John Birrell 275928fc14 Vendor import of the full userland contrib part of DTrace support from
OpenSolaris. This commit resets files to match the versions in the
OpenSolaris tree as of 2008/04/10.

The changes in this import from the previous import are the ones that
will subsequently re-applied to take files off the vendor branch. This
is unfortunately necessary because the Solaris developers won't allow
FreeBSD support #ifdefs in their source code because that creates
'dead code' (stuff that they never compile).
2008-04-26 00:54:52 +00:00

1961 lines
57 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/isa_defs.h>
#include <strings.h>
#include <stdlib.h>
#include <setjmp.h>
#include <assert.h>
#include <errno.h>
#include <dt_impl.h>
#include <dt_grammar.h>
#include <dt_parser.h>
#include <dt_provider.h>
static void dt_cg_node(dt_node_t *, dt_irlist_t *, dt_regset_t *);
static dt_irnode_t *
dt_cg_node_alloc(uint_t label, dif_instr_t instr)
{
dt_irnode_t *dip = malloc(sizeof (dt_irnode_t));
if (dip == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
dip->di_label = label;
dip->di_instr = instr;
dip->di_extern = NULL;
dip->di_next = NULL;
return (dip);
}
/*
* Code generator wrapper function for ctf_member_info. If we are given a
* reference to a forward declaration tag, search the entire type space for
* the actual definition and then call ctf_member_info on the result.
*/
static ctf_file_t *
dt_cg_membinfo(ctf_file_t *fp, ctf_id_t type, const char *s, ctf_membinfo_t *mp)
{
while (ctf_type_kind(fp, type) == CTF_K_FORWARD) {
char n[DT_TYPE_NAMELEN];
dtrace_typeinfo_t dtt;
if (ctf_type_name(fp, type, n, sizeof (n)) == NULL ||
dt_type_lookup(n, &dtt) == -1 || (
dtt.dtt_ctfp == fp && dtt.dtt_type == type))
break; /* unable to improve our position */
fp = dtt.dtt_ctfp;
type = ctf_type_resolve(fp, dtt.dtt_type);
}
if (ctf_member_info(fp, type, s, mp) == CTF_ERR)
return (NULL); /* ctf_errno is set for us */
return (fp);
}
static void
dt_cg_xsetx(dt_irlist_t *dlp, dt_ident_t *idp, uint_t lbl, int reg, uint64_t x)
{
int flag = idp != NULL ? DT_INT_PRIVATE : DT_INT_SHARED;
int intoff = dt_inttab_insert(yypcb->pcb_inttab, x, flag);
dif_instr_t instr = DIF_INSTR_SETX((uint_t)intoff, reg);
if (intoff == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
if (intoff > DIF_INTOFF_MAX)
longjmp(yypcb->pcb_jmpbuf, EDT_INT2BIG);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl, instr));
if (idp != NULL)
dlp->dl_last->di_extern = idp;
}
static void
dt_cg_setx(dt_irlist_t *dlp, int reg, uint64_t x)
{
dt_cg_xsetx(dlp, NULL, DT_LBL_NONE, reg, x);
}
/*
* When loading bit-fields, we want to convert a byte count in the range
* 1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function
* is a clever implementation from "Hacker's Delight" by Henry Warren, Jr.
*/
static size_t
clp2(size_t x)
{
x--;
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return (x + 1);
}
/*
* Lookup the correct load opcode to use for the specified node and CTF type.
* We determine the size and convert it to a 3-bit index. Our lookup table
* is constructed to use a 5-bit index, consisting of the 3-bit size 0-7, a
* bit for the sign, and a bit for userland address. For example, a 4-byte
* signed load from userland would be at the following table index:
* user=1 sign=1 size=4 => binary index 11011 = decimal index 27
*/
static uint_t
dt_cg_load(dt_node_t *dnp, ctf_file_t *ctfp, ctf_id_t type)
{
static const uint_t ops[] = {
DIF_OP_LDUB, DIF_OP_LDUH, 0, DIF_OP_LDUW,
0, 0, 0, DIF_OP_LDX,
DIF_OP_LDSB, DIF_OP_LDSH, 0, DIF_OP_LDSW,
0, 0, 0, DIF_OP_LDX,
DIF_OP_ULDUB, DIF_OP_ULDUH, 0, DIF_OP_ULDUW,
0, 0, 0, DIF_OP_ULDX,
DIF_OP_ULDSB, DIF_OP_ULDSH, 0, DIF_OP_ULDSW,
0, 0, 0, DIF_OP_ULDX,
};
ctf_encoding_t e;
ssize_t size;
/*
* If we're loading a bit-field, the size of our load is found by
* rounding cte_bits up to a byte boundary and then finding the
* nearest power of two to this value (see clp2(), above).
*/
if ((dnp->dn_flags & DT_NF_BITFIELD) &&
ctf_type_encoding(ctfp, type, &e) != CTF_ERR)
size = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY);
else
size = ctf_type_size(ctfp, type);
if (size < 1 || size > 8 || (size & (size - 1)) != 0) {
xyerror(D_UNKNOWN, "internal error -- cg cannot load "
"size %ld when passed by value\n", (long)size);
}
size--; /* convert size to 3-bit index */
if (dnp->dn_flags & DT_NF_SIGNED)
size |= 0x08;
if (dnp->dn_flags & DT_NF_USERLAND)
size |= 0x10;
return (ops[size]);
}
static void
dt_cg_ptrsize(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp,
uint_t op, int dreg)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_arinfo_t r;
dif_instr_t instr;
ctf_id_t type;
uint_t kind;
ssize_t size;
int sreg;
if ((sreg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
type = ctf_type_resolve(ctfp, dnp->dn_type);
kind = ctf_type_kind(ctfp, type);
assert(kind == CTF_K_POINTER || kind == CTF_K_ARRAY);
if (kind == CTF_K_ARRAY) {
if (ctf_array_info(ctfp, type, &r) != 0) {
yypcb->pcb_hdl->dt_ctferr = ctf_errno(ctfp);
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
}
type = r.ctr_contents;
} else
type = ctf_type_reference(ctfp, type);
if ((size = ctf_type_size(ctfp, type)) == 1)
return; /* multiply or divide by one can be omitted */
dt_cg_setx(dlp, sreg, size);
instr = DIF_INSTR_FMT(op, dreg, sreg, dreg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, sreg);
}
/*
* If the result of a "." or "->" operation is a bit-field, we use this routine
* to generate an epilogue to the load instruction that extracts the value. In
* the diagrams below the "ld??" is the load instruction that is generated to
* load the containing word that is generating prior to calling this function.
*
* Epilogue for unsigned fields: Epilogue for signed fields:
*
* ldu? [r1], r1 lds? [r1], r1
* setx USHIFT, r2 setx 64 - SSHIFT, r2
* srl r1, r2, r1 sll r1, r2, r1
* setx (1 << bits) - 1, r2 setx 64 - bits, r2
* and r1, r2, r1 sra r1, r2, r1
*
* The *SHIFT constants above changes value depending on the endian-ness of our
* target architecture. Refer to the comments below for more details.
