freebsd-skq/usr.sbin/bhyve/mevent.c
John Baldwin 483d953a86 Initial support for bhyve save and restore.
Save and restore (also known as suspend and resume) permits a snapshot
to be taken of a guest's state that can later be resumed.  In the
current implementation, bhyve(8) creates a UNIX domain socket that is
used by bhyvectl(8) to send a request to save a snapshot (and
optionally exit after the snapshot has been taken).  A snapshot
currently consists of two files: the first holds a copy of guest RAM,
and the second file holds other guest state such as vCPU register
values and device model state.

To resume a guest, bhyve(8) must be started with a matching pair of
command line arguments to instantiate the same set of device models as
well as a pointer to the saved snapshot.

While the current implementation is useful for several uses cases, it
has a few limitations.  The file format for saving the guest state is
tied to the ABI of internal bhyve structures and is not
self-describing (in that it does not communicate the set of device
models present in the system).  In addition, the state saved for some
device models closely matches the internal data structures which might
prove a challenge for compatibility of snapshot files across a range
of bhyve versions.  The file format also does not currently support
versioning of individual chunks of state.  As a result, the current
file format is not a fixed binary format and future revisions to save
and restore will break binary compatiblity of snapshot files.  The
goal is to move to a more flexible format that adds versioning,
etc. and at that point to commit to providing a reasonable level of
compatibility.  As a result, the current implementation is not enabled
by default.  It can be enabled via the WITH_BHYVE_SNAPSHOT=yes option
for userland builds, and the kernel option BHYVE_SHAPSHOT.

Submitted by:	Mihai Tiganus, Flavius Anton, Darius Mihai
Submitted by:	Elena Mihailescu, Mihai Carabas, Sergiu Weisz
Relnotes:	yes
Sponsored by:	University Politehnica of Bucharest
Sponsored by:	Matthew Grooms (student scholarships)
Sponsored by:	iXsystems
Differential Revision:	https://reviews.freebsd.org/D19495
2020-05-05 00:02:04 +00:00

493 lines
9.9 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Micro event library for FreeBSD, designed for a single i/o thread
* using kqueue, and having events be persistent by default.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <assert.h>
#ifndef WITHOUT_CAPSICUM
#include <capsicum_helpers.h>
#endif
#include <err.h>
#include <errno.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sysexits.h>
#include <unistd.h>
#include <sys/types.h>
#ifndef WITHOUT_CAPSICUM
#include <sys/capsicum.h>
#endif
#include <sys/event.h>
#include <sys/time.h>
#include <pthread.h>
#include <pthread_np.h>
#include "mevent.h"
#define MEVENT_MAX 64
extern const char *vmname;
static pthread_t mevent_tid;
static int mevent_timid = 43;
static int mevent_pipefd[2];
static pthread_mutex_t mevent_lmutex = PTHREAD_MUTEX_INITIALIZER;
struct mevent {
void (*me_func)(int, enum ev_type, void *);
#define me_msecs me_fd
int me_fd;
int me_timid;
enum ev_type me_type;
void *me_param;
int me_cq;
int me_state; /* Desired kevent flags. */
int me_closefd;
LIST_ENTRY(mevent) me_list;
};
static LIST_HEAD(listhead, mevent) global_head, change_head;
static void
mevent_qlock(void)
{
pthread_mutex_lock(&mevent_lmutex);
}
static void
mevent_qunlock(void)
{
pthread_mutex_unlock(&mevent_lmutex);
}
static void
mevent_pipe_read(int fd, enum ev_type type, void *param)
{
char buf[MEVENT_MAX];
int status;
/*
* Drain the pipe read side. The fd is non-blocking so this is
* safe to do.
*/
do {
status = read(fd, buf, sizeof(buf));
} while (status == MEVENT_MAX);
}
static void
mevent_notify(void)
{
char c = '\0';
/*
* If calling from outside the i/o thread, write a byte on the
* pipe to force the i/o thread to exit the blocking kevent call.
