_capenable & IFCAP_WOL) == 0) {
/* No WOL, PHY power down. */
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
MII_BMCR, BMCR_PDOWN);
}
#endif
}
static int
age_suspend(device_t dev)
{
struct age_softc *sc;
sc = device_get_softc(dev);
AGE_LOCK(sc);
age_stop(sc);
age_setwol(sc);
AGE_UNLOCK(sc);
return (0);
}
static int
age_resume(device_t dev)
{
struct age_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
AGE_LOCK(sc);
age_phy_reset(sc);
ifp = sc->age_ifp;
if ((ifp->if_flags & IFF_UP) != 0)
age_init_locked(sc);
AGE_UNLOCK(sc);
return (0);
}
static int
age_encap(struct age_softc *sc, struct mbuf **m_head)
{
struct age_txdesc *txd, *txd_last;
struct tx_desc *desc;
struct mbuf *m;
struct ip *ip;
struct tcphdr *tcp;
bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
bus_dmamap_t map;
uint32_t cflags, ip_off, poff, vtag;
int error, i, nsegs, prod, si;
AGE_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
m = *m_head;
ip = NULL;
tcp = NULL;
cflags = vtag = 0;
ip_off = poff = 0;
if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
/*
* L1 requires offset of TCP/UDP payload in its Tx
* descriptor to perform hardware Tx checksum offload.
* Additionally, TSO requires IP/TCP header size and
* modification of IP/TCP header in order to make TSO
* engine work. This kind of operation takes many CPU
* cycles on FreeBSD so fast host CPU is needed to get
* smooth TSO performance.
*/
struct ether_header *eh;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_DONTWAIT);
/* Release original mbufs. */
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
ip_off = sizeof(struct ether_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/*
* Check if hardware VLAN insertion is off.
* Additional check for LLC/SNAP frame?
*/
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ip_off = sizeof(struct ether_vlan_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, ip_off + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
poff = ip_off + (ip->ip_hl << 2);
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
/*
* L1 requires IP/TCP header size and offset as
* well as TCP pseudo checksum which complicates
* TSO configuration. I guess this comes from the
* adherence to Microsoft NDIS Large Send
* specification which requires insertion of
* pseudo checksum by upper stack. The pseudo
* checksum that NDIS refers to doesn't include
* TCP payload length so age(4) should recompute
* the pseudo checksum here. Hopefully this wouldn't
* be much burden on modern CPUs.
* Reset IP checksum and recompute TCP pseudo
* checksum as NDIS specification said.
*/
ip->ip_sum = 0;
if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htons((tcp->th_off << 2) + IPPROTO_TCP));
else
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
}
*m_head = m;
}
si = prod = sc->age_cdata.age_tx_prod;
txd = &sc->age_cdata.age_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
*m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
*m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check descriptor overrun. */
if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
return (ENOBUFS);
}
m = *m_head;
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
/* Configure TSO. */
if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
/* Not TSO but IP/TCP checksum offload. */
cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
m->m_pkthdr.csum_flags &= ~CSUM_TSO;
} else {
/* Request TSO and set MSS. */
cflags |= AGE_TD_TSO_IPV4;
cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
AGE_TD_TSO_MSS_SHIFT);
}
/* Set IP/TCP header size. */
cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
/* Configure Tx IP/TCP/UDP checksum offload. */
cflags |= AGE_TD_CSUM;
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
cflags |= AGE_TD_TCPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
cflags |= AGE_TD_UDPCSUM;
/* Set checksum start offset. */
cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
/* Set checksum insertion position of TCP/UDP. */
cflags |= ((poff + m->m_pkthdr.csum_data) <<
AGE_TD_CSUM_XSUMOFFSET_SHIFT);
}
/* Configure VLAN hardware tag insertion. */
if ((m->m_flags & M_VLANTAG) != 0) {
vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
cflags |= AGE_TD_INSERT_VLAN_TAG;
}
desc = NULL;
for (i = 0; i < nsegs; i++) {
desc = &sc->age_rdata.age_tx_ring[prod];
desc->addr = htole64(txsegs[i].ds_addr);
desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
desc->flags = htole32(cflags);
sc->age_cdata.age_tx_cnt++;
AGE_DESC_INC(prod, AGE_TX_RING_CNT);
}
/* Update producer index. */
sc->age_cdata.age_tx_prod = prod;
/* Set EOP on the last descriptor. */
prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
desc = &sc->age_rdata.age_tx_ring[prod];
desc->flags |= htole32(AGE_TD_EOP);
/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
desc = &sc->age_rdata.age_tx_ring[si];
desc->flags |= htole32(AGE_TD_TSO_HDR);
}
/* Swap dmamap of the first and the last. */
