freebsd-skq/sys/dev/bwi/bwirf.c
Warner Losh 12e36acb09 Bring in Andrew Thompson's port of Sepherosa Ziehau's bwi driver for
Broadcom BCM43xx chipsets.  This driver uses the v3 firmware that
needs to be fetched separately.  A port will be committed to create
the bwi firmware module.

The driver matches the following chips: Broadcom BCM4301, BCM4307,
BCM4306, BCM4309, BCM4311, BCM4312, BCM4318, BCM4319

The driver works for 802.11b and 802.11g.

Limitations:
	This doesn't support the 802.11a or 802.11n portion of radios.
	Some BCM4306 and BCM4309 cards don't work with Channel 1, 2 or 3.
	Documenation for this firmware is reverse engineered from
		 http://bcm.sipsolutions.net/
	V4 of the firmware is needed for 11a or 11n support
		 http://bcm-v4.sipsolutions.net/
	Firmware needs to be fetched from a third party, port to be committed

# I've tested this with a BCM4319 mini-pci and a BCM4318 CardBus card, and
# not connected it to the build until the firmware port is committed.

Obtained from:	DragonFlyBSD, //depot/projects/vap
Reviewed by:	sam@, thompsa@
2009-05-03 04:01:43 +00:00

2691 lines
62 KiB
C

/*
* Copyright (c) 2007 The DragonFly Project. All rights reserved.
*
* This code is derived from software contributed to The DragonFly Project
* by Sepherosa Ziehau <sepherosa@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of The DragonFly Project nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific, prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $DragonFly: src/sys/dev/netif/bwi/bwirf.c,v 1.9 2008/08/21 12:19:33 swildner Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_bwi.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_llc.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_amrr.h>
#include <machine/bus.h>
#include <dev/bwi/bitops.h>
#include <dev/bwi/if_bwireg.h>
#include <dev/bwi/if_bwivar.h>
#include <dev/bwi/bwimac.h>
#include <dev/bwi/bwirf.h>
#include <dev/bwi/bwiphy.h>
#define RF_LO_WRITE(mac, lo) bwi_rf_lo_write((mac), (lo))
#define BWI_RF_2GHZ_CHAN(chan) \
(ieee80211_ieee2mhz((chan), IEEE80211_CHAN_2GHZ) - 2400)
#define BWI_DEFAULT_IDLE_TSSI 52
struct rf_saveregs {
uint16_t phy_01;
uint16_t phy_03;
uint16_t phy_0a;
uint16_t phy_15;
uint16_t phy_2a;
uint16_t phy_30;
uint16_t phy_35;
uint16_t phy_60;
uint16_t phy_429;
uint16_t phy_802;
uint16_t phy_811;
uint16_t phy_812;
uint16_t phy_814;
uint16_t phy_815;
uint16_t rf_43;
uint16_t rf_52;
uint16_t rf_7a;
};
#define SAVE_RF_REG(mac, regs, n) (regs)->rf_##n = RF_READ((mac), 0x##n)
#define RESTORE_RF_REG(mac, regs, n) RF_WRITE((mac), 0x##n, (regs)->rf_##n)
#define SAVE_PHY_REG(mac, regs, n) (regs)->phy_##n = PHY_READ((mac), 0x##n)
#define RESTORE_PHY_REG(mac, regs, n) PHY_WRITE((mac), 0x##n, (regs)->phy_##n)
static int bwi_rf_calc_txpower(int8_t *, uint8_t, const int16_t[]);
static void bwi_rf_work_around(struct bwi_mac *, u_int);
static int bwi_rf_gain_max_reached(struct bwi_mac *, int);
static uint16_t bwi_rf_calibval(struct bwi_mac *);
static uint16_t bwi_rf_get_tp_ctrl2(struct bwi_mac *);
static void bwi_rf_lo_update_11b(struct bwi_mac *);
static uint16_t bwi_rf_lo_measure_11b(struct bwi_mac *);
static void bwi_rf_lo_update_11g(struct bwi_mac *);
static uint32_t bwi_rf_lo_devi_measure(struct bwi_mac *, uint16_t);
static void bwi_rf_lo_measure_11g(struct bwi_mac *,
