freebsd-skq/sys/dev/nvme/nvme_qpair.c
jimharris 8ae9141498 nvme: use BUS_SPACE_MAXSIZE for bus_dma_tag_create maxsize parameter
This fixes i386 PAE build fallout from r281281.

Reported by:	bz
MFC after:	1 week
2015-04-09 00:37:55 +00:00

1003 lines
27 KiB
C

/*-
* Copyright (C) 2012-2014 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <dev/pci/pcivar.h>
#include "nvme_private.h"
static void _nvme_qpair_submit_request(struct nvme_qpair *qpair,
struct nvme_request *req);
struct nvme_opcode_string {
uint16_t opc;
const char * str;
};
static struct nvme_opcode_string admin_opcode[] = {
{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
{ NVME_OPC_IDENTIFY, "IDENTIFY" },
{ NVME_OPC_ABORT, "ABORT" },
{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
{ 0xFFFF, "ADMIN COMMAND" }
};
static struct nvme_opcode_string io_opcode[] = {
{ NVME_OPC_FLUSH, "FLUSH" },
{ NVME_OPC_WRITE, "WRITE" },
{ NVME_OPC_READ, "READ" },
{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
{ NVME_OPC_COMPARE, "COMPARE" },
{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
{ 0xFFFF, "IO COMMAND" }
};
static const char *
get_admin_opcode_string(uint16_t opc)
{
struct nvme_opcode_string *entry;
entry = admin_opcode;
while (entry->opc != 0xFFFF) {
if (entry->opc == opc)
return (entry->str);
entry++;
}
return (entry->str);
}
static const char *
get_io_opcode_string(uint16_t opc)
{
struct nvme_opcode_string *entry;
entry = io_opcode;
while (entry->opc != 0xFFFF) {
if (entry->opc == opc)
return (entry->str);
entry++;
}
return (entry->str);
}
static void
nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
struct nvme_command *cmd)
{
nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
"cdw10:%08x cdw11:%08x\n",
get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
cmd->nsid, cmd->cdw10, cmd->cdw11);
}
static void
nvme_io_qpair_print_command(struct nvme_qpair *qpair,
struct nvme_command *cmd)
{
switch (cmd->opc) {
case NVME_OPC_WRITE:
case NVME_OPC_READ:
case NVME_OPC_WRITE_UNCORRECTABLE:
case NVME_OPC_COMPARE:
nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
"lba:%llu len:%d\n",
get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
cmd->nsid,
((unsigned long long)cmd->cdw11 << 32) + cmd->cdw10,
(cmd->cdw12 & 0xFFFF) + 1);
break;
case NVME_OPC_FLUSH:
case NVME_OPC_DATASET_MANAGEMENT:
nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
cmd->nsid);
break;
default:
nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
cmd->cid, cmd->nsid);
break;
}
}
static void
nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
{
if (qpair->id == 0)
nvme_admin_qpair_print_command(qpair, cmd);
else
nvme_io_qpair_print_command(qpair, cmd);
}
struct nvme_status_string {
uint16_t sc;
const char * str;
};
static struct nvme_status_string generic_status[] = {
{ NVME_SC_SUCCESS, "SUCCESS" },
{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
{ 0xFFFF, "GENERIC" }
};
static struct nvme_status_string command_specific_status[] = {
{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
{ 0xFFFF, "COMMAND SPECIFIC" }
};
static struct nvme_status_string media_error_status[] = {
{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
{ 0xFFFF, "MEDIA ERROR" }
};
static const char *
get_status_string(uint16_t sct, uint16_t sc)
{
struct nvme_status_string *entry;
switch (sct) {
case NVME_SCT_GENERIC:
entry = generic_status;
break;
case NVME_SCT_COMMAND_SPECIFIC:
entry = command_specific_status;
break;
case NVME_SCT_MEDIA_ERROR:
entry = media_error_status;
break;
case NVME_SCT_VENDOR_SPECIFIC:
return ("VENDOR SPECIFIC");
default:
return ("RESERVED");
}
while (entry->sc != 0xFFFF) {
if (entry->sc == sc)
return (entry->str);
entry++;
}
return (entry->str);
}
static void
nvme_qpair_print_completion(struct nvme_qpair *qpair,
struct nvme_completion *cpl)
{
nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
get_status_string(cpl->status.sct, cpl->status.sc),
cpl->status.sct, cpl->status.sc, cpl->sqid, cpl->cid, cpl->cdw0);
}
static boolean_t
nvme_completion_is_retry(const struct nvme_completion *cpl)
{
/*
* TODO: spec is not clear how commands that are aborted due
* to TLER will be marked. So for now, it seems
* NAMESPACE_NOT_READY is the only case where we should
* look at the DNR bit.