*/
static void
dt_cg_field_get(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp,
ctf_file_t *fp, const ctf_membinfo_t *mp)
{
ctf_encoding_t e;
dif_instr_t instr;
uint64_t shift;
int r1, r2;
if (ctf_type_encoding(fp, mp->ctm_type, &e) != 0 || e.cte_bits > 64) {
xyerror(D_UNKNOWN, "cg: bad field: off %lu type <%ld> "
"bits %u\n", mp->ctm_offset, mp->ctm_type, e.cte_bits);
}
assert(dnp->dn_op == DT_TOK_PTR || dnp->dn_op == DT_TOK_DOT);
r1 = dnp->dn_left->dn_reg;
if ((r2 = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
/*
* On little-endian architectures, ctm_offset counts from the right so
* ctm_offset % NBBY itself is the amount we want to shift right to
* move the value bits to the little end of the register to mask them.
* On big-endian architectures, ctm_offset counts from the left so we
* must subtract (ctm_offset % NBBY + cte_bits) from the size in bits
* we used for the load. The size of our load in turn is found by
* rounding cte_bits up to a byte boundary and then finding the
* nearest power of two to this value (see clp2(), above). These
* properties are used to compute shift as USHIFT or SSHIFT, below.
*/
if (dnp->dn_flags & DT_NF_SIGNED) {
#ifdef _BIG_ENDIAN
shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
mp->ctm_offset % NBBY;
#else
shift = mp->ctm_offset % NBBY + e.cte_bits;
#endif
dt_cg_setx(dlp, r2, 64 - shift);
instr = DIF_INSTR_FMT(DIF_OP_SLL, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, r2, 64 - e.cte_bits);
instr = DIF_INSTR_FMT(DIF_OP_SRA, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
} else {
#ifdef _BIG_ENDIAN
shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
(mp->ctm_offset % NBBY + e.cte_bits);
#else
shift = mp->ctm_offset % NBBY;
#endif
dt_cg_setx(dlp, r2, shift);
instr = DIF_INSTR_FMT(DIF_OP_SRL, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, r2, (1ULL << e.cte_bits) - 1);
instr = DIF_INSTR_FMT(DIF_OP_AND, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
}
dt_regset_free(drp, r2);
}
/*
* If the destination of a store operation is a bit-field, we use this routine
* to generate a prologue to the store instruction that loads the surrounding
* bits, clears the destination field, and ORs in the new value of the field.
* In the diagram below the "st?" is the store instruction that is generated to
* store the containing word that is generating after calling this function.
*
* ld [dst->dn_reg], r1
* setx ~(((1 << cte_bits) - 1) << (ctm_offset % NBBY)), r2
* and r1, r2, r1
*
* setx (1 << cte_bits) - 1, r2
* and src->dn_reg, r2, r2
* setx ctm_offset % NBBY, r3
* sll r2, r3, r2
*
* or r1, r2, r1
* st? r1, [dst->dn_reg]
*
* This routine allocates a new register to hold the value to be stored and
* returns it. The caller is responsible for freeing this register later.
*/
static int
dt_cg_field_set(dt_node_t *src, dt_irlist_t *dlp,
dt_regset_t *drp, dt_node_t *dst)
{
uint64_t cmask, fmask, shift;
dif_instr_t instr;
int r1, r2, r3;
ctf_membinfo_t m;
ctf_encoding_t e;
ctf_file_t *fp, *ofp;
ctf_id_t type;
assert(dst->dn_op == DT_TOK_PTR || dst->dn_op == DT_TOK_DOT);
assert(dst->dn_right->dn_kind == DT_NODE_IDENT);
fp = dst->dn_left->dn_ctfp;
type = ctf_type_resolve(fp, dst->dn_left->dn_type);
if (dst->dn_op == DT_TOK_PTR) {
type = ctf_type_reference(fp, type);
type = ctf_type_resolve(fp, type);
}
if ((fp = dt_cg_membinfo(ofp = fp, type,
dst->dn_right->dn_string, &m)) == NULL) {
yypcb->pcb_hdl->dt_ctferr = ctf_errno(ofp);
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
}
if (ctf_type_encoding(fp, m.ctm_type, &e) != 0 || e.cte_bits > 64) {
xyerror(D_UNKNOWN, "cg: bad field: off %lu type <%ld> "
"bits %u\n", m.ctm_offset, m.ctm_type, e.cte_bits);
}
if ((r1 = dt_regset_alloc(drp)) == -1 ||
(r2 = dt_regset_alloc(drp)) == -1 ||
(r3 = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
/*
* Compute shifts and masks. We need to compute "shift" as the amount
* we need to shift left to position our field in the containing word.
* Refer to the comments in dt_cg_field_get(), above, for more info.
* We then compute fmask as the mask that truncates the value in the
* input register to width cte_bits, and cmask as the mask used to
* pass through the containing bits and zero the field bits.
*/
#ifdef _BIG_ENDIAN
shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
(m.ctm_offset % NBBY + e.cte_bits);
#else
shift = m.ctm_offset % NBBY;
#endif
fmask = (1ULL << e.cte_bits) - 1;
cmask = ~(fmask << shift);
instr = DIF_INSTR_LOAD(
dt_cg_load(dst, fp, m.ctm_type), dst->dn_reg, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, r2, cmask);
instr = DIF_INSTR_FMT(DIF_OP_AND, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, r2, fmask);
instr = DIF_INSTR_FMT(DIF_OP_AND, src->dn_reg, r2, r2);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, r3, shift);
instr = DIF_INSTR_FMT(DIF_OP_SLL, r2, r3, r2);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_FMT(DIF_OP_OR, r1, r2, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, r3);
dt_regset_free(drp, r2);
return (r1);
}
static void
dt_cg_store(dt_node_t *src, dt_irlist_t *dlp, dt_regset_t *drp, dt_node_t *dst)
{
ctf_encoding_t e;
dif_instr_t instr;
size_t size;
int reg;
/*
* If we're loading a bit-field, the size of our store is found by
* rounding dst's cte_bits up to a byte boundary and then finding the
* nearest power of two to this value (see clp2(), above).
*/
if ((dst->dn_flags & DT_NF_BITFIELD) &&
ctf_type_encoding(dst->dn_ctfp, dst->dn_type, &e) != CTF_ERR)
size = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY);
else
size = dt_node_type_size(src);
if (src->dn_flags & DT_NF_REF) {
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, reg, size);
instr = DIF_INSTR_COPYS(src->dn_reg, reg, dst->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, reg);
} else {
if (dst->dn_flags & DT_NF_BITFIELD)
reg = dt_cg_field_set(src, dlp, drp, dst);
else
reg = src->dn_reg;
switch (size) {
case 1:
instr = DIF_INSTR_STORE(DIF_OP_STB, reg, dst->dn_reg);
break;
case 2:
instr = DIF_INSTR_STORE(DIF_OP_STH, reg, dst->dn_reg);
break;
case 4:
instr = DIF_INSTR_STORE(DIF_OP_STW, reg, dst->dn_reg);
break;
case 8:
instr = DIF_INSTR_STORE(DIF_OP_STX, reg, dst->dn_reg);
break;
default:
xyerror(D_UNKNOWN, "internal error -- cg cannot store "
"size %lu when passed by value\n", (ulong_t)size);
}
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
if (dst->dn_flags & DT_NF_BITFIELD)
dt_regset_free(drp, reg);
}
}
/*
* Generate code for a typecast or for argument promotion from the type of the
* actual to the type of the formal. We need to generate code for casts when
* a scalar type is being narrowed or changing signed-ness. We first shift the
* desired bits high (losing excess bits if narrowing) and then shift them down
* using logical shift (unsigned result) or arithmetic shift (signed result).