const struct bwi_rf_lo *, struct bwi_rf_lo *, uint8_t);
static uint8_t _bwi_rf_lo_update_11g(struct bwi_mac *, uint16_t);
static void bwi_rf_lo_write(struct bwi_mac *, const struct bwi_rf_lo *);
static void bwi_rf_set_nrssi_ofs_11g(struct bwi_mac *);
static void bwi_rf_calc_nrssi_slope_11b(struct bwi_mac *);
static void bwi_rf_calc_nrssi_slope_11g(struct bwi_mac *);
static void bwi_rf_set_nrssi_thr_11b(struct bwi_mac *);
static void bwi_rf_set_nrssi_thr_11g(struct bwi_mac *);
static void bwi_rf_init_sw_nrssi_table(struct bwi_mac *);
static int bwi_rf_calc_rssi_bcm2050(struct bwi_mac *,
const struct bwi_rxbuf_hdr *);
static int bwi_rf_calc_rssi_bcm2053(struct bwi_mac *,
const struct bwi_rxbuf_hdr *);
static int bwi_rf_calc_rssi_bcm2060(struct bwi_mac *,
const struct bwi_rxbuf_hdr *);
static int bwi_rf_calc_noise_bcm2050(struct bwi_mac *);
static int bwi_rf_calc_noise_bcm2053(struct bwi_mac *);
static int bwi_rf_calc_noise_bcm2060(struct bwi_mac *);
static void bwi_rf_on_11a(struct bwi_mac *);
static void bwi_rf_on_11bg(struct bwi_mac *);
static void bwi_rf_off_11a(struct bwi_mac *);
static void bwi_rf_off_11bg(struct bwi_mac *);
static void bwi_rf_off_11g_rev5(struct bwi_mac *);
static const int8_t bwi_txpower_map_11b[BWI_TSSI_MAX] =
{ BWI_TXPOWER_MAP_11B };
static const int8_t bwi_txpower_map_11g[BWI_TSSI_MAX] =
{ BWI_TXPOWER_MAP_11G };
static __inline int16_t
bwi_nrssi_11g(struct bwi_mac *mac)
{
int16_t val;
#define NRSSI_11G_MASK __BITS(13, 8)
val = (int16_t)__SHIFTOUT(PHY_READ(mac, 0x47f), NRSSI_11G_MASK);
if (val >= 32)
val -= 64;
return val;
#undef NRSSI_11G_MASK
}
static __inline struct bwi_rf_lo *
bwi_get_rf_lo(struct bwi_mac *mac, uint16_t rf_atten, uint16_t bbp_atten)
{
int n;
n = rf_atten + (14 * (bbp_atten / 2));
KASSERT(n < BWI_RFLO_MAX, ("n %d", n));
return &mac->mac_rf.rf_lo[n];
}
static __inline int
bwi_rf_lo_isused(struct bwi_mac *mac, const struct bwi_rf_lo *lo)
{
struct bwi_rf *rf = &mac->mac_rf;
int idx;
idx = lo - rf->rf_lo;
KASSERT(idx >= 0 && idx < BWI_RFLO_MAX, ("idx %d", idx));
return isset(rf->rf_lo_used, idx);
}
void
bwi_rf_write(struct bwi_mac *mac, uint16_t ctrl, uint16_t data)
{
struct bwi_softc *sc = mac->mac_sc;
CSR_WRITE_2(sc, BWI_RF_CTRL, ctrl);
CSR_WRITE_2(sc, BWI_RF_DATA_LO, data);
}
uint16_t
bwi_rf_read(struct bwi_mac *mac, uint16_t ctrl)
{
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_softc *sc = mac->mac_sc;
ctrl |= rf->rf_ctrl_rd;
if (rf->rf_ctrl_adj) {
/* XXX */
if (ctrl < 0x70)
ctrl += 0x80;
else if (ctrl < 0x80)
ctrl += 0x70;
}
CSR_WRITE_2(sc, BWI_RF_CTRL, ctrl);
return CSR_READ_2(sc, BWI_RF_DATA_LO);
}
int
bwi_rf_attach(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
uint16_t type, manu;
uint8_t rev;
/*
* Get RF manufacture/type/revision
*/
if (sc->sc_bbp_id == BWI_BBPID_BCM4317) {
/*
* Fake a BCM2050 RF
*/
manu = BWI_RF_MANUFACT_BCM;
type = BWI_RF_T_BCM2050;
if (sc->sc_bbp_rev == 0)
rev = 3;
else if (sc->sc_bbp_rev == 1)
rev = 4;
else
rev = 5;
} else {
uint32_t val;
CSR_WRITE_2(sc, BWI_RF_CTRL, BWI_RF_CTRL_RFINFO);
val = CSR_READ_2(sc, BWI_RF_DATA_HI);
val <<= 16;
CSR_WRITE_2(sc, BWI_RF_CTRL, BWI_RF_CTRL_RFINFO);
val |= CSR_READ_2(sc, BWI_RF_DATA_LO);
manu = __SHIFTOUT(val, BWI_RFINFO_MANUFACT_MASK);
type = __SHIFTOUT(val, BWI_RFINFO_TYPE_MASK);
rev = __SHIFTOUT(val, BWI_RFINFO_REV_MASK);
