freebsd-skq/sys/kern/vfs_bio.c

746 lines
15 KiB
C

/*
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Absolutely no warranty of function or purpose is made by the author
* John S. Dyson.
* 4. Modifications may be freely made to this file if the above conditions
* are met.
*
* $Id: vfs_bio.c,v 1.14 1994/10/05 09:48:21 davidg Exp $
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/buf.h>
#include <sys/mount.h>
#include <sys/malloc.h>
#include <sys/resourcevar.h>
#include <sys/proc.h>
#include <vm/vm.h>
#include <vm/vm_pageout.h>
#include <miscfs/specfs/specdev.h>
struct buf *buf; /* buffer header pool */
int nbuf; /* number of buffer headers calculated elsewhere */
struct swqueue bswlist;
extern vm_map_t buffer_map, io_map;
void vm_hold_free_pages(vm_offset_t from, vm_offset_t to);
void vm_hold_load_pages(vm_offset_t from, vm_offset_t to);
int needsbuffer;
/*
* Internal update daemon, process 3
* The variable vfs_update_wakeup allows for internal syncs.
*/
int vfs_update_wakeup;
/*
* Initialize buffer headers and related structures.
*/
void
bufinit()
{
struct buf *bp;
int i;
caddr_t baddr;
TAILQ_INIT(&bswlist);
LIST_INIT(&invalhash);
/* first, make a null hash table */
for(i=0;i<BUFHSZ;i++)
LIST_INIT(&bufhashtbl[i]);
/* next, make a null set of free lists */
for(i=0;i<BUFFER_QUEUES;i++)
TAILQ_INIT(&bufqueues[i]);
baddr = (caddr_t)kmem_alloc_pageable(buffer_map, MAXBSIZE * nbuf);
/* finally, initialize each buffer header and stick on empty q */
for(i=0;i<nbuf;i++) {
bp = &buf[i];
bzero(bp, sizeof *bp);
bp->b_flags = B_INVAL; /* we're just an empty header */
bp->b_dev = NODEV;
bp->b_vp = NULL;
bp->b_rcred = NOCRED;
bp->b_wcred = NOCRED;
bp->b_qindex = QUEUE_EMPTY;
bp->b_vnbufs.le_next = NOLIST;
bp->b_data = baddr + i * MAXBSIZE;
TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
LIST_INSERT_HEAD(&invalhash, bp, b_hash);
}
}
/*
* remove the buffer from the appropriate free list
*/
void
bremfree(struct buf *bp)
{
int s = splbio();
if( bp->b_qindex != QUEUE_NONE) {
TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
bp->b_qindex = QUEUE_NONE;
} else {
panic("bremfree: removing a buffer when not on a queue");
}
splx(s);
}
/*
* Get a buffer with the specified data. Look in the cache first.
*/
int
bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
struct buf **bpp)
{
struct buf *bp;
bp = getblk (vp, blkno, size, 0, 0);
*bpp = bp;
/* if not found in cache, do some I/O */
if ((bp->b_flags & B_CACHE) == 0) {
if (curproc && curproc->p_stats) /* count block I/O */
curproc->p_stats->p_ru.ru_inblock++;
bp->b_flags |= B_READ;
bp->b_flags &= ~(B_DONE|B_ERROR|B_INVAL);
if( bp->b_rcred == NOCRED) {
if (cred != NOCRED)
crhold(cred);
bp->b_rcred = cred;
}
VOP_STRATEGY(bp);
return( biowait (bp));
}
return (0);
}
/*
* Operates like bread, but also starts asynchronous I/O on
* read-ahead blocks.