*/
static void
dt_cg_typecast(const dt_node_t *src, const dt_node_t *dst,
dt_irlist_t *dlp, dt_regset_t *drp)
{
size_t srcsize = dt_node_type_size(src);
size_t dstsize = dt_node_type_size(dst);
dif_instr_t instr;
int reg, n;
if (dt_node_is_scalar(dst) && (dstsize < srcsize ||
(src->dn_flags & DT_NF_SIGNED) ^ (dst->dn_flags & DT_NF_SIGNED))) {
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
if (dstsize < srcsize)
n = sizeof (uint64_t) * NBBY - dstsize * NBBY;
else
n = sizeof (uint64_t) * NBBY - srcsize * NBBY;
dt_cg_setx(dlp, reg, n);
instr = DIF_INSTR_FMT(DIF_OP_SLL,
src->dn_reg, reg, dst->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_FMT((dst->dn_flags & DT_NF_SIGNED) ?
DIF_OP_SRA : DIF_OP_SRL, dst->dn_reg, reg, dst->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, reg);
}
}
/*
* Generate code to push the specified argument list on to the tuple stack.
* We use this routine for handling subroutine calls and associative arrays.
* We must first generate code for all subexpressions before loading the stack
* because any subexpression could itself require the use of the tuple stack.
* This holds a number of registers equal to the number of arguments, but this
* is not a huge problem because the number of arguments can't exceed the
* number of tuple register stack elements anyway. At most one extra register
* is required (either by dt_cg_typecast() or for dtdt_size, below). This
* implies that a DIF implementation should offer a number of general purpose
* registers at least one greater than the number of tuple registers.
*/
static void
dt_cg_arglist(dt_ident_t *idp, dt_node_t *args,
dt_irlist_t *dlp, dt_regset_t *drp)
{
const dt_idsig_t *isp = idp->di_data;
dt_node_t *dnp;
int i = 0;
for (dnp = args; dnp != NULL; dnp = dnp->dn_list)
dt_cg_node(dnp, dlp, drp);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, DIF_INSTR_FLUSHTS));
for (dnp = args; dnp != NULL; dnp = dnp->dn_list, i++) {
dtrace_diftype_t t;
dif_instr_t instr;
uint_t op;
int reg;
dt_node_diftype(yypcb->pcb_hdl, dnp, &t);
isp->dis_args[i].dn_reg = dnp->dn_reg; /* re-use register */
dt_cg_typecast(dnp, &isp->dis_args[i], dlp, drp);
isp->dis_args[i].dn_reg = -1;
if (t.dtdt_flags & DIF_TF_BYREF)
op = DIF_OP_PUSHTR;
else
op = DIF_OP_PUSHTV;
if (t.dtdt_size != 0) {
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, reg, t.dtdt_size);
} else
reg = DIF_REG_R0;
instr = DIF_INSTR_PUSHTS(op, t.dtdt_kind, reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_reg);
if (reg != DIF_REG_R0)
dt_regset_free(drp, reg);
}
if (i > yypcb->pcb_hdl->dt_conf.dtc_diftupregs)
longjmp(yypcb->pcb_jmpbuf, EDT_NOTUPREG);
}
static void
dt_cg_arithmetic_op(dt_node_t *dnp, dt_irlist_t *dlp,
dt_regset_t *drp, uint_t op)
{
int is_ptr_op = (dnp->dn_op == DT_TOK_ADD || dnp->dn_op == DT_TOK_SUB ||
dnp->dn_op == DT_TOK_ADD_EQ || dnp->dn_op == DT_TOK_SUB_EQ);
int lp_is_ptr = dt_node_is_pointer(dnp->dn_left);
int rp_is_ptr = dt_node_is_pointer(dnp->dn_right);
dif_instr_t instr;
if (lp_is_ptr && rp_is_ptr) {
assert(dnp->dn_op == DT_TOK_SUB);
is_ptr_op = 0;
}
dt_cg_node(dnp->dn_left, dlp, drp);
if (is_ptr_op && rp_is_ptr)
dt_cg_ptrsize(dnp, dlp, drp, DIF_OP_MUL, dnp->dn_left->dn_reg);
dt_cg_node(dnp->dn_right, dlp, drp);
if (is_ptr_op && lp_is_ptr)
dt_cg_ptrsize(dnp, dlp, drp, DIF_OP_MUL, dnp->dn_right->dn_reg);
instr = DIF_INSTR_FMT(op, dnp->dn_left->dn_reg,
dnp->dn_right->dn_reg, dnp->dn_left->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_right->dn_reg);
dnp->dn_reg = dnp->dn_left->dn_reg;
if (lp_is_ptr && rp_is_ptr)
dt_cg_ptrsize(dnp->dn_right,
dlp, drp, DIF_OP_UDIV, dnp->dn_reg);
}
static uint_t
dt_cg_stvar(const dt_ident_t *idp)
{
static const uint_t aops[] = { DIF_OP_STGAA, DIF_OP_STTAA, DIF_OP_NOP };
static const uint_t sops[] = { DIF_OP_STGS, DIF_OP_STTS, DIF_OP_STLS };
uint_t i = (((idp->di_flags & DT_IDFLG_LOCAL) != 0) << 1) |
((idp->di_flags & DT_IDFLG_TLS) != 0);
return (idp->di_kind == DT_IDENT_ARRAY ? aops[i] : sops[i]);
}
static void
dt_cg_prearith_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
dif_instr_t instr;
ctf_id_t type;
ssize_t size = 1;
int reg;
if (dt_node_is_pointer(dnp)) {
type = ctf_type_resolve(ctfp, dnp->dn_type);
assert(ctf_type_kind(ctfp, type) == CTF_K_POINTER);
size = ctf_type_size(ctfp, ctf_type_reference(ctfp, type));
}
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, reg, size);
instr = DIF_INSTR_FMT(op, dnp->dn_reg, reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, reg);
/*
* If we are modifying a variable, generate an stv instruction from
* the variable specified by the identifier. If we are storing to a
* memory address, generate code again for the left-hand side using
* DT_NF_REF to get the address, and then generate a store to it.
* In both paths, we store the value in dnp->dn_reg (the new value).
*/
if (dnp->dn_child->dn_kind == DT_NODE_VAR) {
dt_ident_t *idp = dt_ident_resolve(dnp->dn_child->dn_ident);
idp->di_flags |= DT_IDFLG_DIFW;
instr = DIF_INSTR_STV(dt_cg_stvar(idp),
idp->di_id, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
} else {
uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
assert(dnp->dn_child->dn_flags & DT_NF_WRITABLE);
assert(dnp->dn_child->dn_flags & DT_NF_LVALUE);
dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
dt_cg_node(dnp->dn_child, dlp, drp);
dt_cg_store(dnp, dlp, drp, dnp->dn_child);
dt_regset_free(drp, dnp->dn_child->dn_reg);
dnp->dn_left->dn_flags &= ~DT_NF_REF;
dnp->dn_left->dn_flags |= rbit;
}
}
static void
dt_cg_postarith_op(dt_node_t *dnp, dt_irlist_t *dlp,
dt_regset_t *drp, uint_t op)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
dif_instr_t instr;
ctf_id_t type;
ssize_t size = 1;
int nreg;
if (dt_node_is_pointer(dnp)) {
type = ctf_type_resolve(ctfp, dnp->dn_type);
assert(ctf_type_kind(ctfp, type) == CTF_K_POINTER);
size = ctf_type_size(ctfp, ctf_type_reference(ctfp, type));
}
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
if ((nreg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, nreg, size);
instr = DIF_INSTR_FMT(op, dnp->dn_reg, nreg, nreg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
/*
* If we are modifying a variable, generate an stv instruction from
* the variable specified by the identifier. If we are storing to a
* memory address, generate code again for the left-hand side using
* DT_NF_REF to get the address, and then generate a store to it.