}
device_printf(sc->sc_dev, "RF: manu 0x%03x, type 0x%04x, rev %u\n",
manu, type, rev);
/*
* Verify whether the RF is supported
*/
rf->rf_ctrl_rd = 0;
rf->rf_ctrl_adj = 0;
switch (phy->phy_mode) {
case IEEE80211_MODE_11A:
if (manu != BWI_RF_MANUFACT_BCM ||
type != BWI_RF_T_BCM2060 ||
rev != 1) {
device_printf(sc->sc_dev, "only BCM2060 rev 1 RF "
"is supported for 11A PHY\n");
return ENXIO;
}
rf->rf_ctrl_rd = BWI_RF_CTRL_RD_11A;
rf->rf_on = bwi_rf_on_11a;
rf->rf_off = bwi_rf_off_11a;
rf->rf_calc_rssi = bwi_rf_calc_rssi_bcm2060;
rf->rf_calc_noise = bwi_rf_calc_noise_bcm2060;
break;
case IEEE80211_MODE_11B:
if (type == BWI_RF_T_BCM2050) {
rf->rf_ctrl_rd = BWI_RF_CTRL_RD_11BG;
rf->rf_calc_rssi = bwi_rf_calc_rssi_bcm2050;
rf->rf_calc_noise = bwi_rf_calc_noise_bcm2050;
} else if (type == BWI_RF_T_BCM2053) {
rf->rf_ctrl_adj = 1;
rf->rf_calc_rssi = bwi_rf_calc_rssi_bcm2053;
rf->rf_calc_noise = bwi_rf_calc_noise_bcm2053;
} else {
device_printf(sc->sc_dev, "only BCM2050/BCM2053 RF "
"is supported for 11B PHY\n");
return ENXIO;
}
rf->rf_on = bwi_rf_on_11bg;
rf->rf_off = bwi_rf_off_11bg;
rf->rf_calc_nrssi_slope = bwi_rf_calc_nrssi_slope_11b;
rf->rf_set_nrssi_thr = bwi_rf_set_nrssi_thr_11b;
if (phy->phy_rev == 6)
rf->rf_lo_update = bwi_rf_lo_update_11g;
else
rf->rf_lo_update = bwi_rf_lo_update_11b;
break;
case IEEE80211_MODE_11G:
if (type != BWI_RF_T_BCM2050) {
device_printf(sc->sc_dev, "only BCM2050 RF "
"is supported for 11G PHY\n");
return ENXIO;
}
rf->rf_ctrl_rd = BWI_RF_CTRL_RD_11BG;
rf->rf_on = bwi_rf_on_11bg;
if (mac->mac_rev >= 5)
rf->rf_off = bwi_rf_off_11g_rev5;
else
rf->rf_off = bwi_rf_off_11bg;
rf->rf_calc_nrssi_slope = bwi_rf_calc_nrssi_slope_11g;
rf->rf_set_nrssi_thr = bwi_rf_set_nrssi_thr_11g;
rf->rf_calc_rssi = bwi_rf_calc_rssi_bcm2050;
rf->rf_calc_noise = bwi_rf_calc_noise_bcm2050;
rf->rf_lo_update = bwi_rf_lo_update_11g;
break;
default:
device_printf(sc->sc_dev, "unsupported PHY mode\n");
return ENXIO;
}
rf->rf_type = type;
rf->rf_rev = rev;
rf->rf_manu = manu;
rf->rf_curchan = IEEE80211_CHAN_ANY;
rf->rf_ant_mode = BWI_ANT_MODE_AUTO;
return 0;
}
void
bwi_rf_set_chan(struct bwi_mac *mac, u_int chan, int work_around)
{
struct bwi_softc *sc = mac->mac_sc;
if (chan == IEEE80211_CHAN_ANY)
return;
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_CHAN, chan);
/* TODO: 11A */
if (work_around)
bwi_rf_work_around(mac, chan);
CSR_WRITE_2(sc, BWI_RF_CHAN, BWI_RF_2GHZ_CHAN(chan));
if (chan == 14) {
if (sc->sc_locale == BWI_SPROM_LOCALE_JAPAN)
HFLAGS_CLRBITS(mac, BWI_HFLAG_NOT_JAPAN);
else
HFLAGS_SETBITS(mac, BWI_HFLAG_NOT_JAPAN);
CSR_SETBITS_2(sc, BWI_RF_CHAN_EX, (1 << 11)); /* XXX */
} else {
CSR_CLRBITS_2(sc, BWI_RF_CHAN_EX, 0x840); /* XXX */
}
DELAY(8000); /* DELAY(2000); */
mac->mac_rf.rf_curchan = chan;
}
void
bwi_rf_get_gains(struct bwi_mac *mac)
{
#define SAVE_PHY_MAX 15
#define SAVE_RF_MAX 3
static const uint16_t save_rf_regs[SAVE_RF_MAX] =
{ 0x52, 0x43, 0x7a };
static const uint16_t save_phy_regs[SAVE_PHY_MAX] = {
0x0429, 0x0001, 0x0811, 0x0812,
0x0814, 0x0815, 0x005a, 0x0059,
0x0058, 0x000a, 0x0003, 0x080f,
0x0810, 0x002b, 0x0015
};
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
uint16_t save_phy[SAVE_PHY_MAX];
uint16_t save_rf[SAVE_RF_MAX];
uint16_t trsw;
int i, j, loop1_max, loop1, loop2;
/*
* Save PHY/RF registers for later restoration