*/
switch (cpl->status.sct) {
case NVME_SCT_GENERIC:
switch (cpl->status.sc) {
case NVME_SC_ABORTED_BY_REQUEST:
case NVME_SC_NAMESPACE_NOT_READY:
if (cpl->status.dnr)
return (0);
else
return (1);
case NVME_SC_INVALID_OPCODE:
case NVME_SC_INVALID_FIELD:
case NVME_SC_COMMAND_ID_CONFLICT:
case NVME_SC_DATA_TRANSFER_ERROR:
case NVME_SC_ABORTED_POWER_LOSS:
case NVME_SC_INTERNAL_DEVICE_ERROR:
case NVME_SC_ABORTED_SQ_DELETION:
case NVME_SC_ABORTED_FAILED_FUSED:
case NVME_SC_ABORTED_MISSING_FUSED:
case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
case NVME_SC_COMMAND_SEQUENCE_ERROR:
case NVME_SC_LBA_OUT_OF_RANGE:
case NVME_SC_CAPACITY_EXCEEDED:
default:
return (0);
}
case NVME_SCT_COMMAND_SPECIFIC:
case NVME_SCT_MEDIA_ERROR:
case NVME_SCT_VENDOR_SPECIFIC:
default:
return (0);
}
}
static void
nvme_qpair_construct_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
uint16_t cid)
{
bus_dmamap_create(qpair->dma_tag_payload, 0, &tr->payload_dma_map);
bus_dmamap_create(qpair->dma_tag, 0, &tr->prp_dma_map);
bus_dmamap_load(qpair->dma_tag, tr->prp_dma_map, tr->prp,
sizeof(tr->prp), nvme_single_map, &tr->prp_bus_addr, 0);
callout_init(&tr->timer, 1);
tr->cid = cid;
tr->qpair = qpair;
}
static void
nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
struct nvme_completion *cpl, boolean_t print_on_error)
{
struct nvme_request *req;
boolean_t retry, error;
req = tr->req;
error = nvme_completion_is_error(cpl);
retry = error && nvme_completion_is_retry(cpl) &&
req->retries < nvme_retry_count;
if (error && print_on_error) {
nvme_qpair_print_command(qpair, &req->cmd);
nvme_qpair_print_completion(qpair, cpl);
}
qpair->act_tr[cpl->cid] = NULL;
KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
if (req->cb_fn && !retry)
req->cb_fn(req->cb_arg, cpl);
mtx_lock(&qpair->lock);
callout_stop(&tr->timer);
if (retry) {
req->retries++;
nvme_qpair_submit_tracker(qpair, tr);
} else {
if (req->type != NVME_REQUEST_NULL)
bus_dmamap_unload(qpair->dma_tag_payload,
tr->payload_dma_map);
nvme_free_request(req);
tr->req = NULL;
TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
/*
* If the controller is in the middle of resetting, don't
* try to submit queued requests here - let the reset logic
* handle that instead.