*/
int
breadn(struct vnode *vp, daddr_t blkno, int size,
daddr_t *rablkno, int *rabsize,
int cnt, struct ucred *cred, struct buf **bpp)
{
struct buf *bp, *rabp;
int i;
int rv = 0, readwait = 0;
*bpp = bp = getblk (vp, blkno, size, 0, 0);
/* if not found in cache, do some I/O */
if ((bp->b_flags & B_CACHE) == 0) {
if (curproc && curproc->p_stats) /* count block I/O */
curproc->p_stats->p_ru.ru_inblock++;
bp->b_flags |= B_READ;
bp->b_flags &= ~(B_DONE|B_ERROR|B_INVAL);
if( bp->b_rcred == NOCRED) {
if (cred != NOCRED)
crhold(cred);
bp->b_rcred = cred;
}
VOP_STRATEGY(bp);
++readwait;
}
for(i=0;i<cnt;i++, rablkno++, rabsize++) {
if( incore(vp, *rablkno)) {
continue;
}
rabp = getblk (vp, *rablkno, *rabsize, 0, 0);
if ((rabp->b_flags & B_CACHE) == 0) {
if (curproc && curproc->p_stats)
curproc->p_stats->p_ru.ru_inblock++;
rabp->b_flags |= B_READ | B_ASYNC;
rabp->b_flags &= ~(B_DONE|B_ERROR|B_INVAL);
if( rabp->b_rcred == NOCRED) {
if (cred != NOCRED)
crhold(cred);
rabp->b_rcred = cred;
}
VOP_STRATEGY(rabp);
} else {
brelse(rabp);
}
}
if( readwait) {
rv = biowait (bp);
}
return (rv);
}
/*
* Write, release buffer on completion. (Done by iodone
* if async.)
*/
int
bwrite(struct buf *bp)
{
int oldflags = bp->b_flags;
if(bp->b_flags & B_INVAL) {
brelse(bp);
return (0);
}
if(!(bp->b_flags & B_BUSY))
panic("bwrite: buffer is not busy???");
bp->b_flags &= ~(B_READ|B_DONE|B_ERROR|B_DELWRI);
bp->b_flags |= B_WRITEINPROG;
if (oldflags & B_ASYNC) {
if (oldflags & B_DELWRI) {
reassignbuf(bp, bp->b_vp);
} else if( curproc) {
++curproc->p_stats->p_ru.ru_oublock;
}
}
bp->b_vp->v_numoutput++;
VOP_STRATEGY(bp);
if( (oldflags & B_ASYNC) == 0) {
int rtval = biowait(bp);
if (oldflags & B_DELWRI) {
reassignbuf(bp, bp->b_vp);
} else if( curproc) {
++curproc->p_stats->p_ru.ru_oublock;
}
brelse(bp);
return (rtval);
}
return(0);
}
int
vn_bwrite(ap)
struct vop_bwrite_args *ap;
{
return (bwrite(ap->a_bp));
}
/*
* Delayed write. (Buffer is marked dirty).
*/
void
bdwrite(struct buf *bp)
{
if((bp->b_flags & B_BUSY) == 0) {
panic("bdwrite: buffer is not busy");
}
if(bp->b_flags & B_INVAL) {
brelse(bp);
return;
}
if(bp->b_flags & B_TAPE) {
bawrite(bp);
return;
}
bp->b_flags &= ~B_READ;
if( (bp->b_flags & B_DELWRI) == 0) {
if( curproc)
++curproc->p_stats->p_ru.ru_oublock;
bp->b_flags |= B_DONE|B_DELWRI;
reassignbuf(bp, bp->b_vp);
}
brelse(bp);
return;
}
/*
* Asynchronous write.
* Start output on a buffer, but do not wait for it to complete.
* The buffer is released when the output completes.
*/
void
bawrite(struct buf *bp)
{
bp->b_flags |= B_ASYNC;
(void) bwrite(bp);
}
/*
* Release a buffer.