*/
for (i = 0; i < SAVE_PHY_MAX; ++i)
save_phy[i] = PHY_READ(mac, save_phy_regs[i]);
PHY_READ(mac, 0x2d); /* dummy read */
for (i = 0; i < SAVE_RF_MAX; ++i)
save_rf[i] = RF_READ(mac, save_rf_regs[i]);
PHY_CLRBITS(mac, 0x429, 0xc000);
PHY_SETBITS(mac, 0x1, 0x8000);
PHY_SETBITS(mac, 0x811, 0x2);
PHY_CLRBITS(mac, 0x812, 0x2);
PHY_SETBITS(mac, 0x811, 0x1);
PHY_CLRBITS(mac, 0x812, 0x1);
PHY_SETBITS(mac, 0x814, 0x1);
PHY_CLRBITS(mac, 0x815, 0x1);
PHY_SETBITS(mac, 0x814, 0x2);
PHY_CLRBITS(mac, 0x815, 0x2);
PHY_SETBITS(mac, 0x811, 0xc);
PHY_SETBITS(mac, 0x812, 0xc);
PHY_SETBITS(mac, 0x811, 0x30);
PHY_FILT_SETBITS(mac, 0x812, 0xffcf, 0x10);
PHY_WRITE(mac, 0x5a, 0x780);
PHY_WRITE(mac, 0x59, 0xc810);
PHY_WRITE(mac, 0x58, 0xd);
PHY_SETBITS(mac, 0xa, 0x2000);
PHY_SETBITS(mac, 0x814, 0x4);
PHY_CLRBITS(mac, 0x815, 0x4);
PHY_FILT_SETBITS(mac, 0x3, 0xff9f, 0x40);
if (rf->rf_rev == 8) {
loop1_max = 15;
RF_WRITE(mac, 0x43, loop1_max);
} else {
loop1_max = 9;
RF_WRITE(mac, 0x52, 0x0);
RF_FILT_SETBITS(mac, 0x43, 0xfff0, loop1_max);
}
bwi_phy_set_bbp_atten(mac, 11);
if (phy->phy_rev >= 3)
PHY_WRITE(mac, 0x80f, 0xc020);
else
PHY_WRITE(mac, 0x80f, 0x8020);
PHY_WRITE(mac, 0x810, 0);
PHY_FILT_SETBITS(mac, 0x2b, 0xffc0, 0x1);
PHY_FILT_SETBITS(mac, 0x2b, 0xc0ff, 0x800);
PHY_SETBITS(mac, 0x811, 0x100);
PHY_CLRBITS(mac, 0x812, 0x3000);
if ((sc->sc_card_flags & BWI_CARD_F_EXT_LNA) &&
phy->phy_rev >= 7) {
PHY_SETBITS(mac, 0x811, 0x800);
PHY_SETBITS(mac, 0x812, 0x8000);
}
RF_CLRBITS(mac, 0x7a, 0xff08);
/*
* Find out 'loop1/loop2', which will be used to calculate
* max loopback gain later
*/
j = 0;
for (i = 0; i < loop1_max; ++i) {
for (j = 0; j < 16; ++j) {
RF_WRITE(mac, 0x43, i);
if (bwi_rf_gain_max_reached(mac, j))
goto loop1_exit;
}
}
loop1_exit:
loop1 = i;
loop2 = j;
/*
* Find out 'trsw', which will be used to calculate
* TRSW(TX/RX switch) RX gain later
*/
if (loop2 >= 8) {
PHY_SETBITS(mac, 0x812, 0x30);
trsw = 0x1b;
for (i = loop2 - 8; i < 16; ++i) {
trsw -= 3;
if (bwi_rf_gain_max_reached(mac, i))
break;
}
} else {
trsw = 0x18;
}
/*
* Restore saved PHY/RF registers
*/
/* First 4 saved PHY registers need special processing */
for (i = 4; i < SAVE_PHY_MAX; ++i)
PHY_WRITE(mac, save_phy_regs[i], save_phy[i]);
bwi_phy_set_bbp_atten(mac, mac->mac_tpctl.bbp_atten);
for (i = 0; i < SAVE_RF_MAX; ++i)
RF_WRITE(mac, save_rf_regs[i], save_rf[i]);
PHY_WRITE(mac, save_phy_regs[2], save_phy[2] | 0x3);
DELAY(10);
PHY_WRITE(mac, save_phy_regs[2], save_phy[2]);
PHY_WRITE(mac, save_phy_regs[3], save_phy[3]);
PHY_WRITE(mac, save_phy_regs[0], save_phy[0]);
PHY_WRITE(mac, save_phy_regs[1], save_phy[1]);
/*
* Calculate gains
*/
rf->rf_lo_gain = (loop2 * 6) - (loop1 * 4) - 11;
rf->rf_rx_gain = trsw * 2;
DPRINTF(mac->mac_sc, BWI_DBG_RF | BWI_DBG_INIT,
"lo gain: %u, rx gain: %u\n",
rf->rf_lo_gain, rf->rf_rx_gain);
#undef SAVE_RF_MAX
#undef SAVE_PHY_MAX
}
void
bwi_rf_init(struct bwi_mac *mac)
{
struct bwi_rf *rf = &mac->mac_rf;
if (rf->rf_type == BWI_RF_T_BCM2060) {
/* TODO: 11A */
} else {
if (rf->rf_flags & BWI_RF_F_INITED)
RF_WRITE(mac, 0x78, rf->rf_calib);
else
bwi_rf_init_bcm2050(mac);
}
}
static void
bwi_rf_off_11a(struct bwi_mac *mac)
{
RF_WRITE(mac, 0x4, 0xff);
RF_WRITE(mac, 0x5, 0xfb);
PHY_SETBITS(mac, 0x10, 0x8);
PHY_SETBITS(mac, 0x11, 0x8);
PHY_WRITE(mac, 0x15, 0xaa00);