txd = &sc->age_cdata.age_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
/* Sync descriptors. */
bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
age_tx_task(void *arg, int pending)
{
struct ifnet *ifp;
ifp = (struct ifnet *)arg;
age_start(ifp);
}
static void
age_start(struct ifnet *ifp)
{
struct age_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
AGE_LOCK(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
AGE_UNLOCK(sc);
return;
}
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (age_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Update mbox. */
AGE_COMMIT_MBOX(sc);
/* Set a timeout in case the chip goes out to lunch. */
sc->age_watchdog_timer = AGE_TX_TIMEOUT;
}
AGE_UNLOCK(sc);
}
static void
age_watchdog(struct age_softc *sc)
{
struct ifnet *ifp;
AGE_LOCK_ASSERT(sc);
if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
return;
ifp = sc->age_ifp;
if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
ifp->if_oerrors++;
age_init_locked(sc);
return;
}
if (sc->age_cdata.age_tx_cnt == 0) {
if_printf(sc->age_ifp,
"watchdog timeout (missed Tx interrupts) -- recovering\n");
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
return;
}
if_printf(sc->age_ifp, "watchdog timeout\n");
ifp->if_oerrors++;
age_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
}
static int
age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct age_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
uint32_t reg;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
AGE_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
age_init_locked(sc);
AGE_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
AGE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->age_if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
age_rxfilter(sc);
} else {
if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
age_init_locked(sc);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
age_stop(sc);
}
sc->age_if_flags = ifp->if_flags;
AGE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
AGE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
age_rxfilter(sc);
AGE_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->age_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
AGE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= AGE_CSUM_FEATURES;
else
ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_RXCSUM;
reg = CSR_READ_4(sc, AGE_MAC_CFG);
reg &= ~MAC_CFG_RXCSUM_ENB;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
reg |= MAC_CFG_RXCSUM_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
if ((mask & IFCAP_TSO4) != 0 &&
(ifp->if_capabilities & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((ifp->if_capenable & IFCAP_TSO4) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
if ((mask & IFCAP_WOL_MCAST) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_MCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
age_rxvlan(sc);
}
AGE_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
age_mac_config(struct age_softc *sc)
{
struct mii_data *mii;
uint32_t reg;
AGE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->age_miibus);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
reg &= ~MAC_CFG_FULL_DUPLEX;
reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
reg &= ~MAC_CFG_SPEED_MASK;
/* Reprogram MAC with resolved speed/duplex. */
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
reg |= MAC_CFG_SPEED_10_100;
break;
case IFM_1000_T:
reg |= MAC_CFG_SPEED_1000;
break;
}
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
reg |= MAC_CFG_FULL_DUPLEX;
#ifdef notyet
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
reg |= MAC_CFG_TX_FC;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
reg |= MAC_CFG_RX_FC;
#endif
}
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
static void
age_link_task(void *arg, int pending)
{
struct age_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t reg;
sc = (struct age_softc *)arg;
AGE_LOCK(sc);
mii = device_get_softc(sc->age_miibus);
ifp = sc->age_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
AGE_UNLOCK(sc);
return;
}
sc->age_flags &= ~AGE_FLAG_LINK;
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
case IFM_1000_T:
sc->age_flags |= AGE_FLAG_LINK;
break;
default:
break;
}
}
/* Stop Rx/Tx MACs. */
age_stop_rxmac(sc);
age_stop_txmac(sc);
/* Program MACs with resolved speed/duplex/flow-control. */
if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
age_mac_config(sc);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
/* Restart DMA engine and Tx/Rx MAC. */
CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
AGE_UNLOCK(sc);
}
static void
age_stats_update(struct age_softc *sc)
{
struct age_stats *stat;
struct smb *smb;
struct ifnet *ifp;
AGE_LOCK_ASSERT(sc);
stat = &sc->age_stat;
bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
sc->age_cdata.age_smb_block_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
smb = sc->age_rdata.age_smb_block;
if (smb->updated == 0)
return;
ifp = sc->age_ifp;
/* Rx stats. */