*/
if (mevent_pipefd[1] != 0 && pthread_self() != mevent_tid) {
write(mevent_pipefd[1], &c, 1);
}
}
static int
mevent_kq_filter(struct mevent *mevp)
{
int retval;
retval = 0;
if (mevp->me_type == EVF_READ)
retval = EVFILT_READ;
if (mevp->me_type == EVF_WRITE)
retval = EVFILT_WRITE;
if (mevp->me_type == EVF_TIMER)
retval = EVFILT_TIMER;
if (mevp->me_type == EVF_SIGNAL)
retval = EVFILT_SIGNAL;
return (retval);
}
static int
mevent_kq_flags(struct mevent *mevp)
{
return (mevp->me_state);
}
static int
mevent_kq_fflags(struct mevent *mevp)
{
/* XXX nothing yet, perhaps EV_EOF for reads ? */
return (0);
}
static int
mevent_build(int mfd, struct kevent *kev)
{
struct mevent *mevp, *tmpp;
int i;
i = 0;
mevent_qlock();
LIST_FOREACH_SAFE(mevp, &change_head, me_list, tmpp) {
if (mevp->me_closefd) {
/*
* A close of the file descriptor will remove the
* event
*/
close(mevp->me_fd);
} else {
if (mevp->me_type == EVF_TIMER) {
kev[i].ident = mevp->me_timid;
kev[i].data = mevp->me_msecs;
} else {
kev[i].ident = mevp->me_fd;
kev[i].data = 0;
}
kev[i].filter = mevent_kq_filter(mevp);
kev[i].flags = mevent_kq_flags(mevp);
kev[i].fflags = mevent_kq_fflags(mevp);
kev[i].udata = mevp;
i++;
}
mevp->me_cq = 0;
LIST_REMOVE(mevp, me_list);
if (mevp->me_state & EV_DELETE) {
free(mevp);
} else {
/*
* We need to add the event only once, so we can
* reset the EV_ADD bit after it has been propagated
* to the kevent() arguments the first time.
*/
mevp->me_state &= ~EV_ADD;
LIST_INSERT_HEAD(&global_head, mevp, me_list);
}
assert(i < MEVENT_MAX);
}
mevent_qunlock();
return (i);
}
static void
mevent_handle(struct kevent *kev, int numev)
{
struct mevent *mevp;
int i;
for (i = 0; i < numev; i++) {
mevp = kev[i].udata;
/* XXX check for EV_ERROR ? */
(*mevp->me_func)(mevp->me_fd, mevp->me_type, mevp->me_param);
}
}
static struct mevent *
mevent_add_state(int tfd, enum ev_type type,
void (*func)(int, enum ev_type, void *), void *param,
int state)
{
struct mevent *lp, *mevp;
if (tfd < 0 || func == NULL) {
return (NULL);
}
mevp = NULL;
mevent_qlock();
/*
* Verify that the fd/type tuple is not present in any list
*/
LIST_FOREACH(lp, &global_head, me_list) {
if (type != EVF_TIMER && lp->me_fd == tfd &&
lp->me_type == type) {
goto exit;
}
}
LIST_FOREACH(lp, &change_head, me_list) {
if (type != EVF_TIMER && lp->me_fd == tfd &&
lp->me_type == type) {
goto exit;
}
}
/*
* Allocate an entry, populate it, and add it to the change list.
*/
mevp = calloc(1, sizeof(struct mevent));
if (mevp == NULL) {
goto exit;
}
if (type == EVF_TIMER) {
mevp->me_msecs = tfd;
mevp->me_timid = mevent_timid++;
} else
mevp->me_fd = tfd;
mevp->me_type = type;
mevp->me_func = func;
mevp->me_param = param;
LIST_INSERT_HEAD(&change_head, mevp, me_list);
mevp->me_cq = 1;
mevp->me_state = state;
mevent_notify();
exit:
mevent_qunlock();
return (mevp);
}
struct mevent *
mevent_add(int tfd, enum ev_type type,
void (*func)(int, enum ev_type, void *), void *param)
{
return (mevent_add_state(tfd, type, func, param, EV_ADD));
}
struct mevent *
mevent_add_disabled(int tfd, enum ev_type type,
void (*func)(int, enum ev_type, void *), void *param)
{
return (mevent_add_state(tfd, type, func, param, EV_ADD | EV_DISABLE));
}
static int
mevent_update(struct mevent *evp, bool enable)
{
int newstate;
mevent_qlock();
/*
* It's not possible to enable/disable a deleted event
*/
assert((evp->me_state & EV_DELETE) == 0);
newstate = evp->me_state;
if (enable) {
newstate |= EV_ENABLE;
newstate &= ~EV_DISABLE;
} else {
newstate |= EV_DISABLE;
newstate &= ~EV_ENABLE;
}
/*
* No update needed if state isn't changing
*/
if (evp->me_state != newstate) {
evp->me_state = newstate;
/*
* Place the entry onto the changed list if not
* already there.