* In both paths, we store the value from 'nreg' (the new value).
*/
if (dnp->dn_child->dn_kind == DT_NODE_VAR) {
dt_ident_t *idp = dt_ident_resolve(dnp->dn_child->dn_ident);
idp->di_flags |= DT_IDFLG_DIFW;
instr = DIF_INSTR_STV(dt_cg_stvar(idp), idp->di_id, nreg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
} else {
uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
int oreg = dnp->dn_reg;
assert(dnp->dn_child->dn_flags & DT_NF_WRITABLE);
assert(dnp->dn_child->dn_flags & DT_NF_LVALUE);
dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = nreg;
dt_cg_store(dnp, dlp, drp, dnp->dn_child);
dnp->dn_reg = oreg;
dt_regset_free(drp, dnp->dn_child->dn_reg);
dnp->dn_left->dn_flags &= ~DT_NF_REF;
dnp->dn_left->dn_flags |= rbit;
}
dt_regset_free(drp, nreg);
}
/*
* Determine if we should perform signed or unsigned comparison for an OP2.
* If both operands are of arithmetic type, perform the usual arithmetic
* conversions to determine the common real type for comparison [ISOC 6.5.8.3].
*/
static int
dt_cg_compare_signed(dt_node_t *dnp)
{
dt_node_t dn;
if (dt_node_is_string(dnp->dn_left) ||
dt_node_is_string(dnp->dn_right))
return (1); /* strings always compare signed */
else if (!dt_node_is_arith(dnp->dn_left) ||
!dt_node_is_arith(dnp->dn_right))
return (0); /* non-arithmetic types always compare unsigned */
bzero(&dn, sizeof (dn));
dt_node_promote(dnp->dn_left, dnp->dn_right, &dn);
return (dn.dn_flags & DT_NF_SIGNED);
}
static void
dt_cg_compare_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op)
{
uint_t lbl_true = dt_irlist_label(dlp);
uint_t lbl_post = dt_irlist_label(dlp);
dif_instr_t instr;
uint_t opc;
dt_cg_node(dnp->dn_left, dlp, drp);
dt_cg_node(dnp->dn_right, dlp, drp);
if (dt_node_is_string(dnp->dn_left) || dt_node_is_string(dnp->dn_right))
opc = DIF_OP_SCMP;
else
opc = DIF_OP_CMP;
instr = DIF_INSTR_CMP(opc, dnp->dn_left->dn_reg, dnp->dn_right->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_right->dn_reg);
dnp->dn_reg = dnp->dn_left->dn_reg;
instr = DIF_INSTR_BRANCH(op, lbl_true);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_xsetx(dlp, NULL, lbl_true, dnp->dn_reg, 1);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
}
/*
* Code generation for the ternary op requires some trickery with the assembler
* in order to conserve registers. We generate code for dn_expr and dn_left
* and free their registers so they do not have be consumed across codegen for
* dn_right. We insert a dummy MOV at the end of dn_left into the destination
* register, which is not yet known because we haven't done dn_right yet, and
* save the pointer to this instruction node. We then generate code for
* dn_right and use its register as our output. Finally, we reach back and
* patch the instruction for dn_left to move its output into this register.
*/
static void
dt_cg_ternary_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
uint_t lbl_false = dt_irlist_label(dlp);
uint_t lbl_post = dt_irlist_label(dlp);
dif_instr_t instr;
dt_irnode_t *dip;
dt_cg_node(dnp->dn_expr, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_expr->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_expr->dn_reg);
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_node(dnp->dn_left, dlp, drp);
instr = DIF_INSTR_MOV(dnp->dn_left->dn_reg, DIF_REG_R0);
dip = dt_cg_node_alloc(DT_LBL_NONE, instr); /* save dip for below */
dt_irlist_append(dlp, dip);
dt_regset_free(drp, dnp->dn_left->dn_reg);
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, DIF_INSTR_NOP));
dt_cg_node(dnp->dn_right, dlp, drp);
dnp->dn_reg = dnp->dn_right->dn_reg;
/*
* Now that dn_reg is assigned, reach back and patch the correct MOV
* instruction into the tail of dn_left. We know dn_reg was unused
* at that point because otherwise dn_right couldn't have allocated it.
*/
dip->di_instr = DIF_INSTR_MOV(dnp->dn_left->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
}
static void
dt_cg_logical_and(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
uint_t lbl_false = dt_irlist_label(dlp);
uint_t lbl_post = dt_irlist_label(dlp);
dif_instr_t instr;
dt_cg_node(dnp->dn_left, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_left->dn_reg);
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_node(dnp->dn_right, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dnp->dn_reg = dnp->dn_right->dn_reg;
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, dnp->dn_reg, 1);
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, instr));
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
}
static void
dt_cg_logical_xor(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
uint_t lbl_next = dt_irlist_label(dlp);
uint_t lbl_tail = dt_irlist_label(dlp);
dif_instr_t instr;
dt_cg_node(dnp->dn_left, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_next);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, dnp->dn_left->dn_reg, 1);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_next, DIF_INSTR_NOP));
dt_cg_node(dnp->dn_right, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_tail);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, dnp->dn_right->dn_reg, 1);
instr = DIF_INSTR_FMT(DIF_OP_XOR, dnp->dn_left->dn_reg,
dnp->dn_right->dn_reg, dnp->dn_left->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_tail, instr));
dt_regset_free(drp, dnp->dn_right->dn_reg);
dnp->dn_reg = dnp->dn_left->dn_reg;
}
static void
dt_cg_logical_or(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
uint_t lbl_true = dt_irlist_label(dlp);
uint_t lbl_false = dt_irlist_label(dlp);
uint_t lbl_post = dt_irlist_label(dlp);
dif_instr_t instr;
dt_cg_node(dnp->dn_left, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, dnp->dn_left->dn_reg);
instr = DIF_INSTR_BRANCH(DIF_OP_BNE, lbl_true);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_node(dnp->dn_right, dlp, drp);
instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dnp->dn_reg = dnp->dn_right->dn_reg;
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_xsetx(dlp, NULL, lbl_true, dnp->dn_reg, 1);
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, instr));
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
}
static void
dt_cg_logical_neg(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
uint_t lbl_zero = dt_irlist_label(dlp);
uint_t lbl_post = dt_irlist_label(dlp);
dif_instr_t instr;
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
instr = DIF_INSTR_TST(dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_zero);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_xsetx(dlp, NULL, lbl_zero, dnp->dn_reg, 1);
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
}
static void
dt_cg_asgn_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
dif_instr_t instr;
dt_ident_t *idp;
/*
* If we are performing a structure assignment of a translated type,
* we must instantiate all members and create a snapshot of the object
* in scratch space. We allocs a chunk of memory, generate code for
* each member, and then set dnp->dn_reg to the scratch object address.