stat->rx_frames += smb->rx_frames;
stat->rx_bcast_frames += smb->rx_bcast_frames;
stat->rx_mcast_frames += smb->rx_mcast_frames;
stat->rx_pause_frames += smb->rx_pause_frames;
stat->rx_control_frames += smb->rx_control_frames;
stat->rx_crcerrs += smb->rx_crcerrs;
stat->rx_lenerrs += smb->rx_lenerrs;
stat->rx_bytes += smb->rx_bytes;
stat->rx_runts += smb->rx_runts;
stat->rx_fragments += smb->rx_fragments;
stat->rx_pkts_64 += smb->rx_pkts_64;
stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
stat->rx_pkts_truncated += smb->rx_pkts_truncated;
stat->rx_fifo_oflows += smb->rx_fifo_oflows;
stat->rx_desc_oflows += smb->rx_desc_oflows;
stat->rx_alignerrs += smb->rx_alignerrs;
stat->rx_bcast_bytes += smb->rx_bcast_bytes;
stat->rx_mcast_bytes += smb->rx_mcast_bytes;
stat->rx_pkts_filtered += smb->rx_pkts_filtered;
/* Tx stats. */
stat->tx_frames += smb->tx_frames;
stat->tx_bcast_frames += smb->tx_bcast_frames;
stat->tx_mcast_frames += smb->tx_mcast_frames;
stat->tx_pause_frames += smb->tx_pause_frames;
stat->tx_excess_defer += smb->tx_excess_defer;
stat->tx_control_frames += smb->tx_control_frames;
stat->tx_deferred += smb->tx_deferred;
stat->tx_bytes += smb->tx_bytes;
stat->tx_pkts_64 += smb->tx_pkts_64;
stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
stat->tx_single_colls += smb->tx_single_colls;
stat->tx_multi_colls += smb->tx_multi_colls;
stat->tx_late_colls += smb->tx_late_colls;
stat->tx_excess_colls += smb->tx_excess_colls;
stat->tx_underrun += smb->tx_underrun;
stat->tx_desc_underrun += smb->tx_desc_underrun;
stat->tx_lenerrs += smb->tx_lenerrs;
stat->tx_pkts_truncated += smb->tx_pkts_truncated;
stat->tx_bcast_bytes += smb->tx_bcast_bytes;
stat->tx_mcast_bytes += smb->tx_mcast_bytes;
/* Update counters in ifnet. */
ifp->if_opackets += smb->tx_frames;
ifp->if_collisions += smb->tx_single_colls +
smb->tx_multi_colls + smb->tx_late_colls +
smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
ifp->if_oerrors += smb->tx_excess_colls +
smb->tx_late_colls + smb->tx_underrun +
smb->tx_pkts_truncated;
ifp->if_ipackets += smb->rx_frames;
ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
smb->rx_runts + smb->rx_pkts_truncated +
smb->rx_fifo_oflows + smb->rx_desc_oflows +
smb->rx_alignerrs;
/* Update done, clear. */
smb->updated = 0;
bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
sc->age_cdata.age_smb_block_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
age_intr(void *arg)
{
struct age_softc *sc;
uint32_t status;
sc = (struct age_softc *)arg;
status = CSR_READ_4(sc, AGE_INTR_STATUS);
if (status == 0 || (status & AGE_INTRS) == 0)
return (FILTER_STRAY);
/* Disable interrupts. */
CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
return (FILTER_HANDLED);
}
static void
age_int_task(void *arg, int pending)
{
struct age_softc *sc;
struct ifnet *ifp;
struct cmb *cmb;
uint32_t status;
sc = (struct age_softc *)arg;
AGE_LOCK(sc);
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cmb = sc->age_rdata.age_cmb_block;
status = le32toh(cmb->intr_status);
if (sc->age_morework != 0)
status |= INTR_CMB_RX;
if ((status & AGE_INTRS) == 0)
goto done;
sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
TPD_CONS_SHIFT;
sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
RRD_PROD_SHIFT;
/* Let hardware know CMB was served. */
cmb->intr_status = 0;
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
#if 0
printf("INTR: 0x%08x\n", status);
status &= ~INTR_DIS_DMA;
CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
#endif
ifp = sc->age_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((status & INTR_CMB_RX) != 0)
sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
sc->age_process_limit);
if ((status & INTR_CMB_TX) != 0)
age_txintr(sc, sc->age_tpd_cons);
if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
if ((status & INTR_DMA_RD_TO_RST) != 0)
device_printf(sc->age_dev,
"DMA read error! -- resetting\n");
if ((status & INTR_DMA_WR_TO_RST) != 0)
device_printf(sc->age_dev,
"DMA write error! -- resetting\n");
age_init_locked(sc);
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
if ((status & INTR_SMB) != 0)
age_stats_update(sc);
}
/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
status = le32toh(cmb->intr_status);
if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
AGE_UNLOCK(sc);
return;
}
done:
/* Re-enable interrupts. */
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
AGE_UNLOCK(sc);
}
static void
age_txintr(struct age_softc *sc, int tpd_cons)
{
struct ifnet *ifp;
struct age_txdesc *txd;
int cons, prog;
AGE_LOCK_ASSERT(sc);
ifp = sc->age_ifp;
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
cons = sc->age_cdata.age_tx_cons;
for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
if (sc->age_cdata.age_tx_cnt <= 0)
break;
prog++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->age_cdata.age_tx_cnt--;
txd = &sc->age_cdata.age_txdesc[cons];
/*
* Clear Tx descriptors, it's not required but would
* help debugging in case of Tx issues.