*/
if (!STAILQ_EMPTY(&qpair->queued_req) &&
!qpair->ctrlr->is_resetting) {
req = STAILQ_FIRST(&qpair->queued_req);
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
_nvme_qpair_submit_request(qpair, req);
}
}
mtx_unlock(&qpair->lock);
}
static void
nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
boolean_t print_on_error)
{
struct nvme_completion cpl;
memset(&cpl, 0, sizeof(cpl));
cpl.sqid = qpair->id;
cpl.cid = tr->cid;
cpl.status.sct = sct;
cpl.status.sc = sc;
cpl.status.dnr = dnr;
nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
}
void
nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
struct nvme_request *req, uint32_t sct, uint32_t sc,
boolean_t print_on_error)
{
struct nvme_completion cpl;
boolean_t error;
memset(&cpl, 0, sizeof(cpl));
cpl.sqid = qpair->id;
cpl.status.sct = sct;
cpl.status.sc = sc;
error = nvme_completion_is_error(&cpl);
if (error && print_on_error) {
nvme_qpair_print_command(qpair, &req->cmd);
nvme_qpair_print_completion(qpair, &cpl);
}
if (req->cb_fn)
req->cb_fn(req->cb_arg, &cpl);
nvme_free_request(req);
}
void
nvme_qpair_process_completions(struct nvme_qpair *qpair)
{
struct nvme_tracker *tr;
struct nvme_completion *cpl;
qpair->num_intr_handler_calls++;
if (!qpair->is_enabled)
/*
* qpair is not enabled, likely because a controller reset is
* is in progress. Ignore the interrupt - any I/O that was
* associated with this interrupt will get retried when the
* reset is complete.
*/
return;
while (1) {
cpl = &qpair->cpl[qpair->cq_head];
if (cpl->status.p != qpair->phase)
break;
tr = qpair->act_tr[cpl->cid];
if (tr != NULL) {
nvme_qpair_complete_tracker(qpair, tr, cpl, TRUE);
qpair->sq_head = cpl->sqhd;
} else {
nvme_printf(qpair->ctrlr,
"cpl does not map to outstanding cmd\n");
nvme_dump_completion(cpl);
KASSERT(0, ("received completion for unknown cmd\n"));
}
if (++qpair->cq_head == qpair->num_entries) {
qpair->cq_head = 0;
qpair->phase = !qpair->phase;
}
nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
qpair->cq_head);
}
}
static void
nvme_qpair_msix_handler(void *arg)
{
struct nvme_qpair *qpair = arg;
nvme_qpair_process_completions(qpair);
}
void
nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
struct nvme_controller *ctrlr)
{
struct nvme_tracker *tr;
uint32_t i;
int err;
qpair->id = id;
qpair->vector = vector;
qpair->num_entries = num_entries;
qpair->num_trackers = num_trackers;
qpair->ctrlr = ctrlr;
if (ctrlr->msix_enabled) {
/*
* MSI-X vector resource IDs start at 1, so we add one to
* the queue's vector to get the corresponding rid to use.
*/
qpair->rid = vector + 1;
qpair->res = ctrlr->msi_res[vector];
bus_setup_intr(ctrlr->dev, qpair->res,
INTR_TYPE_MISC | INTR_MPSAFE, NULL,
nvme_qpair_msix_handler, qpair, &qpair->tag);
}
mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
/* Note: NVMe PRP format is restricted to 4-byte alignment. */
err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
4, PAGE_SIZE, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
(NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
NULL, NULL, &qpair->dma_tag_payload);
if (err != 0)
nvme_printf(ctrlr, "payload tag create failed %d\n", err);
err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
4, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE, 1, BUS_SPACE_MAXSIZE, 0,
NULL, NULL, &qpair->dma_tag);
if (err != 0)
nvme_printf(ctrlr, "tag create failed %d\n", err);
qpair->num_cmds = 0;
qpair->num_intr_handler_calls = 0;
qpair->cmd = contigmalloc(qpair->num_entries *
sizeof(struct nvme_command), M_NVME, M_ZERO,
0, BUS_SPACE_MAXADDR, PAGE_SIZE, 0);
qpair->cpl = contigmalloc(qpair->num_entries *
sizeof(struct nvme_completion), M_NVME, M_ZERO,
0, BUS_SPACE_MAXADDR, PAGE_SIZE, 0);
err = bus_dmamap_create(qpair->dma_tag, 0, &qpair->cmd_dma_map);
if (err != 0)
nvme_printf(ctrlr, "cmd_dma_map create failed %d\n", err);