*/
if ((idp = dt_node_resolve(dnp->dn_right, DT_IDENT_XLSOU)) != NULL) {
ctf_membinfo_t ctm;
dt_xlator_t *dxp = idp->di_data;
dt_node_t *mnp, dn, mn;
int r1, r2;
/*
* Create two fake dt_node_t's representing operator "." and a
* right-hand identifier child node. These will be repeatedly
* modified according to each instantiated member so that we
* can pass them to dt_cg_store() and effect a member store.
*/
bzero(&dn, sizeof (dt_node_t));
dn.dn_kind = DT_NODE_OP2;
dn.dn_op = DT_TOK_DOT;
dn.dn_left = dnp;
dn.dn_right = &mn;
bzero(&mn, sizeof (dt_node_t));
mn.dn_kind = DT_NODE_IDENT;
mn.dn_op = DT_TOK_IDENT;
/*
* Allocate a register for our scratch data pointer. First we
* set it to the size of our data structure, and then replace
* it with the result of an allocs of the specified size.
*/
if ((r1 = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, r1,
ctf_type_size(dxp->dx_dst_ctfp, dxp->dx_dst_base));
instr = DIF_INSTR_ALLOCS(r1, r1);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
/*
* When dt_cg_asgn_op() is called, we have already generated
* code for dnp->dn_right, which is the translator input. We
* now associate this register with the translator's input
* identifier so it can be referenced during our member loop.
*/
dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
dxp->dx_ident->di_id = dnp->dn_right->dn_reg;
for (mnp = dxp->dx_members; mnp != NULL; mnp = mnp->dn_list) {
/*
* Generate code for the translator member expression,
* and then cast the result to the member type.
*/
dt_cg_node(mnp->dn_membexpr, dlp, drp);
mnp->dn_reg = mnp->dn_membexpr->dn_reg;
dt_cg_typecast(mnp->dn_membexpr, mnp, dlp, drp);
/*
* Ask CTF for the offset of the member so we can store
* to the appropriate offset. This call has already
* been done once by the parser, so it should succeed.
*/
if (ctf_member_info(dxp->dx_dst_ctfp, dxp->dx_dst_base,
mnp->dn_membname, &ctm) == CTF_ERR) {
yypcb->pcb_hdl->dt_ctferr =
ctf_errno(dxp->dx_dst_ctfp);
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
}
/*
* If the destination member is at offset 0, store the
* result directly to r1 (the scratch buffer address).
* Otherwise allocate another temporary for the offset
* and add r1 to it before storing the result.
*/
if (ctm.ctm_offset != 0) {
if ((r2 = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
/*
* Add the member offset rounded down to the
* nearest byte. If the offset was not aligned
* on a byte boundary, this member is a bit-
* field and dt_cg_store() will handle masking.
*/
dt_cg_setx(dlp, r2, ctm.ctm_offset / NBBY);
instr = DIF_INSTR_FMT(DIF_OP_ADD, r1, r2, r2);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_node_type_propagate(mnp, &dn);
dn.dn_right->dn_string = mnp->dn_membname;
dn.dn_reg = r2;
dt_cg_store(mnp, dlp, drp, &dn);
dt_regset_free(drp, r2);
} else {
dt_node_type_propagate(mnp, &dn);
dn.dn_right->dn_string = mnp->dn_membname;
dn.dn_reg = r1;
dt_cg_store(mnp, dlp, drp, &dn);
}
dt_regset_free(drp, mnp->dn_reg);
}
dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
dxp->dx_ident->di_id = 0;
if (dnp->dn_right->dn_reg != -1)
dt_regset_free(drp, dnp->dn_right->dn_reg);
assert(dnp->dn_reg == dnp->dn_right->dn_reg);
dnp->dn_reg = r1;
}
/*
* If we are storing to a variable, generate an stv instruction from
* the variable specified by the identifier. If we are storing to a
* memory address, generate code again for the left-hand side using
* DT_NF_REF to get the address, and then generate a store to it.
* In both paths, we assume dnp->dn_reg already has the new value.
*/
if (dnp->dn_left->dn_kind == DT_NODE_VAR) {
idp = dt_ident_resolve(dnp->dn_left->dn_ident);
if (idp->di_kind == DT_IDENT_ARRAY)
dt_cg_arglist(idp, dnp->dn_left->dn_args, dlp, drp);
idp->di_flags |= DT_IDFLG_DIFW;
instr = DIF_INSTR_STV(dt_cg_stvar(idp),
idp->di_id, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
} else {
uint_t rbit = dnp->dn_left->dn_flags & DT_NF_REF;
assert(dnp->dn_left->dn_flags & DT_NF_WRITABLE);
assert(dnp->dn_left->dn_flags & DT_NF_LVALUE);
dnp->dn_left->dn_flags |= DT_NF_REF; /* force pass-by-ref */
dt_cg_node(dnp->dn_left, dlp, drp);
dt_cg_store(dnp, dlp, drp, dnp->dn_left);
dt_regset_free(drp, dnp->dn_left->dn_reg);
dnp->dn_left->dn_flags &= ~DT_NF_REF;
dnp->dn_left->dn_flags |= rbit;
}
}
static void
dt_cg_assoc_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
dif_instr_t instr;
uint_t op;
assert(dnp->dn_kind == DT_NODE_VAR);
assert(!(dnp->dn_ident->di_flags & DT_IDFLG_LOCAL));
assert(dnp->dn_args != NULL);
dt_cg_arglist(dnp->dn_ident, dnp->dn_args, dlp, drp);
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
if (dnp->dn_ident->di_flags & DT_IDFLG_TLS)
op = DIF_OP_LDTAA;
else
op = DIF_OP_LDGAA;
dnp->dn_ident->di_flags |= DT_IDFLG_DIFR;
instr = DIF_INSTR_LDV(op, dnp->dn_ident->di_id, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
/*
* If the associative array is a pass-by-reference type, then we are
* loading its value as a pointer to either load or store through it.
* The array element in question may not have been faulted in yet, in
* which case DIF_OP_LD*AA will return zero. We append an epilogue
* of instructions similar to the following:
*
* ld?aa id, %r1 ! base ld?aa instruction above
* tst %r1 ! start of epilogue
* +--- bne label
* | setx size, %r1
* | allocs %r1, %r1
* | st?aa id, %r1
* | ld?aa id, %r1
* v
* label: < rest of code >
*
* The idea is that we allocs a zero-filled chunk of scratch space and
* do a DIF_OP_ST*AA to fault in and initialize the array element, and
* then reload it to get the faulted-in address of the new variable
* storage. This isn't cheap, but pass-by-ref associative array values
* are (thus far) uncommon and the allocs cost only occurs once. If
* this path becomes important to DTrace users, we can improve things
* by adding a new DIF opcode to fault in associative array elements.