*/
txd->tx_desc->addr = 0;
txd->tx_desc->len = 0;
txd->tx_desc->flags = 0;
if (txd->tx_m == NULL)
continue;
/* Reclaim transmitted mbufs. */
bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
if (prog > 0) {
sc->age_cdata.age_tx_cons = cons;
/*
* Unarm watchdog timer only when there are no pending
* Tx descriptors in queue.
*/
if (sc->age_cdata.age_tx_cnt == 0)
sc->age_watchdog_timer = 0;
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
/* Receive a frame. */
static void
age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
{
struct age_rxdesc *rxd;
struct rx_desc *desc;
struct ifnet *ifp;
struct mbuf *mp, *m;
uint32_t status, index, vtag;
int count, nsegs, pktlen;
int rx_cons;
AGE_LOCK_ASSERT(sc);
ifp = sc->age_ifp;
status = le32toh(rxrd->flags);
index = le32toh(rxrd->index);
rx_cons = AGE_RX_CONS(index);
nsegs = AGE_RX_NSEGS(index);
sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
if ((status & AGE_RRD_ERROR) != 0 &&
(status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
/*
* We want to pass the following frames to upper
* layer regardless of error status of Rx return
* ring.
*
* o IP/TCP/UDP checksum is bad.
* o frame length and protocol specific length
* does not match.
*/
sc->age_cdata.age_rx_cons += nsegs;
sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
return;
}
pktlen = 0;
for (count = 0; count < nsegs; count++,
AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
rxd = &sc->age_cdata.age_rxdesc[rx_cons];
mp = rxd->rx_m;
desc = rxd->rx_desc;
/* Add a new receive buffer to the ring. */
if (age_newbuf(sc, rxd) != 0) {
ifp->if_iqdrops++;
/* Reuse Rx buffers. */
if (sc->age_cdata.age_rxhead != NULL) {
m_freem(sc->age_cdata.age_rxhead);
AGE_RXCHAIN_RESET(sc);
}
break;
}
/* The length of the first mbuf is computed last. */
if (count != 0) {
mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
pktlen += mp->m_len;
}
/* Chain received mbufs. */
if (sc->age_cdata.age_rxhead == NULL) {
sc->age_cdata.age_rxhead = mp;
sc->age_cdata.age_rxtail = mp;
} else {
mp->m_flags &= ~M_PKTHDR;
sc->age_cdata.age_rxprev_tail =
sc->age_cdata.age_rxtail;
sc->age_cdata.age_rxtail->m_next = mp;
sc->age_cdata.age_rxtail = mp;
}
if (count == nsegs - 1) {
/*
* It seems that L1 controller has no way
* to tell hardware to strip CRC bytes.
*/
sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
if (nsegs > 1) {
/* Remove the CRC bytes in chained mbufs. */
pktlen -= ETHER_CRC_LEN;
if (mp->m_len <= ETHER_CRC_LEN) {
sc->age_cdata.age_rxtail =
sc->age_cdata.age_rxprev_tail;
sc->age_cdata.age_rxtail->m_len -=
(ETHER_CRC_LEN - mp->m_len);
sc->age_cdata.age_rxtail->m_next = NULL;
m_freem(mp);
} else {
mp->m_len -= ETHER_CRC_LEN;
}
}
m = sc->age_cdata.age_rxhead;
m->m_flags |= M_PKTHDR;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = sc->age_cdata.age_rxlen;
/* Set the first mbuf length. */
m->m_len = sc->age_cdata.age_rxlen - pktlen;
/*
* Set checksum information.
* It seems that L1 controller can compute partial
* checksum. The partial checksum value can be used
* to accelerate checksum computation for fragmented
* TCP/UDP packets. Upper network stack already
* takes advantage of the partial checksum value in
* IP reassembly stage. But I'm not sure the
* correctness of the partial hardware checksum
* assistance due to lack of data sheet. If it is
* proven to work on L1 I'll enable it.
*/
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
(status & AGE_RRD_IPV4) != 0) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((status & AGE_RRD_IPCSUM_NOK) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
(status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
/*
* Don't mark bad checksum for TCP/UDP frames
* as fragmented frames may always have set
* bad checksummed bit of descriptor status.