}
static void
bwi_rf_off_11bg(struct bwi_mac *mac)
{
PHY_WRITE(mac, 0x15, 0xaa00);
}
static void
bwi_rf_off_11g_rev5(struct bwi_mac *mac)
{
PHY_SETBITS(mac, 0x811, 0x8c);
PHY_CLRBITS(mac, 0x812, 0x8c);
}
static void
bwi_rf_work_around(struct bwi_mac *mac, u_int chan)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
if (chan == IEEE80211_CHAN_ANY) {
device_printf(sc->sc_dev, "%s invalid channel!!\n", __func__);
return;
}
if (rf->rf_type != BWI_RF_T_BCM2050 || rf->rf_rev >= 6)
return;
if (chan <= 10)
CSR_WRITE_2(sc, BWI_RF_CHAN, BWI_RF_2GHZ_CHAN(chan + 4));
else
CSR_WRITE_2(sc, BWI_RF_CHAN, BWI_RF_2GHZ_CHAN(1));
DELAY(1000);
CSR_WRITE_2(sc, BWI_RF_CHAN, BWI_RF_2GHZ_CHAN(chan));
}
static __inline struct bwi_rf_lo *
bwi_rf_lo_find(struct bwi_mac *mac, const struct bwi_tpctl *tpctl)
{
uint16_t rf_atten, bbp_atten;
int remap_rf_atten;
remap_rf_atten = 1;
if (tpctl == NULL) {
bbp_atten = 2;
rf_atten = 3;
} else {
if (tpctl->tp_ctrl1 == 3)
remap_rf_atten = 0;
bbp_atten = tpctl->bbp_atten;
rf_atten = tpctl->rf_atten;
if (bbp_atten > 6)
bbp_atten = 6;
}
if (remap_rf_atten) {
#define MAP_MAX 10
static const uint16_t map[MAP_MAX] =
{ 11, 10, 11, 12, 13, 12, 13, 12, 13, 12 };
#if 0
KASSERT(rf_atten < MAP_MAX, ("rf_atten %d", rf_atten));
rf_atten = map[rf_atten];
#else
if (rf_atten >= MAP_MAX) {
rf_atten = 0; /* XXX */
} else {
rf_atten = map[rf_atten];
}
#endif
#undef MAP_MAX
}
return bwi_get_rf_lo(mac, rf_atten, bbp_atten);
}
void
bwi_rf_lo_adjust(struct bwi_mac *mac, const struct bwi_tpctl *tpctl)
{
const struct bwi_rf_lo *lo;
lo = bwi_rf_lo_find(mac, tpctl);
RF_LO_WRITE(mac, lo);
}
static void
bwi_rf_lo_write(struct bwi_mac *mac, const struct bwi_rf_lo *lo)
{
uint16_t val;
val = (uint8_t)lo->ctrl_lo;
val |= ((uint8_t)lo->ctrl_hi) << 8;
PHY_WRITE(mac, BWI_PHYR_RF_LO, val);
}
static int
bwi_rf_gain_max_reached(struct bwi_mac *mac, int idx)
{
PHY_FILT_SETBITS(mac, 0x812, 0xf0ff, idx << 8);
PHY_FILT_SETBITS(mac, 0x15, 0xfff, 0xa000);
PHY_SETBITS(mac, 0x15, 0xf000);
DELAY(20);
return (PHY_READ(mac, 0x2d) >= 0xdfc);
}
/* XXX use bitmap array */
static __inline uint16_t
bitswap4(uint16_t val)
{
uint16_t ret;
ret = (val & 0x8) >> 3;
ret |= (val & 0x4) >> 1;
ret |= (val & 0x2) << 1;
ret |= (val & 0x1) << 3;
return ret;
}
static __inline uint16_t
bwi_phy812_value(struct bwi_mac *mac, uint16_t lpd)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
uint16_t lo_gain, ext_lna, loop;
if ((phy->phy_flags & BWI_PHY_F_LINKED) == 0)
return 0;
lo_gain = rf->rf_lo_gain;
if (rf->rf_rev == 8)
lo_gain += 0x3e;
else
lo_gain += 0x26;
if (lo_gain >= 0x46) {
lo_gain -= 0x46;
ext_lna = 0x3000;
} else if (lo_gain >= 0x3a) {
lo_gain -= 0x3a;
ext_lna = 0x1000;
} else if (lo_gain >= 0x2e) {
lo_gain -= 0x2e;
ext_lna = 0x2000;
} else {
lo_gain -= 0x10;
ext_lna = 0;
}
for (loop = 0; loop < 16; ++loop) {
lo_gain -= (6 * loop);
if (lo_gain < 6)
break;
}
if (phy->phy_rev >= 7 && (sc->sc_card_flags & BWI_CARD_F_EXT_LNA)) {
if (ext_lna)
ext_lna |= 0x8000;
ext_lna |= (loop << 8);
switch (lpd) {
case 0x011:
return 0x8f92;
case 0x001:
return (0x8092 | ext_lna);
case 0x101:
return (0x2092 | ext_lna);
case 0x100:
return (0x2093 | ext_lna);
default:
panic("unsupported lpd\n");
}
} else {
ext_lna |= (loop << 8);
switch (lpd) {
case 0x011:
return 0xf92;
case 0x001:
case 0x101:
return (0x92 | ext_lna);