*/
void
brelse(struct buf *bp)
{
int x;
/* anyone need a "free" block? */
x=splbio();
if (needsbuffer) {
needsbuffer = 0;
wakeup((caddr_t)&needsbuffer);
}
/* anyone need this block? */
if (bp->b_flags & B_WANTED) {
bp->b_flags &= ~(B_WANTED|B_AGE);
wakeup((caddr_t)bp);
}
if (bp->b_flags & B_LOCKED)
bp->b_flags &= ~B_ERROR;
if ((bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR)) ||
(bp->b_bufsize <= 0)) {
bp->b_flags |= B_INVAL;
bp->b_flags &= ~(B_DELWRI|B_CACHE);
if(bp->b_vp)
brelvp(bp);
}
if( bp->b_qindex != QUEUE_NONE)
panic("brelse: free buffer onto another queue???");
/* enqueue */
/* buffers with no memory */
if(bp->b_bufsize == 0) {
bp->b_qindex = QUEUE_EMPTY;
TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
LIST_REMOVE(bp, b_hash);
LIST_INSERT_HEAD(&invalhash, bp, b_hash);
bp->b_dev = NODEV;
/* buffers with junk contents */
} else if(bp->b_flags & (B_ERROR|B_INVAL|B_NOCACHE)) {
bp->b_qindex = QUEUE_AGE;
TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
LIST_REMOVE(bp, b_hash);
LIST_INSERT_HEAD(&invalhash, bp, b_hash);
bp->b_dev = NODEV;
/* buffers that are locked */
} else if(bp->b_flags & B_LOCKED) {
bp->b_qindex = QUEUE_LOCKED;
TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
/* buffers with stale but valid contents */
} else if(bp->b_flags & B_AGE) {
bp->b_qindex = QUEUE_AGE;
TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
/* buffers with valid and quite potentially reuseable contents */
} else {
bp->b_qindex = QUEUE_LRU;
TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
}
/* unlock */
bp->b_flags &= ~(B_WANTED|B_BUSY|B_ASYNC|B_NOCACHE|B_AGE);
splx(x);
}
int freebufspace;
int allocbufspace;
/*
* Find a buffer header which is available for use.
*/
struct buf *
getnewbuf(int slpflag, int slptimeo)
{
struct buf *bp;
int s;
s = splbio();
start:
/* can we constitute a new buffer? */
if ((bp = bufqueues[QUEUE_EMPTY].tqh_first)) {
if( bp->b_qindex != QUEUE_EMPTY)
panic("getnewbuf: inconsistent EMPTY queue");
bremfree(bp);
goto fillbuf;
}
if ((bp = bufqueues[QUEUE_AGE].tqh_first)) {
if( bp->b_qindex != QUEUE_AGE)
panic("getnewbuf: inconsistent AGE queue");
bremfree(bp);
} else if ((bp = bufqueues[QUEUE_LRU].tqh_first)) {
if( bp->b_qindex != QUEUE_LRU)
panic("getnewbuf: inconsistent LRU queue");
bremfree(bp);
} else {
/* wait for a free buffer of any kind */
needsbuffer = 1;
tsleep((caddr_t)&needsbuffer, PRIBIO, "newbuf", 0);
splx(s);
return (0);
}
/* if we are a delayed write, convert to an async write */
if (bp->b_flags & B_DELWRI) {
bp->b_flags |= B_BUSY;
bawrite (bp);
goto start;
}
if(bp->b_vp)
brelvp(bp);
/* we are not free, nor do we contain interesting data */
if (bp->b_rcred != NOCRED)
crfree(bp->b_rcred);
if (bp->b_wcred != NOCRED)
crfree(bp->b_wcred);
fillbuf:
bp->b_flags = B_BUSY;
LIST_REMOVE(bp, b_hash);
LIST_INSERT_HEAD(&invalhash, bp, b_hash);
splx(s);
bp->b_dev = NODEV;
bp->b_vp = NULL;
bp->b_blkno = bp->b_lblkno = 0;
bp->b_iodone = 0;
bp->b_error = 0;
bp->b_resid = 0;
bp->b_bcount = 0;
bp->b_wcred = bp->b_rcred = NOCRED;
bp->b_dirtyoff = bp->b_dirtyend = 0;
bp->b_validoff = bp->b_validend = 0;
return (bp);
}
/*
* Check to see if a block is currently memory resident.