*/
}
/* Check for VLAN tagged frames. */
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
(status & AGE_RRD_VLAN) != 0) {
vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
m->m_flags |= M_VLANTAG;
}
/* Pass it on. */
AGE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
AGE_LOCK(sc);
/* Reset mbuf chains. */
AGE_RXCHAIN_RESET(sc);
}
}
if (count != nsegs) {
sc->age_cdata.age_rx_cons += nsegs;
sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
} else
sc->age_cdata.age_rx_cons = rx_cons;
}
static int
age_rxintr(struct age_softc *sc, int rr_prod, int count)
{
struct rx_rdesc *rxrd;
int rr_cons, nsegs, pktlen, prog;
AGE_LOCK_ASSERT(sc);
rr_cons = sc->age_cdata.age_rr_cons;
if (rr_cons == rr_prod)
return (0);
bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
sc->age_cdata.age_rr_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; rr_cons != rr_prod; prog++) {
if (count <= 0)
break;
rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
if (nsegs == 0)
break;
/*
* Check number of segments against received bytes.
* Non-matching value would indicate that hardware
* is still trying to update Rx return descriptors.
* I'm not sure whether this check is really needed.
*/
pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
(MCLBYTES - ETHER_ALIGN)))
break;
prog++;
/* Received a frame. */
age_rxeof(sc, rxrd);
/* Clear return ring. */
rxrd->index = 0;
AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
}
if (prog > 0) {
/* Update the consumer index. */
sc->age_cdata.age_rr_cons = rr_cons;
/* Sync descriptors. */
bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
sc->age_cdata.age_rr_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Notify hardware availability of new Rx buffers. */
AGE_COMMIT_MBOX(sc);
}
return (count > 0 ? 0 : EAGAIN);
}
static void
age_tick(void *arg)
{
struct age_softc *sc;
struct mii_data *mii;
sc = (struct age_softc *)arg;
AGE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->age_miibus);
mii_tick(mii);
age_watchdog(sc);
callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
}
static void
age_reset(struct age_softc *sc)
{
uint32_t reg;
int i;
CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
CSR_READ_4(sc, AGE_MASTER_CFG);
DELAY(1000);
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
/* Initialize PCIe module. From Linux. */
CSR_WRITE_4(sc, 0x12FC, 0x6500);
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
}
static void
age_init(void *xsc)
{
struct age_softc *sc;
sc = (struct age_softc *)xsc;
AGE_LOCK(sc);
age_init_locked(sc);
AGE_UNLOCK(sc);
}
static void
age_init_locked(struct age_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
bus_addr_t paddr;
uint32_t reg, fsize;
uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
int error;
AGE_LOCK_ASSERT(sc);
ifp = sc->age_ifp;
mii = device_get_softc(sc->age_miibus);
/*
* Cancel any pending I/O.
*/
age_stop(sc);
/*
* Reset the chip to a known state.
*/
age_reset(sc);
/* Initialize descriptors. */
error = age_init_rx_ring(sc);
if (error != 0) {
device_printf(sc->age_dev, "no memory for Rx buffers.\n");
age_stop(sc);
return;
}
age_init_rr_ring(sc);
age_init_tx_ring(sc);
age_init_cmb_block(sc);
age_init_smb_block(sc);
/* Reprogram the station address. */
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
CSR_WRITE_4(sc, AGE_PAR0,
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
/* Set descriptor base addresses. */
paddr = sc->age_rdata.age_tx_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
paddr = sc->age_rdata.age_rx_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_rr_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_tx_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_cmb_block_paddr;
CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_smb_block_paddr;
CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
/* Set Rx/Rx return descriptor counter. */
CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
DESC_RRD_CNT_MASK) |
((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
/* Set Tx descriptor counter. */
CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
(AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
/* Tell hardware that we're ready to load descriptors. */
CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
/*
* Initialize mailbox register.
* Updated producer/consumer index information is exchanged
* through this mailbox register. However Tx producer and
* Rx return consumer/Rx producer are all shared such that
* it's hard to separate code path between Tx and Rx without
* locking. If L1 hardware have a separate mail box register
* for Tx and Rx consumer/producer management we could have
* indepent Tx/Rx handler which in turn Rx handler could have
* been run without any locking.