err = bus_dmamap_create(qpair->dma_tag, 0, &qpair->cpl_dma_map);
if (err != 0)
nvme_printf(ctrlr, "cpl_dma_map create failed %d\n", err);
bus_dmamap_load(qpair->dma_tag, qpair->cmd_dma_map,
qpair->cmd, qpair->num_entries * sizeof(struct nvme_command),
nvme_single_map, &qpair->cmd_bus_addr, 0);
bus_dmamap_load(qpair->dma_tag, qpair->cpl_dma_map,
qpair->cpl, qpair->num_entries * sizeof(struct nvme_completion),
nvme_single_map, &qpair->cpl_bus_addr, 0);
qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
TAILQ_INIT(&qpair->free_tr);
TAILQ_INIT(&qpair->outstanding_tr);
STAILQ_INIT(&qpair->queued_req);
for (i = 0; i < qpair->num_trackers; i++) {
tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
nvme_qpair_construct_tracker(qpair, tr, i);
TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
}
qpair->act_tr = malloc(sizeof(struct nvme_tracker *) * qpair->num_entries,
M_NVME, M_ZERO | M_WAITOK);
}
static void
nvme_qpair_destroy(struct nvme_qpair *qpair)
{
struct nvme_tracker *tr;
if (qpair->tag)
bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
if (qpair->res)
bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
rman_get_rid(qpair->res), qpair->res);
if (qpair->cmd) {
bus_dmamap_unload(qpair->dma_tag, qpair->cmd_dma_map);
bus_dmamap_destroy(qpair->dma_tag, qpair->cmd_dma_map);
contigfree(qpair->cmd,
qpair->num_entries * sizeof(struct nvme_command), M_NVME);
}
if (qpair->cpl) {
bus_dmamap_unload(qpair->dma_tag, qpair->cpl_dma_map);
bus_dmamap_destroy(qpair->dma_tag, qpair->cpl_dma_map);
contigfree(qpair->cpl,
qpair->num_entries * sizeof(struct nvme_completion),
M_NVME);
}
if (qpair->dma_tag)
bus_dma_tag_destroy(qpair->dma_tag);
if (qpair->dma_tag_payload)
bus_dma_tag_destroy(qpair->dma_tag_payload);
if (qpair->act_tr)
free(qpair->act_tr, M_NVME);
while (!TAILQ_EMPTY(&qpair->free_tr)) {
tr = TAILQ_FIRST(&qpair->free_tr);
TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
bus_dmamap_destroy(qpair->dma_tag, tr->payload_dma_map);
bus_dmamap_destroy(qpair->dma_tag, tr->prp_dma_map);
free(tr, M_NVME);
}
}
static void
nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
{
struct nvme_tracker *tr;
tr = TAILQ_FIRST(&qpair->outstanding_tr);
while (tr != NULL) {
if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
nvme_qpair_manual_complete_tracker(qpair, tr,
NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
FALSE);
tr = TAILQ_FIRST(&qpair->outstanding_tr);
} else {
tr = TAILQ_NEXT(tr, tailq);
}
}
}
void
nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
{
nvme_admin_qpair_abort_aers(qpair);
nvme_qpair_destroy(qpair);
}
void
nvme_io_qpair_destroy(struct nvme_qpair *qpair)
{
nvme_qpair_destroy(qpair);
}
static void
nvme_abort_complete(void *arg, const struct nvme_completion *status)
{
struct nvme_tracker *tr = arg;
/*
* If cdw0 == 1, the controller was not able to abort the command
* we requested. We still need to check the active tracker array,
* to cover race where I/O timed out at same time controller was
* completing the I/O.
*/
if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
/*
* An I/O has timed out, and the controller was unable to
* abort it for some reason. Construct a fake completion
* status, and then complete the I/O's tracker manually.
*/
nvme_printf(tr->qpair->ctrlr,
"abort command failed, aborting command manually\n");
nvme_qpair_manual_complete_tracker(tr->qpair, tr,
NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
}
}
static void
nvme_timeout(void *arg)
{
struct nvme_tracker *tr = arg;
struct nvme_qpair *qpair = tr->qpair;
struct nvme_controller *ctrlr = qpair->ctrlr;
union csts_register csts;
/* Read csts to get value of cfs - controller fatal status. */
csts.raw = nvme_mmio_read_4(ctrlr, csts);
if (ctrlr->enable_aborts && csts.bits.cfs == 0) {
/*
* If aborts are enabled, only use them if the controller is
* not reporting fatal status.