*/
if (dnp->dn_flags & DT_NF_REF) {
uint_t stvop = op == DIF_OP_LDTAA ? DIF_OP_STTAA : DIF_OP_STGAA;
uint_t label = dt_irlist_label(dlp);
instr = DIF_INSTR_TST(dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_BRANCH(DIF_OP_BNE, label);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_cg_setx(dlp, dnp->dn_reg, dt_node_type_size(dnp));
instr = DIF_INSTR_ALLOCS(dnp->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dnp->dn_ident->di_flags |= DT_IDFLG_DIFW;
instr = DIF_INSTR_STV(stvop, dnp->dn_ident->di_id, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_LDV(op, dnp->dn_ident->di_id, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_irlist_append(dlp, dt_cg_node_alloc(label, DIF_INSTR_NOP));
}
}
static void
dt_cg_array_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
dt_probe_t *prp = yypcb->pcb_probe;
uintmax_t saved = dnp->dn_args->dn_value;
dt_ident_t *idp = dnp->dn_ident;
dif_instr_t instr;
uint_t op;
size_t size;
int reg, n;
assert(dnp->dn_kind == DT_NODE_VAR);
assert(!(idp->di_flags & DT_IDFLG_LOCAL));
assert(dnp->dn_args->dn_kind == DT_NODE_INT);
assert(dnp->dn_args->dn_list == NULL);
/*
* If this is a reference in the args[] array, temporarily modify the
* array index according to the static argument mapping (if any),
* unless the argument reference is provided by a dynamic translator.
* If we're using a dynamic translator for args[], then just set dn_reg
* to an invalid reg and return: DIF_OP_XLARG will fetch the arg later.
*/
if (idp->di_id == DIF_VAR_ARGS) {
if ((idp->di_kind == DT_IDENT_XLPTR ||
idp->di_kind == DT_IDENT_XLSOU) &&
dt_xlator_dynamic(idp->di_data)) {
dnp->dn_reg = -1;
return;
}
dnp->dn_args->dn_value = prp->pr_mapping[saved];
}
dt_cg_node(dnp->dn_args, dlp, drp);
dnp->dn_args->dn_value = saved;
dnp->dn_reg = dnp->dn_args->dn_reg;
if (idp->di_flags & DT_IDFLG_TLS)
op = DIF_OP_LDTA;
else
op = DIF_OP_LDGA;
idp->di_flags |= DT_IDFLG_DIFR;
instr = DIF_INSTR_LDA(op, idp->di_id,
dnp->dn_args->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
/*
* If this is a reference to the args[] array, we need to take the
* additional step of explicitly eliminating any bits larger than the
* type size: the DIF interpreter in the kernel will always give us
* the raw (64-bit) argument value, and any bits larger than the type
* size may be junk. As a practical matter, this arises only on 64-bit
* architectures and only when the argument index is larger than the
* number of arguments passed directly to DTrace: if a 8-, 16- or
* 32-bit argument must be retrieved from the stack, it is possible
* (and it some cases, likely) that the upper bits will be garbage.
*/
if (idp->di_id != DIF_VAR_ARGS || !dt_node_is_scalar(dnp))
return;
if ((size = dt_node_type_size(dnp)) == sizeof (uint64_t))
return;
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
assert(size < sizeof (uint64_t));
n = sizeof (uint64_t) * NBBY - size * NBBY;
dt_cg_setx(dlp, reg, n);
instr = DIF_INSTR_FMT(DIF_OP_SLL, dnp->dn_reg, reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
instr = DIF_INSTR_FMT((dnp->dn_flags & DT_NF_SIGNED) ?
DIF_OP_SRA : DIF_OP_SRL, dnp->dn_reg, reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, reg);
}
/*
* Generate code for an inlined variable reference. Inlines can be used to
* define either scalar or associative array substitutions. For scalars, we
* simply generate code for the parse tree saved in the identifier's din_root,
* and then cast the resulting expression to the inline's declaration type.
* For arrays, we take the input parameter subtrees from dnp->dn_args and
* temporarily store them in the din_root of each din_argv[i] identifier,
* which are themselves inlines and were set up for us by the parser. The
* result is that any reference to the inlined parameter inside the top-level
* din_root will turn into a recursive call to dt_cg_inline() for a scalar
* inline whose din_root will refer to the subtree pointed to by the argument.
*/
static void
dt_cg_inline(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
dt_ident_t *idp = dnp->dn_ident;
dt_idnode_t *inp = idp->di_iarg;
dt_idnode_t *pinp;
dt_node_t *pnp;
int i;
assert(idp->di_flags & DT_IDFLG_INLINE);
assert(idp->di_ops == &dt_idops_inline);
if (idp->di_kind == DT_IDENT_ARRAY) {
for (i = 0, pnp = dnp->dn_args;
pnp != NULL; pnp = pnp->dn_list, i++) {
if (inp->din_argv[i] != NULL) {
pinp = inp->din_argv[i]->di_iarg;
pinp->din_root = pnp;
}
}
}
dt_cg_node(inp->din_root, dlp, drp);
dnp->dn_reg = inp->din_root->dn_reg;
dt_cg_typecast(inp->din_root, dnp, dlp, drp);
if (idp->di_kind == DT_IDENT_ARRAY) {
for (i = 0; i < inp->din_argc; i++) {
pinp = inp->din_argv[i]->di_iarg;
pinp->din_root = NULL;
}
}
}
static void
dt_cg_node(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_file_t *octfp;
ctf_membinfo_t m;
ctf_id_t type;
dif_instr_t instr;
dt_ident_t *idp;
ssize_t stroff;
uint_t op;
int reg;
switch (dnp->dn_op) {
case DT_TOK_COMMA:
dt_cg_node(dnp->dn_left, dlp, drp);
dt_regset_free(drp, dnp->dn_left->dn_reg);
dt_cg_node(dnp->dn_right, dlp, drp);
dnp->dn_reg = dnp->dn_right->dn_reg;
break;
case DT_TOK_ASGN:
dt_cg_node(dnp->dn_right, dlp, drp);
dnp->dn_reg = dnp->dn_right->dn_reg;
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_ADD_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_ADD);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_SUB_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SUB);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_MUL_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_MUL);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_DIV_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SDIV : DIF_OP_UDIV);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_MOD_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SREM : DIF_OP_UREM);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_AND_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_AND);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_XOR_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_XOR);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_OR_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_OR);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_LSH_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SLL);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_RSH_EQ:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL);
dt_cg_asgn_op(dnp, dlp, drp);
break;
case DT_TOK_QUESTION:
dt_cg_ternary_op(dnp, dlp, drp);
break;
case DT_TOK_LOR:
dt_cg_logical_or(dnp, dlp, drp);
break;
case DT_TOK_LXOR:
dt_cg_logical_xor(dnp, dlp, drp);
break;
case DT_TOK_LAND:
dt_cg_logical_and(dnp, dlp, drp);
break;
case DT_TOK_BOR:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_OR);
break;
case DT_TOK_XOR:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_XOR);
break;
case DT_TOK_BAND:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_AND);
break;
case DT_TOK_EQU:
dt_cg_compare_op(dnp, dlp, drp, DIF_OP_BE);
break;
case DT_TOK_NEQ:
dt_cg_compare_op(dnp, dlp, drp, DIF_OP_BNE);
break;
case DT_TOK_LT:
dt_cg_compare_op(dnp, dlp, drp,
dt_cg_compare_signed(dnp) ? DIF_OP_BL : DIF_OP_BLU);
break;
case DT_TOK_LE:
dt_cg_compare_op(dnp, dlp, drp,
dt_cg_compare_signed(dnp) ? DIF_OP_BLE : DIF_OP_BLEU);
break;
case DT_TOK_GT:
dt_cg_compare_op(dnp, dlp, drp,
dt_cg_compare_signed(dnp) ? DIF_OP_BG : DIF_OP_BGU);
break;
case DT_TOK_GE:
dt_cg_compare_op(dnp, dlp, drp,
dt_cg_compare_signed(dnp) ? DIF_OP_BGE : DIF_OP_BGEU);
break;
case DT_TOK_LSH:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SLL);
break;
case DT_TOK_RSH:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL);
break;
case DT_TOK_ADD:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_ADD);
break;
case DT_TOK_SUB:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SUB);
break;
case DT_TOK_MUL:
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_MUL);
break;
case DT_TOK_DIV:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SDIV : DIF_OP_UDIV);
break;
case DT_TOK_MOD:
dt_cg_arithmetic_op(dnp, dlp, drp,
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SREM : DIF_OP_UREM);
break;
case DT_TOK_LNEG:
dt_cg_logical_neg(dnp, dlp, drp);
break;
case DT_TOK_BNEG:
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
instr = DIF_INSTR_NOT(dnp->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
case DT_TOK_PREINC:
dt_cg_prearith_op(dnp, dlp, drp, DIF_OP_ADD);
break;
case DT_TOK_POSTINC:
dt_cg_postarith_op(dnp, dlp, drp, DIF_OP_ADD);
break;
case DT_TOK_PREDEC:
dt_cg_prearith_op(dnp, dlp, drp, DIF_OP_SUB);
break;
case DT_TOK_POSTDEC:
dt_cg_postarith_op(dnp, dlp, drp, DIF_OP_SUB);
break;
case DT_TOK_IPOS:
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
break;
case DT_TOK_INEG:
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
instr = DIF_INSTR_FMT(DIF_OP_SUB, DIF_REG_R0,
dnp->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
case DT_TOK_DEREF:
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
if (!(dnp->dn_flags & DT_NF_REF)) {
uint_t ubit = dnp->dn_flags & DT_NF_USERLAND;
/*
* Save and restore DT_NF_USERLAND across dt_cg_load():
* we need the sign bit from dnp and the user bit from
* dnp->dn_child in order to get the proper opcode.
*/
dnp->dn_flags |=
(dnp->dn_child->dn_flags & DT_NF_USERLAND);
instr = DIF_INSTR_LOAD(dt_cg_load(dnp, ctfp,
dnp->dn_type), dnp->dn_reg, dnp->dn_reg);
dnp->dn_flags &= ~DT_NF_USERLAND;
dnp->dn_flags |= ubit;
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
}
break;
case DT_TOK_ADDROF: {
uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
dnp->dn_child->dn_flags &= ~DT_NF_REF;
dnp->dn_child->dn_flags |= rbit;
break;
}
case DT_TOK_SIZEOF: {
size_t size = dt_node_sizeof(dnp->dn_child);
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
assert(size != 0);
dt_cg_setx(dlp, dnp->dn_reg, size);
break;
}
case DT_TOK_STRINGOF:
dt_cg_node(dnp->dn_child, dlp, drp);
dnp->dn_reg = dnp->dn_child->dn_reg;
break;
case DT_TOK_XLATE:
/*
* An xlate operator appears in either an XLATOR, indicating a
* reference to a dynamic translator, or an OP2, indicating
* use of the xlate operator in the user's program. For the
* dynamic case, generate an xlate opcode with a reference to
* the corresponding member, pre-computed for us in dn_members.
*/
if (dnp->dn_kind == DT_NODE_XLATOR) {
dt_xlator_t *dxp = dnp->dn_xlator;
assert(dxp->dx_ident->di_flags & DT_IDFLG_CGREG);
assert(dxp->dx_ident->di_id != 0);
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
if (dxp->dx_arg == -1) {
instr = DIF_INSTR_MOV(
dxp->dx_ident->di_id, dnp->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
op = DIF_OP_XLATE;
} else
op = DIF_OP_XLARG;
instr = DIF_INSTR_XLATE(op, 0, dnp->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
dlp->dl_last->di_extern = dnp->dn_xmember;
break;
}
assert(dnp->dn_kind == DT_NODE_OP2);
dt_cg_node(dnp->dn_right, dlp, drp);
dnp->dn_reg = dnp->dn_right->dn_reg;
break;
case DT_TOK_LPAR:
dt_cg_node(dnp->dn_right, dlp, drp);
dnp->dn_reg = dnp->dn_right->dn_reg;
dt_cg_typecast(dnp->dn_right, dnp, dlp, drp);
break;
case DT_TOK_PTR:
case DT_TOK_DOT:
assert(dnp->dn_right->dn_kind == DT_NODE_IDENT);
dt_cg_node(dnp->dn_left, dlp, drp);
/*
* If the left-hand side of PTR or DOT is a dynamic variable,
* we expect it to be the output of a D translator. In this
* case, we look up the parse tree corresponding to the member
* that is being accessed and run the code generator over it.
* We then cast the result as if by the assignment operator.
*/
if ((idp = dt_node_resolve(
dnp->dn_left, DT_IDENT_XLSOU)) != NULL ||
(idp = dt_node_resolve(
dnp->dn_left, DT_IDENT_XLPTR)) != NULL) {
dt_xlator_t *dxp;
dt_node_t *mnp;
dxp = idp->di_data;
mnp = dt_xlator_member(dxp, dnp->dn_right->dn_string);
assert(mnp != NULL);
dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
dxp->dx_ident->di_id = dnp->dn_left->dn_reg;
dt_cg_node(mnp->dn_membexpr, dlp, drp);
dnp->dn_reg = mnp->dn_membexpr->dn_reg;
dt_cg_typecast(mnp->dn_membexpr, dnp, dlp, drp);
dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
dxp->dx_ident->di_id = 0;
if (dnp->dn_left->dn_reg != -1)
dt_regset_free(drp, dnp->dn_left->dn_reg);
break;
}
ctfp = dnp->dn_left->dn_ctfp;
type = ctf_type_resolve(ctfp, dnp->dn_left->dn_type);
if (dnp->dn_op == DT_TOK_PTR) {
type = ctf_type_reference(ctfp, type);
type = ctf_type_resolve(ctfp, type);
}
if ((ctfp = dt_cg_membinfo(octfp = ctfp, type,
dnp->dn_right->dn_string, &m)) == NULL) {
yypcb->pcb_hdl->dt_ctferr = ctf_errno(octfp);
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
}
if (m.ctm_offset != 0) {
if ((reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
/*
* If the offset is not aligned on a byte boundary, it
* is a bit-field member and we will extract the value
* bits below after we generate the appropriate load.
*/
dt_cg_setx(dlp, reg, m.ctm_offset / NBBY);
instr = DIF_INSTR_FMT(DIF_OP_ADD,
dnp->dn_left->dn_reg, reg, dnp->dn_left->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
dt_regset_free(drp, reg);
}
if (!(dnp->dn_flags & DT_NF_REF)) {
uint_t ubit = dnp->dn_flags & DT_NF_USERLAND;
/*
* Save and restore DT_NF_USERLAND across dt_cg_load():
* we need the sign bit from dnp and the user bit from
* dnp->dn_left in order to get the proper opcode.