*/
AGE_COMMIT_MBOX(sc);
/* Configure IPG/IFG parameters. */
CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
/* Set parameters for half-duplex media. */
CSR_WRITE_4(sc, AGE_HDPX_CFG,
((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
HDPX_CFG_LCOL_MASK) |
((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
HDPX_CFG_ABEBT_MASK) |
((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
HDPX_CFG_JAMIPG_MASK));
/* Configure interrupt moderation timer. */
CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
reg = CSR_READ_4(sc, AGE_MASTER_CFG);
reg &= ~MASTER_MTIMER_ENB;
if (AGE_USECS(sc->age_int_mod) == 0)
reg &= ~MASTER_ITIMER_ENB;
else
reg |= MASTER_ITIMER_ENB;
CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
if (bootverbose)
device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
sc->age_int_mod);
CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
if (ifp->if_mtu < ETHERMTU)
sc->age_max_frame_size = ETHERMTU;
else
sc->age_max_frame_size = ifp->if_mtu;
sc->age_max_frame_size += ETHER_HDR_LEN +
sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
/* Configure jumbo frame. */
fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
(((fsize / sizeof(uint64_t)) <<
RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
RXQ_JUMBO_CFG_RRD_TIMER_MASK));
/* Configure flow-control parameters. From Linux. */
if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
/*
* Magic workaround for old-L1.
* Don't know which hw revision requires this magic.
*/
CSR_WRITE_4(sc, 0x12FC, 0x6500);
/*
* Another magic workaround for flow-control mode
* change. From Linux.
*/
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
}
/*
* TODO
* Should understand pause parameter relationships between FIFO
* size and number of Rx descriptors and Rx return descriptors.
*
* Magic parameters came from Linux.
*/
switch (sc->age_chip_rev) {
case 0x8001:
case 0x9001:
case 0x9002:
case 0x9003:
rxf_hi = AGE_RX_RING_CNT / 16;
rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
rrd_lo = AGE_RR_RING_CNT / 16;
break;
default:
reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
rxf_lo = reg / 16;
if (rxf_lo < 192)
rxf_lo = 192;
rxf_hi = (reg * 7) / 8;
if (rxf_hi < rxf_lo)
rxf_hi = rxf_lo + 16;
reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
rrd_lo = reg / 8;
rrd_hi = (reg * 7) / 8;
if (rrd_lo < 2)
rrd_lo = 2;
if (rrd_hi < rrd_lo)
rrd_hi = rrd_lo + 3;
break;
}
CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
RXQ_FIFO_PAUSE_THRESH_HI_MASK));
CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
RXQ_RRD_PAUSE_THRESH_LO_MASK) |
((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
RXQ_RRD_PAUSE_THRESH_HI_MASK));
/* Configure RxQ. */
CSR_WRITE_4(sc, AGE_RXQ_CFG,
((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
RXQ_CFG_RD_BURST_MASK) |
((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
/* Configure TxQ. */
CSR_WRITE_4(sc, AGE_TXQ_CFG,
((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
TXQ_CFG_TPD_BURST_MASK) |
((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
TXQ_CFG_TX_FIFO_BURST_MASK) |
((TXQ_CFG_TPD_FETCH_DEFAULT <<
TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
TXQ_CFG_ENB);
CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
(((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
TX_JUMBO_TPD_TH_MASK) |
((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
TX_JUMBO_TPD_IPG_MASK));
/* Configure DMA parameters. */
CSR_WRITE_4(sc, AGE_DMA_CFG,
DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
/* Configure CMB DMA write threshold. */
CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
CMB_WR_THRESH_RRD_MASK) |
((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
CMB_WR_THRESH_TPD_MASK));
/* Set CMB/SMB timer and enable them. */
CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
/* Request SMB updates for every seconds. */
CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
/*
* Disable all WOL bits as WOL can interfere normal Rx
* operation.
*/
CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
/*
* Configure Tx/Rx MACs.
* - Auto-padding for short frames.
* - Enable CRC generation.
* Start with full-duplex/1000Mbps media. Actual reconfiguration
* of MAC is followed after link establishment.
*/
CSR_WRITE_4(sc, AGE_MAC_CFG,
MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
MAC_CFG_PREAMBLE_MASK));
/* Set up the receive filter. */
age_rxfilter(sc);
age_rxvlan(sc);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
reg |= MAC_CFG_RXCSUM_ENB;
/* Ack all pending interrupts and clear it. */
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
/* Finally enable Tx/Rx MAC. */
CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
sc->age_flags &= ~AGE_FLAG_LINK;
/* Switch to the current media. */
mii_mediachg(mii);
callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static void
age_stop(struct age_softc *sc)
{
struct ifnet *ifp;
struct age_txdesc *txd;
struct age_rxdesc *rxd;
uint32_t reg;
int i;
AGE_LOCK_ASSERT(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp = sc->age_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->age_flags &= ~AGE_FLAG_LINK;
callout_stop(&sc->age_tick_ch);
sc->age_watchdog_timer = 0;
/*
* Disable interrupts.