*/
struct buf *
incore(struct vnode *vp, daddr_t blkno)
{
struct buf *bp;
struct bufhashhdr *bh;
int s = splbio();
bh = BUFHASH(vp, blkno);
bp = bh->lh_first;
/* Search hash chain */
while (bp) {
#ifdef DEBUG
if( (bp < buf) || (bp >= buf + nbuf)) {
printf("incore: buf out of range: %p, hash: %d\n",
bp, bh - bufhashtbl);
panic("incore: buf fault");
}
#endif
/* hit */
if (bp->b_lblkno == blkno && bp->b_vp == vp
&& (bp->b_flags & B_INVAL) == 0) {
splx(s);
return (bp);
}
bp = bp->b_hash.le_next;
}
splx(s);
return(0);
}
/*
* Get a block given a specified block and offset into a file/device.
*/
struct buf *
getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
{
struct buf *bp;
int s;
struct bufhashhdr *bh;
s = splbio();
loop:
if ((bp = incore(vp, blkno))) {
if (bp->b_flags & B_BUSY) {
bp->b_flags |= B_WANTED;
tsleep ((caddr_t)bp, PRIBIO, "getblk", 0);
goto loop;
}
bp->b_flags |= B_BUSY | B_CACHE;
bremfree(bp);
/*
* check for size inconsistancies
*/
if (bp->b_bcount != size) {
printf("getblk: invalid buffer size: %ld\n", bp->b_bcount);
bp->b_flags |= B_INVAL;
bwrite(bp);
goto loop;
}
} else {
if ((bp = getnewbuf(0, 0)) == 0)
goto loop;
bp->b_blkno = bp->b_lblkno = blkno;
bgetvp(vp, bp);
LIST_REMOVE(bp, b_hash);
bh = BUFHASH(vp, blkno);
LIST_INSERT_HEAD(bh, bp, b_hash);
allocbuf(bp, size);
}
splx(s);
return (bp);
}
/*
* Get an empty, disassociated buffer of given size.
*/
struct buf *
geteblk(int size)
{
struct buf *bp;
while ((bp = getnewbuf(0, 0)) == 0)
;
allocbuf(bp, size);
bp->b_flags |= B_INVAL;
return (bp);
}
/*
* Modify the length of a buffer's underlying buffer storage without
* destroying information (unless, of course the buffer is shrinking).
*/
void
allocbuf(struct buf *bp, int size)
{
int newbsize = round_page(size);
if( newbsize == bp->b_bufsize) {
bp->b_bcount = size;
return;
} else if( newbsize < bp->b_bufsize) {
vm_hold_free_pages(
(vm_offset_t) bp->b_data + newbsize,
(vm_offset_t) bp->b_data + bp->b_bufsize);
} else if( newbsize > bp->b_bufsize) {
vm_hold_load_pages(
(vm_offset_t) bp->b_data + bp->b_bufsize,
(vm_offset_t) bp->b_data + newbsize);
}
/* adjust buffer cache's idea of memory allocated to buffer contents */
freebufspace -= newbsize - bp->b_bufsize;
allocbufspace += newbsize - bp->b_bufsize;
bp->b_bufsize = newbsize;
bp->b_bcount = size;
}
/*
* Wait for buffer I/O completion, returning error status.
*/
int
biowait(register struct buf *bp)
{
int s;
s = splbio();
while ((bp->b_flags & B_DONE) == 0)
tsleep((caddr_t)bp, PRIBIO, "biowait", 0);
if((bp->b_flags & B_ERROR) || bp->b_error) {
if ((bp->b_flags & B_INVAL) == 0) {
bp->b_flags |= B_INVAL;
bp->b_dev = NODEV;
LIST_REMOVE(bp, b_hash);
LIST_INSERT_HEAD(&invalhash, bp, b_hash);
}
if (!bp->b_error)
bp->b_error = EIO;
else
bp->b_flags |= B_ERROR;
splx(s);
return (bp->b_error);
} else {
splx(s);
return (0);
}
}
/*
* Finish I/O on a buffer, calling an optional function.