*/
dnp->dn_flags |=
(dnp->dn_left->dn_flags & DT_NF_USERLAND);
instr = DIF_INSTR_LOAD(dt_cg_load(dnp,
ctfp, m.ctm_type), dnp->dn_left->dn_reg,
dnp->dn_left->dn_reg);
dnp->dn_flags &= ~DT_NF_USERLAND;
dnp->dn_flags |= ubit;
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
if (dnp->dn_flags & DT_NF_BITFIELD)
dt_cg_field_get(dnp, dlp, drp, ctfp, &m);
}
dnp->dn_reg = dnp->dn_left->dn_reg;
break;
case DT_TOK_STRING:
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
assert(dnp->dn_kind == DT_NODE_STRING);
stroff = dt_strtab_insert(yypcb->pcb_strtab, dnp->dn_string);
if (stroff == -1L)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
if (stroff > DIF_STROFF_MAX)
longjmp(yypcb->pcb_jmpbuf, EDT_STR2BIG);
instr = DIF_INSTR_SETS((ulong_t)stroff, dnp->dn_reg);
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
case DT_TOK_IDENT:
/*
* If the specified identifier is a variable on which we have
* set the code generator register flag, then this variable
* has already had code generated for it and saved in di_id.
* Allocate a new register and copy the existing value to it.
*/
if (dnp->dn_kind == DT_NODE_VAR &&
(dnp->dn_ident->di_flags & DT_IDFLG_CGREG)) {
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
instr = DIF_INSTR_MOV(dnp->dn_ident->di_id,
dnp->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
}
/*
* Identifiers can represent function calls, variable refs, or
* symbols. First we check for inlined variables, and handle
* them by generating code for the inline parse tree.
*/
if (dnp->dn_kind == DT_NODE_VAR &&
(dnp->dn_ident->di_flags & DT_IDFLG_INLINE)) {
dt_cg_inline(dnp, dlp, drp);
break;
}
switch (dnp->dn_kind) {
case DT_NODE_FUNC:
if ((idp = dnp->dn_ident)->di_kind != DT_IDENT_FUNC) {
dnerror(dnp, D_CG_EXPR, "%s %s( ) may not be "
"called from a D expression (D program "
"context required)\n",
dt_idkind_name(idp->di_kind), idp->di_name);
}
dt_cg_arglist(dnp->dn_ident, dnp->dn_args, dlp, drp);
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
instr = DIF_INSTR_CALL(
dnp->dn_ident->di_id, dnp->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
case DT_NODE_VAR:
if (dnp->dn_ident->di_kind == DT_IDENT_XLSOU ||
dnp->dn_ident->di_kind == DT_IDENT_XLPTR) {
/*
* This can only happen if we have translated
* args[]. See dt_idcook_args() for details.
*/
assert(dnp->dn_ident->di_id == DIF_VAR_ARGS);
dt_cg_array_op(dnp, dlp, drp);
break;
}
if (dnp->dn_ident->di_kind == DT_IDENT_ARRAY) {
if (dnp->dn_ident->di_id > DIF_VAR_ARRAY_MAX)
dt_cg_assoc_op(dnp, dlp, drp);
else
dt_cg_array_op(dnp, dlp, drp);
break;
}
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
if (dnp->dn_ident->di_flags & DT_IDFLG_LOCAL)
op = DIF_OP_LDLS;
else if (dnp->dn_ident->di_flags & DT_IDFLG_TLS)
op = DIF_OP_LDTS;
else
op = DIF_OP_LDGS;
dnp->dn_ident->di_flags |= DT_IDFLG_DIFR;
instr = DIF_INSTR_LDV(op,
dnp->dn_ident->di_id, dnp->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
break;
case DT_NODE_SYM: {
dtrace_hdl_t *dtp = yypcb->pcb_hdl;
dtrace_syminfo_t *sip = dnp->dn_ident->di_data;
GElf_Sym sym;
if (dtrace_lookup_by_name(dtp,
sip->dts_object, sip->dts_name, &sym, NULL) == -1) {
xyerror(D_UNKNOWN, "cg failed for symbol %s`%s:"
" %s\n", sip->dts_object, sip->dts_name,
dtrace_errmsg(dtp, dtrace_errno(dtp)));
}
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_xsetx(dlp, dnp->dn_ident,
DT_LBL_NONE, dnp->dn_reg, sym.st_value);
if (!(dnp->dn_flags & DT_NF_REF)) {
instr = DIF_INSTR_LOAD(dt_cg_load(dnp, ctfp,
dnp->dn_type), dnp->dn_reg, dnp->dn_reg);
dt_irlist_append(dlp,
dt_cg_node_alloc(DT_LBL_NONE, instr));
}
break;
}
default:
xyerror(D_UNKNOWN, "internal error -- node type %u is "
"not valid for an identifier\n", dnp->dn_kind);
}
break;
case DT_TOK_INT:
if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
dt_cg_setx(dlp, dnp->dn_reg, dnp->dn_value);
break;
default:
xyerror(D_UNKNOWN, "internal error -- token type %u is not a "
"valid D compilation token\n", dnp->dn_op);
}
}
void
dt_cg(dt_pcb_t *pcb, dt_node_t *dnp)
{
dif_instr_t instr;
dt_xlator_t *dxp;
if (pcb->pcb_regs == NULL && (pcb->pcb_regs =
dt_regset_create(pcb->pcb_hdl->dt_conf.dtc_difintregs)) == NULL)
longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
dt_regset_reset(pcb->pcb_regs);
(void) dt_regset_alloc(pcb->pcb_regs); /* allocate %r0 */
if (pcb->pcb_inttab != NULL)
dt_inttab_destroy(pcb->pcb_inttab);
if ((pcb->pcb_inttab = dt_inttab_create(yypcb->pcb_hdl)) == NULL)
longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
if (pcb->pcb_strtab != NULL)
dt_strtab_destroy(pcb->pcb_strtab);
if ((pcb->pcb_strtab = dt_strtab_create(BUFSIZ)) == NULL)
longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
dt_irlist_destroy(&pcb->pcb_ir);
dt_irlist_create(&pcb->pcb_ir);
assert(pcb->pcb_dret == NULL);
pcb->pcb_dret = dnp;
if (dt_node_is_dynamic(dnp)) {
dnerror(dnp, D_CG_DYN, "expression cannot evaluate to result "
"of dynamic type\n");
}
/*
* If we're generating code for a translator body, assign the input
* parameter to the first available register (i.e. caller passes %r1).
*/
if (dnp->dn_kind == DT_NODE_MEMBER) {
dxp = dnp->dn_membxlator;
dnp = dnp->dn_membexpr;
dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
dxp->dx_ident->di_id = dt_regset_alloc(pcb->pcb_regs);
}
dt_cg_node(dnp, &pcb->pcb_ir, pcb->pcb_regs);
instr = DIF_INSTR_RET(dnp->dn_reg);
dt_regset_free(pcb->pcb_regs, dnp->dn_reg);
dt_irlist_append(&pcb->pcb_ir, dt_cg_node_alloc(DT_LBL_NONE, instr));
if (dnp->dn_kind == DT_NODE_MEMBER) {
dt_regset_free(pcb->pcb_regs, dxp->dx_ident->di_id);
dxp->dx_ident->di_id = 0;
dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
}
}