case 0x100:
return (0x93 | ext_lna);
default:
panic("unsupported lpd\n");
}
}
panic("never reached\n");
return 0;
}
void
bwi_rf_init_bcm2050(struct bwi_mac *mac)
{
#define SAVE_RF_MAX 3
#define SAVE_PHY_COMM_MAX 4
#define SAVE_PHY_11G_MAX 6
static const uint16_t save_rf_regs[SAVE_RF_MAX] =
{ 0x0043, 0x0051, 0x0052 };
static const uint16_t save_phy_regs_comm[SAVE_PHY_COMM_MAX] =
{ 0x0015, 0x005a, 0x0059, 0x0058 };
static const uint16_t save_phy_regs_11g[SAVE_PHY_11G_MAX] =
{ 0x0811, 0x0812, 0x0814, 0x0815, 0x0429, 0x0802 };
uint16_t save_rf[SAVE_RF_MAX];
uint16_t save_phy_comm[SAVE_PHY_COMM_MAX];
uint16_t save_phy_11g[SAVE_PHY_11G_MAX];
uint16_t phyr_35, phyr_30 = 0, rfr_78, phyr_80f = 0, phyr_810 = 0;
uint16_t bphy_ctrl = 0, bbp_atten, rf_chan_ex;
uint16_t phy812_val;
uint16_t calib;
uint32_t test_lim, test;
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
int i;
/*
* Save registers for later restoring
*/
for (i = 0; i < SAVE_RF_MAX; ++i)
save_rf[i] = RF_READ(mac, save_rf_regs[i]);
for (i = 0; i < SAVE_PHY_COMM_MAX; ++i)
save_phy_comm[i] = PHY_READ(mac, save_phy_regs_comm[i]);
if (phy->phy_mode == IEEE80211_MODE_11B) {
phyr_30 = PHY_READ(mac, 0x30);
bphy_ctrl = CSR_READ_2(sc, BWI_BPHY_CTRL);
PHY_WRITE(mac, 0x30, 0xff);
CSR_WRITE_2(sc, BWI_BPHY_CTRL, 0x3f3f);
} else if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
for (i = 0; i < SAVE_PHY_11G_MAX; ++i) {
save_phy_11g[i] =
PHY_READ(mac, save_phy_regs_11g[i]);
}
PHY_SETBITS(mac, 0x814, 0x3);
PHY_CLRBITS(mac, 0x815, 0x3);
PHY_CLRBITS(mac, 0x429, 0x8000);
PHY_CLRBITS(mac, 0x802, 0x3);
phyr_80f = PHY_READ(mac, 0x80f);
phyr_810 = PHY_READ(mac, 0x810);
if (phy->phy_rev >= 3)
PHY_WRITE(mac, 0x80f, 0xc020);
else
PHY_WRITE(mac, 0x80f, 0x8020);
PHY_WRITE(mac, 0x810, 0);
phy812_val = bwi_phy812_value(mac, 0x011);
PHY_WRITE(mac, 0x812, phy812_val);
if (phy->phy_rev < 7 ||
(sc->sc_card_flags & BWI_CARD_F_EXT_LNA) == 0)
PHY_WRITE(mac, 0x811, 0x1b3);
else
PHY_WRITE(mac, 0x811, 0x9b3);
}
CSR_SETBITS_2(sc, BWI_RF_ANTDIV, 0x8000);
phyr_35 = PHY_READ(mac, 0x35);
PHY_CLRBITS(mac, 0x35, 0x80);
bbp_atten = CSR_READ_2(sc, BWI_BBP_ATTEN);
rf_chan_ex = CSR_READ_2(sc, BWI_RF_CHAN_EX);
if (phy->phy_version == 0) {
CSR_WRITE_2(sc, BWI_BBP_ATTEN, 0x122);
} else {
if (phy->phy_version >= 2)
PHY_FILT_SETBITS(mac, 0x3, 0xffbf, 0x40);
CSR_SETBITS_2(sc, BWI_RF_CHAN_EX, 0x2000);
}
calib = bwi_rf_calibval(mac);
if (phy->phy_mode == IEEE80211_MODE_11B)
RF_WRITE(mac, 0x78, 0x26);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x011);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xbfaf);
PHY_WRITE(mac, 0x2b, 0x1403);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x001);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xbfa0);
RF_SETBITS(mac, 0x51, 0x4);
if (rf->rf_rev == 8) {
RF_WRITE(mac, 0x43, 0x1f);
} else {
RF_WRITE(mac, 0x52, 0);
RF_FILT_SETBITS(mac, 0x43, 0xfff0, 0x9);
}
test_lim = 0;
PHY_WRITE(mac, 0x58, 0);
for (i = 0; i < 16; ++i) {
PHY_WRITE(mac, 0x5a, 0x480);
PHY_WRITE(mac, 0x59, 0xc810);
PHY_WRITE(mac, 0x58, 0xd);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xafb0);
DELAY(10);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xefb0);
DELAY(10);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x100);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xfff0);
DELAY(20);