*/
nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
nvme_abort_complete, tr);
} else
nvme_ctrlr_reset(ctrlr);
}
void
nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
{
struct nvme_request *req;
struct nvme_controller *ctrlr;
mtx_assert(&qpair->lock, MA_OWNED);
req = tr->req;
req->cmd.cid = tr->cid;
qpair->act_tr[tr->cid] = tr;
ctrlr = qpair->ctrlr;
if (req->timeout)
#if __FreeBSD_version >= 800030
callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
nvme_timeout, tr);
#else
callout_reset(&tr->timer, ctrlr->timeout_period * hz,
nvme_timeout, tr);
#endif
/* Copy the command from the tracker to the submission queue. */
memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
if (++qpair->sq_tail == qpair->num_entries)
qpair->sq_tail = 0;
wmb();
nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
qpair->sq_tail);
qpair->num_cmds++;
}
static void
nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
struct nvme_tracker *tr = arg;
uint32_t cur_nseg;
/*
* If the mapping operation failed, return immediately. The caller
* is responsible for detecting the error status and failing the
* tracker manually.
*/
if (error != 0) {
nvme_printf(tr->qpair->ctrlr,
"nvme_payload_map err %d\n", error);
return;
}
/*
* Note that we specified PAGE_SIZE for alignment and max
* segment size when creating the bus dma tags. So here
* we can safely just transfer each segment to its
* associated PRP entry.
*/
tr->req->cmd.prp1 = seg[0].ds_addr;
if (nseg == 2) {
tr->req->cmd.prp2 = seg[1].ds_addr;
} else if (nseg > 2) {
cur_nseg = 1;
tr->req->cmd.prp2 = (uint64_t)tr->prp_bus_addr;
while (cur_nseg < nseg) {
tr->prp[cur_nseg-1] =
(uint64_t)seg[cur_nseg].ds_addr;
cur_nseg++;
}
} else {
/*
* prp2 should not be used by the controller
* since there is only one segment, but set
* to 0 just to be safe.
*/
tr->req->cmd.prp2 = 0;
}
nvme_qpair_submit_tracker(tr->qpair, tr);
}
static void
_nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
{
struct nvme_tracker *tr;
int err = 0;
mtx_assert(&qpair->lock, MA_OWNED);
tr = TAILQ_FIRST(&qpair->free_tr);
req->qpair = qpair;
if (tr == NULL || !qpair->is_enabled) {
/*
* No tracker is available, or the qpair is disabled due to
* an in-progress controller-level reset or controller
* failure.
*/
if (qpair->ctrlr->is_failed) {
/*
* The controller has failed. Post the request to a
* task where it will be aborted, so that we do not
* invoke the request's callback in the context
* of the submission.
*/
nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
} else {
/*
* Put the request on the qpair's request queue to be
* processed when a tracker frees up via a command
* completion or when the controller reset is
* completed.
*/
STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
}
return;
}
TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
tr->req = req;
switch (req->type) {
case NVME_REQUEST_VADDR:
KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
("payload_size (%d) exceeds max_xfer_size (%d)\n",
req->payload_size, qpair->ctrlr->max_xfer_size));
err = bus_dmamap_load(tr->qpair->dma_tag_payload,
tr->payload_dma_map, req->u.payload, req->payload_size,
nvme_payload_map, tr, 0);
if (err != 0)
nvme_printf(qpair->ctrlr,
"bus_dmamap_load returned 0x%x!\n", err);
break;
case NVME_REQUEST_NULL:
nvme_qpair_submit_tracker(tr->qpair, tr);
break;
#ifdef NVME_UNMAPPED_BIO_SUPPORT
case NVME_REQUEST_BIO:
KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
(intmax_t)req->u.bio->bio_bcount,
qpair->ctrlr->max_xfer_size));
err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
if (err != 0)
nvme_printf(qpair->ctrlr,
"bus_dmamap_load_bio returned 0x%x!\n", err);
break;
#endif
default:
panic("unknown nvme request type 0x%x\n", req->type);
break;
}
if (err != 0) {
/*
* The dmamap operation failed, so we manually fail the
* tracker here with DATA_TRANSFER_ERROR status.