*/
CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
/* Stop CMB/SMB updates. */
CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
/* Stop Rx/Tx MAC. */
age_stop_rxmac(sc);
age_stop_txmac(sc);
/* Stop DMA. */
CSR_WRITE_4(sc, AGE_DMA_CFG,
CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
/* Stop TxQ/RxQ. */
CSR_WRITE_4(sc, AGE_TXQ_CFG,
CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
CSR_WRITE_4(sc, AGE_RXQ_CFG,
CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->age_dev,
"stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
/* Reclaim Rx buffers that have been processed. */
if (sc->age_cdata.age_rxhead != NULL)
m_freem(sc->age_cdata.age_rxhead);
AGE_RXCHAIN_RESET(sc);
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->age_cdata.age_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->age_cdata.age_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->age_cdata.age_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->age_cdata.age_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
static void
age_stop_txmac(struct age_softc *sc)
{
uint32_t reg;
int i;
AGE_LOCK_ASSERT(sc);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
if ((reg & MAC_CFG_TX_ENB) != 0) {
reg &= ~MAC_CFG_TX_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
/* Stop Tx DMA engine. */
reg = CSR_READ_4(sc, AGE_DMA_CFG);
if ((reg & DMA_CFG_RD_ENB) != 0) {
reg &= ~DMA_CFG_RD_ENB;
CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
}
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
(IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
}
static void
age_stop_rxmac(struct age_softc *sc)
{
uint32_t reg;
int i;
AGE_LOCK_ASSERT(sc);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
if ((reg & MAC_CFG_RX_ENB) != 0) {
reg &= ~MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
/* Stop Rx DMA engine. */
reg = CSR_READ_4(sc, AGE_DMA_CFG);
if ((reg & DMA_CFG_WR_ENB) != 0) {
reg &= ~DMA_CFG_WR_ENB;
CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
}
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
(IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
}
static void
age_init_tx_ring(struct age_softc *sc)
{
struct age_ring_data *rd;
struct age_txdesc *txd;
int i;
AGE_LOCK_ASSERT(sc);
sc->age_cdata.age_tx_prod = 0;
sc->age_cdata.age_tx_cons = 0;
sc->age_cdata.age_tx_cnt = 0;
rd = &sc->age_rdata;
bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
txd->tx_desc = &rd->age_tx_ring[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
age_init_rx_ring(struct age_softc *sc)
{
struct age_ring_data *rd;
struct age_rxdesc *rxd;
int i;
AGE_LOCK_ASSERT(sc);
sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
sc->age_morework = 0;
rd = &sc->age_rdata;
bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_desc = &rd->age_rx_ring[i];
if (age_newbuf(sc, rxd) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
sc->age_cdata.age_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
age_init_rr_ring(struct age_softc *sc)
{
struct age_ring_data *rd;
AGE_LOCK_ASSERT(sc);
sc->age_cdata.age_rr_cons = 0;
AGE_RXCHAIN_RESET(sc);
rd = &sc->age_rdata;
bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
sc->age_cdata.age_rr_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
age_init_cmb_block(struct age_softc *sc)
{
struct age_ring_data *rd;
AGE_LOCK_ASSERT(sc);
rd = &sc->age_rdata;
bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
age_init_smb_block(struct age_softc *sc)
{
struct age_ring_data *rd;
AGE_LOCK_ASSERT(sc);
rd = &sc->age_rdata;
bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
sc->age_cdata.age_smb_block_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
{
struct rx_desc *desc;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
AGE_LOCK_ASSERT(sc);
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
sc->age_cdata.age_rx_sparemap = map;
bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = rxd->rx_desc;
desc->addr = htole64(segs[0].ds_addr);
desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
AGE_RD_LEN_SHIFT);
return (0);
}
static void
age_rxvlan(struct age_softc *sc)
{
struct ifnet *ifp;
uint32_t reg;
AGE_LOCK_ASSERT(sc);
ifp = sc->age_ifp;
reg = CSR_READ_4(sc, AGE_MAC_CFG);
reg &= ~MAC_CFG_VLAN_TAG_STRIP;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
reg |= MAC_CFG_VLAN_TAG_STRIP;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
static void
age_rxfilter(struct age_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
AGE_LOCK_ASSERT(sc);
ifp = sc->age_ifp;
rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxcfg |= MAC_CFG_BCAST;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxcfg |= MAC_CFG_PROMISC;
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
rxcfg |= MAC_CFG_ALLMULTI;
CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