test_lim += PHY_READ(mac, 0x2d);
PHY_WRITE(mac, 0x58, 0);
if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xafb0);
}
++test_lim;
test_lim >>= 9;
DELAY(10);
test = 0;
PHY_WRITE(mac, 0x58, 0);
for (i = 0; i < 16; ++i) {
int j;
rfr_78 = (bitswap4(i) << 1) | 0x20;
RF_WRITE(mac, 0x78, rfr_78);
DELAY(10);
/* NB: This block is slight different than the above one */
for (j = 0; j < 16; ++j) {
PHY_WRITE(mac, 0x5a, 0xd80);
PHY_WRITE(mac, 0x59, 0xc810);
PHY_WRITE(mac, 0x58, 0xd);
if ((phy->phy_flags & BWI_PHY_F_LINKED) ||
phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xafb0);
DELAY(10);
if ((phy->phy_flags & BWI_PHY_F_LINKED) ||
phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xefb0);
DELAY(10);
if ((phy->phy_flags & BWI_PHY_F_LINKED) ||
phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x100);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xfff0);
DELAY(10);
test += PHY_READ(mac, 0x2d);
PHY_WRITE(mac, 0x58, 0);
if ((phy->phy_flags & BWI_PHY_F_LINKED) ||
phy->phy_rev >= 2) {
phy812_val = bwi_phy812_value(mac, 0x101);
PHY_WRITE(mac, 0x812, phy812_val);
}
PHY_WRITE(mac, 0x15, 0xafb0);
}
++test;
test >>= 8;
if (test > test_lim)
break;
}
if (i > 15)
rf->rf_calib = rfr_78;
else
rf->rf_calib = calib;
if (rf->rf_calib != 0xffff) {
DPRINTF(sc, BWI_DBG_RF | BWI_DBG_INIT,
"RF calibration value: 0x%04x\n", rf->rf_calib);
rf->rf_flags |= BWI_RF_F_INITED;
}
/*
* Restore trashes registers
*/
PHY_WRITE(mac, save_phy_regs_comm[0], save_phy_comm[0]);
for (i = 0; i < SAVE_RF_MAX; ++i) {
int pos = (i + 1) % SAVE_RF_MAX;
RF_WRITE(mac, save_rf_regs[pos], save_rf[pos]);
}
for (i = 1; i < SAVE_PHY_COMM_MAX; ++i)
PHY_WRITE(mac, save_phy_regs_comm[i], save_phy_comm[i]);
CSR_WRITE_2(sc, BWI_BBP_ATTEN, bbp_atten);
if (phy->phy_version != 0)
CSR_WRITE_2(sc, BWI_RF_CHAN_EX, rf_chan_ex);
PHY_WRITE(mac, 0x35, phyr_35);
bwi_rf_work_around(mac, rf->rf_curchan);
if (phy->phy_mode == IEEE80211_MODE_11B) {
PHY_WRITE(mac, 0x30, phyr_30);
CSR_WRITE_2(sc, BWI_BPHY_CTRL, bphy_ctrl);
} else if ((phy->phy_flags & BWI_PHY_F_LINKED) || phy->phy_rev >= 2) {
/* XXX Spec only says when PHY is linked (gmode) */
CSR_CLRBITS_2(sc, BWI_RF_ANTDIV, 0x8000);
for (i = 0; i < SAVE_PHY_11G_MAX; ++i) {
PHY_WRITE(mac, save_phy_regs_11g[i],
save_phy_11g[i]);
}
PHY_WRITE(mac, 0x80f, phyr_80f);
PHY_WRITE(mac, 0x810, phyr_810);
}
#undef SAVE_PHY_11G_MAX
#undef SAVE_PHY_COMM_MAX
#undef SAVE_RF_MAX
}
static uint16_t
bwi_rf_calibval(struct bwi_mac *mac)
{
/* http://bcm-specs.sipsolutions.net/RCCTable */
static const uint16_t rf_calibvals[] = {
0x2, 0x3, 0x1, 0xf, 0x6, 0x7, 0x5, 0xf,
0xa, 0xb, 0x9, 0xf, 0xe, 0xf, 0xd, 0xf
};
uint16_t val, calib;
int idx;
val = RF_READ(mac, BWI_RFR_BBP_ATTEN);
idx = __SHIFTOUT(val, BWI_RFR_BBP_ATTEN_CALIB_IDX);
KASSERT(idx < (int)(sizeof(rf_calibvals) / sizeof(rf_calibvals[0])),
("idx %d", idx));
calib = rf_calibvals[idx] << 1;
if (val & BWI_RFR_BBP_ATTEN_CALIB_BIT)
calib |= 0x1;
calib |= 0x20;
return calib;
}
static __inline int32_t
_bwi_adjust_devide(int32_t num, int32_t den)
{
if (num < 0)
return (num / den);
else
return (num + den / 2) / den;
}
/*
* http://bcm-specs.sipsolutions.net/TSSI_to_DBM_Table
* "calculating table entries"
*/
static int
bwi_rf_calc_txpower(int8_t *txpwr, uint8_t idx, const int16_t pa_params[])
{
int32_t m1, m2, f, dbm;
int i;