*
* nvme_qpair_manual_complete_tracker must not be called
* with the qpair lock held.
*/
mtx_unlock(&qpair->lock);
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
NVME_SC_DATA_TRANSFER_ERROR, 1 /* do not retry */, TRUE);
mtx_lock(&qpair->lock);
}
}
void
nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
{
mtx_lock(&qpair->lock);
_nvme_qpair_submit_request(qpair, req);
mtx_unlock(&qpair->lock);
}
static void
nvme_qpair_enable(struct nvme_qpair *qpair)
{
qpair->is_enabled = TRUE;
}
void
nvme_qpair_reset(struct nvme_qpair *qpair)
{
qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
/*
* First time through the completion queue, HW will set phase
* bit on completions to 1. So set this to 1 here, indicating
* we're looking for a 1 to know which entries have completed.
* we'll toggle the bit each time when the completion queue
* rolls over.
*/
qpair->phase = 1;
memset(qpair->cmd, 0,
qpair->num_entries * sizeof(struct nvme_command));
memset(qpair->cpl, 0,
qpair->num_entries * sizeof(struct nvme_completion));
}
void
nvme_admin_qpair_enable(struct nvme_qpair *qpair)
{
struct nvme_tracker *tr;
struct nvme_tracker *tr_temp;
/*
* Manually abort each outstanding admin command. Do not retry
* admin commands found here, since they will be left over from
* a controller reset and its likely the context in which the
* command was issued no longer applies.
*/
TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
nvme_printf(qpair->ctrlr,
"aborting outstanding admin command\n");
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
}
nvme_qpair_enable(qpair);
}
void
nvme_io_qpair_enable(struct nvme_qpair *qpair)
{
STAILQ_HEAD(, nvme_request) temp;
struct nvme_tracker *tr;
struct nvme_tracker *tr_temp;
struct nvme_request *req;
/*
* Manually abort each outstanding I/O. This normally results in a
* retry, unless the retry count on the associated request has
* reached its limit.
*/
TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
}
mtx_lock(&qpair->lock);
nvme_qpair_enable(qpair);
STAILQ_INIT(&temp);
STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
while (!STAILQ_EMPTY(&temp)) {
req = STAILQ_FIRST(&temp);
STAILQ_REMOVE_HEAD(&temp, stailq);
nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
nvme_qpair_print_command(qpair, &req->cmd);
_nvme_qpair_submit_request(qpair, req);
}
mtx_unlock(&qpair->lock);
}
static void
nvme_qpair_disable(struct nvme_qpair *qpair)
{
struct nvme_tracker *tr;
qpair->is_enabled = FALSE;
mtx_lock(&qpair->lock);
TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
callout_stop(&tr->timer);
mtx_unlock(&qpair->lock);
}
void
nvme_admin_qpair_disable(struct nvme_qpair *qpair)
{
nvme_qpair_disable(qpair);
nvme_admin_qpair_abort_aers(qpair);
}
void
nvme_io_qpair_disable(struct nvme_qpair *qpair)
{
nvme_qpair_disable(qpair);
}
void
nvme_qpair_fail(struct nvme_qpair *qpair)
{
struct nvme_tracker *tr;
struct nvme_request *req;
mtx_lock(&qpair->lock);
while (!STAILQ_EMPTY(&qpair->queued_req)) {
req = STAILQ_FIRST(&qpair->queued_req);
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
nvme_printf(qpair->ctrlr, "failing queued i/o\n");
mtx_unlock(&qpair->lock);
nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
NVME_SC_ABORTED_BY_REQUEST, TRUE);
mtx_lock(&qpair->lock);
}
/* Manually abort each outstanding I/O. */
while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
tr = TAILQ_FIRST(&qpair->outstanding_tr);
/*
* Do not remove the tracker. The abort_tracker path will
* do that for us.
*/
nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
mtx_unlock(&qpair->lock);
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
mtx_lock(&qpair->lock);
}
mtx_unlock(&qpair->lock);
}