*/
if (evp->me_cq == 0) {
evp->me_cq = 1;
LIST_REMOVE(evp, me_list);
LIST_INSERT_HEAD(&change_head, evp, me_list);
mevent_notify();
}
}
mevent_qunlock();
return (0);
}
int
mevent_enable(struct mevent *evp)
{
return (mevent_update(evp, true));
}
int
mevent_disable(struct mevent *evp)
{
return (mevent_update(evp, false));
}
static int
mevent_delete_event(struct mevent *evp, int closefd)
{
mevent_qlock();
/*
* Place the entry onto the changed list if not already there, and
* mark as to be deleted.
*/
if (evp->me_cq == 0) {
evp->me_cq = 1;
LIST_REMOVE(evp, me_list);
LIST_INSERT_HEAD(&change_head, evp, me_list);
mevent_notify();
}
evp->me_state = EV_DELETE;
if (closefd)
evp->me_closefd = 1;
mevent_qunlock();
return (0);
}
int
mevent_delete(struct mevent *evp)
{
return (mevent_delete_event(evp, 0));
}
int
mevent_delete_close(struct mevent *evp)
{
return (mevent_delete_event(evp, 1));
}
static void
mevent_set_name(void)
{
pthread_set_name_np(mevent_tid, "mevent");
}
void
mevent_dispatch(void)
{
struct kevent changelist[MEVENT_MAX];
struct kevent eventlist[MEVENT_MAX];
struct mevent *pipev;
int mfd;
int numev;
int ret;
#ifndef WITHOUT_CAPSICUM
cap_rights_t rights;
#endif
mevent_tid = pthread_self();
mevent_set_name();
mfd = kqueue();
assert(mfd > 0);
#ifndef WITHOUT_CAPSICUM
cap_rights_init(&rights, CAP_KQUEUE);
if (caph_rights_limit(mfd, &rights) == -1)
errx(EX_OSERR, "Unable to apply rights for sandbox");
#endif
/*
* Open the pipe that will be used for other threads to force
* the blocking kqueue call to exit by writing to it. Set the
* descriptor to non-blocking.
*/
ret = pipe(mevent_pipefd);
if (ret < 0) {
perror("pipe");
exit(0);
}
#ifndef WITHOUT_CAPSICUM
cap_rights_init(&rights, CAP_EVENT, CAP_READ, CAP_WRITE);
if (caph_rights_limit(mevent_pipefd[0], &rights) == -1)
errx(EX_OSERR, "Unable to apply rights for sandbox");
if (caph_rights_limit(mevent_pipefd[1], &rights) == -1)
errx(EX_OSERR, "Unable to apply rights for sandbox");
#endif
/*
* Add internal event handler for the pipe write fd
*/
pipev = mevent_add(mevent_pipefd[0], EVF_READ, mevent_pipe_read, NULL);
assert(pipev != NULL);
for (;;) {
/*
* Build changelist if required.
* XXX the changelist can be put into the blocking call
* to eliminate the extra syscall. Currently better for
* debug.
*/
numev = mevent_build(mfd, changelist);
if (numev) {
ret = kevent(mfd, changelist, numev, NULL, 0, NULL);
if (ret == -1) {
perror("Error return from kevent change");
}
}
/*
* Block awaiting events
*/
ret = kevent(mfd, NULL, 0, eventlist, MEVENT_MAX, NULL);
if (ret == -1 && errno != EINTR) {
perror("Error return from kevent monitor");
}
/*
* Handle reported events
*/
mevent_handle(eventlist, ret);
}
}