return;
}
/* Program new filter. */
bzero(mchash, sizeof(mchash));
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
}
if_maddr_runlock(ifp);
CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
}
static int
sysctl_age_stats(SYSCTL_HANDLER_ARGS)
{
struct age_softc *sc;
struct age_stats *stats;
int error, result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (result != 1)
return (error);
sc = (struct age_softc *)arg1;
stats = &sc->age_stat;
printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
printf("Transmit good frames : %ju\n",
(uintmax_t)stats->tx_frames);
printf("Transmit good broadcast frames : %ju\n",
(uintmax_t)stats->tx_bcast_frames);
printf("Transmit good multicast frames : %ju\n",
(uintmax_t)stats->tx_mcast_frames);
printf("Transmit pause control frames : %u\n",
stats->tx_pause_frames);
printf("Transmit control frames : %u\n",
stats->tx_control_frames);
printf("Transmit frames with excessive deferrals : %u\n",
stats->tx_excess_defer);
printf("Transmit deferrals : %u\n",
stats->tx_deferred);
printf("Transmit good octets : %ju\n",
(uintmax_t)stats->tx_bytes);
printf("Transmit good broadcast octets : %ju\n",
(uintmax_t)stats->tx_bcast_bytes);
printf("Transmit good multicast octets : %ju\n",
(uintmax_t)stats->tx_mcast_bytes);
printf("Transmit frames 64 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_64);
printf("Transmit frames 65 to 127 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_65_127);
printf("Transmit frames 128 to 255 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_128_255);
printf("Transmit frames 256 to 511 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_256_511);
printf("Transmit frames 512 to 1024 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_512_1023);
printf("Transmit frames 1024 to 1518 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_1024_1518);
printf("Transmit frames 1519 to MTU bytes : %ju\n",
(uintmax_t)stats->tx_pkts_1519_max);
printf("Transmit single collisions : %u\n",
stats->tx_single_colls);
printf("Transmit multiple collisions : %u\n",
stats->tx_multi_colls);
printf("Transmit late collisions : %u\n",
stats->tx_late_colls);
printf("Transmit abort due to excessive collisions : %u\n",
stats->tx_excess_colls);
printf("Transmit underruns due to FIFO underruns : %u\n",
stats->tx_underrun);
printf("Transmit descriptor write-back errors : %u\n",
stats->tx_desc_underrun);
printf("Transmit frames with length mismatched frame size : %u\n",
stats->tx_lenerrs);
printf("Transmit frames with truncated due to MTU size : %u\n",
stats->tx_lenerrs);
printf("Receive good frames : %ju\n",
(uintmax_t)stats->rx_frames);
printf("Receive good broadcast frames : %ju\n",
(uintmax_t)stats->rx_bcast_frames);
printf("Receive good multicast frames : %ju\n",
(uintmax_t)stats->rx_mcast_frames);
printf("Receive pause control frames : %u\n",
stats->rx_pause_frames);
printf("Receive control frames : %u\n",
stats->rx_control_frames);
printf("Receive CRC errors : %u\n",
stats->rx_crcerrs);
printf("Receive frames with length errors : %u\n",
stats->rx_lenerrs);
printf("Receive good octets : %ju\n",
(uintmax_t)stats->rx_bytes);
printf("Receive good broadcast octets : %ju\n",
(uintmax_t)stats->rx_bcast_bytes);
printf("Receive good multicast octets : %ju\n",
(uintmax_t)stats->rx_mcast_bytes);
printf("Receive frames too short : %u\n",
stats->rx_runts);
printf("Receive fragmented frames : %ju\n",
(uintmax_t)stats->rx_fragments);
printf("Receive frames 64 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_64);
printf("Receive frames 65 to 127 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_65_127);
printf("Receive frames 128 to 255 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_128_255);
printf("Receive frames 256 to 511 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_256_511);
printf("Receive frames 512 to 1024 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_512_1023);
printf("Receive frames 1024 to 1518 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_1024_1518);
printf("Receive frames 1519 to MTU bytes : %ju\n",
(uintmax_t)stats->rx_pkts_1519_max);
printf("Receive frames too long : %ju\n",
(uint64_t)stats->rx_pkts_truncated);
printf("Receive frames with FIFO overflow : %u\n",
stats->rx_fifo_oflows);
printf("Receive frames with return descriptor overflow : %u\n",
stats->rx_desc_oflows);
printf("Receive frames with alignment errors : %u\n",
stats->rx_alignerrs);
printf("Receive frames dropped due to address filtering : %ju\n",
(uint64_t)stats->rx_pkts_filtered);
return (error);
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (arg1 == NULL)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
AGE_PROC_MIN, AGE_PROC_MAX));
}
static int
sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
AGE_IM_TIMER_MAX));
}