* This is usually called from interrupt level, so process blocking
* is not *a good idea*.
*/
void
biodone(register struct buf *bp)
{
int s;
s = splbio();
bp->b_flags |= B_DONE;
if ((bp->b_flags & B_READ) == 0) {
vwakeup(bp);
}
#ifdef BOUNCE_BUFFERS
if (bp->b_flags & B_BOUNCE)
vm_bounce_free(bp);
#endif
/* call optional completion function if requested */
if (bp->b_flags & B_CALL) {
bp->b_flags &= ~B_CALL;
(*bp->b_iodone)(bp);
splx(s);
return;
}
/*
* For asynchronous completions, release the buffer now. The brelse
* checks for B_WANTED and will do the wakeup there if necessary -
* so no need to do a wakeup here in the async case.
*/
if (bp->b_flags & B_ASYNC) {
brelse(bp);
} else {
bp->b_flags &= ~B_WANTED;
wakeup((caddr_t) bp);
}
splx(s);
}
int
count_lock_queue()
{
int count;
struct buf *bp;
count = 0;
for(bp = bufqueues[QUEUE_LOCKED].tqh_first;
bp != NULL;
bp = bp->b_freelist.tqe_next)
count++;
return(count);
}
int vfs_update_interval = 30;
void
vfs_update() {
(void) spl0();
while(1) {
tsleep((caddr_t)&vfs_update_wakeup, PRIBIO, "update",
hz * vfs_update_interval);
vfs_update_wakeup = 0;
sync(curproc, NULL, NULL);
}
}
#if 0
#define MAXFREEBP 128
#define LDFREE_BUSY 1
#define LDFREE_WANT 2
int loadfreeing;
struct buf *freebp[MAXFREEBP];
#endif
/*
* these routines are not in the correct place (yet)
* also they work *ONLY* for kernel_pmap!!!
*/
void
vm_hold_load_pages(vm_offset_t froma, vm_offset_t toa) {
vm_offset_t pg;
vm_page_t p;
vm_offset_t from = round_page(froma);
vm_offset_t to = round_page(toa);
for(pg = from ; pg < to ; pg += PAGE_SIZE) {
tryagain:
#if 0
/*
* don't allow buffer cache to cause VM paging
*/
if ( cnt.v_free_count < cnt.v_free_min) {
if( !loadfreeing ) {
int n=0;
struct buf *bp;
loadfreeing = LDFREE_BUSY;
while( (cnt.v_free_count <= cnt.v_free_min) &&
(n < MAXFREEBP)) {
bp = geteblk(0);
if( bp)
freebp[n++] = bp;
else
break;
}
while(--n >= 0) {
brelse(freebp[n]);
}
if( loadfreeing & LDFREE_WANT)
wakeup((caddr_t) &loadfreeing);
loadfreeing = 0;
} else {
loadfreeing |= LDFREE_WANT;
tsleep(&loadfreeing, PRIBIO, "biofree", 0);
}
}
#endif
if (cnt.v_free_count <=
cnt.v_free_reserved + (toa-froma) / PAGE_SIZE) {
VM_WAIT;
goto tryagain;
}
p = vm_page_alloc(kernel_object, pg - VM_MIN_KERNEL_ADDRESS);
if( !p) {
VM_WAIT;
goto tryagain;
}
vm_page_wire(p);
pmap_kenter( pg, VM_PAGE_TO_PHYS(p));
}
}
void
vm_hold_free_pages(vm_offset_t froma, vm_offset_t toa)
{
vm_offset_t pg;
vm_page_t p;
vm_offset_t from = round_page(froma);
vm_offset_t to = round_page(toa);
for(pg = from ; pg < to ; pg += PAGE_SIZE) {
p = PHYS_TO_VM_PAGE( pmap_kextract( pg));
pmap_kremove( pg);
vm_page_free(p);
}
}
void
bufstats()
{
}