m1 = _bwi_adjust_devide(16 * pa_params[0] + idx * pa_params[1], 32);
m2 = imax(_bwi_adjust_devide(32768 + idx * pa_params[2], 256), 1);
#define ITER_MAX 16
f = 256;
for (i = 0; i < ITER_MAX; ++i) {
int32_t q, d;
q = _bwi_adjust_devide(
f * 4096 - _bwi_adjust_devide(m2 * f, 16) * f, 2048);
d = abs(q - f);
f = q;
if (d < 2)
break;
}
if (i == ITER_MAX)
return EINVAL;
#undef ITER_MAX
dbm = _bwi_adjust_devide(m1 * f, 8192);
if (dbm < -127)
dbm = -127;
else if (dbm > 128)
dbm = 128;
*txpwr = dbm;
return 0;
}
int
bwi_rf_map_txpower(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_phy *phy = &mac->mac_phy;
uint16_t sprom_ofs, val, mask;
int16_t pa_params[3];
int error = 0, i, ant_gain, reg_txpower_max;
/*
* Find out max TX power
*/
val = bwi_read_sprom(sc, BWI_SPROM_MAX_TXPWR);
if (phy->phy_mode == IEEE80211_MODE_11A) {
rf->rf_txpower_max = __SHIFTOUT(val,
BWI_SPROM_MAX_TXPWR_MASK_11A);
} else {
rf->rf_txpower_max = __SHIFTOUT(val,
BWI_SPROM_MAX_TXPWR_MASK_11BG);
if ((sc->sc_card_flags & BWI_CARD_F_PA_GPIO9) &&
phy->phy_mode == IEEE80211_MODE_11G)
rf->rf_txpower_max -= 3;
}
if (rf->rf_txpower_max <= 0) {
device_printf(sc->sc_dev, "invalid max txpower in sprom\n");
rf->rf_txpower_max = 74;
}
DPRINTF(sc, BWI_DBG_RF | BWI_DBG_TXPOWER | BWI_DBG_ATTACH,
"max txpower from sprom: %d dBm\n", rf->rf_txpower_max);
/*
* Find out region/domain max TX power, which is adjusted
* by antenna gain and 1.5 dBm fluctuation as mentioned
* in v3 spec.
*/
val = bwi_read_sprom(sc, BWI_SPROM_ANT_GAIN);
if (phy->phy_mode == IEEE80211_MODE_11A)
ant_gain = __SHIFTOUT(val, BWI_SPROM_ANT_GAIN_MASK_11A);
else
ant_gain = __SHIFTOUT(val, BWI_SPROM_ANT_GAIN_MASK_11BG);
if (ant_gain == 0xff) {
device_printf(sc->sc_dev, "invalid antenna gain in sprom\n");
ant_gain = 2;
}
ant_gain *= 4;
DPRINTF(sc, BWI_DBG_RF | BWI_DBG_TXPOWER | BWI_DBG_ATTACH,
"ant gain %d dBm\n", ant_gain);
reg_txpower_max = 90 - ant_gain - 6; /* XXX magic number */
DPRINTF(sc, BWI_DBG_RF | BWI_DBG_TXPOWER | BWI_DBG_ATTACH,
"region/domain max txpower %d dBm\n", reg_txpower_max);
/*
* Force max TX power within region/domain TX power limit
*/
if (rf->rf_txpower_max > reg_txpower_max)
rf->rf_txpower_max = reg_txpower_max;
DPRINTF(sc, BWI_DBG_RF | BWI_DBG_TXPOWER | BWI_DBG_ATTACH,
"max txpower %d dBm\n", rf->rf_txpower_max);
/*
* Create TSSI to TX power mapping
*/
if (sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
rf->rf_type != BWI_RF_T_BCM2050) {
rf->rf_idle_tssi0 = BWI_DEFAULT_IDLE_TSSI;
bcopy(bwi_txpower_map_11b, rf->rf_txpower_map0,
sizeof(rf->rf_txpower_map0));
goto back;
}
#define IS_VALID_PA_PARAM(p) ((p) != 0 && (p) != -1)
#define N(arr) (int)(sizeof(arr) / sizeof(arr[0]))
/*
* Extract PA parameters
*/
if (phy->phy_mode == IEEE80211_MODE_11A)
sprom_ofs = BWI_SPROM_PA_PARAM_11A;
else
sprom_ofs = BWI_SPROM_PA_PARAM_11BG;
for (i = 0; i < N(pa_params); ++i)
pa_params[i] = (int16_t)bwi_read_sprom(sc, sprom_ofs + (i * 2));
for (i = 0; i < N(pa_params); ++i) {
/*
* If one of the PA parameters from SPROM is not valid,
* fall back to the default values, if there are any.
*/
if (!IS_VALID_PA_PARAM(pa_params[i])) {
const int8_t *txpower_map;
if (phy->phy_mode == IEEE80211_MODE_11A) {
device_printf(sc->sc_dev,
"no tssi2dbm table for 11a PHY\n");
return ENXIO;
}
if (phy->phy_mode == IEEE80211_MODE_11G) {
DPRINTF(sc,
BWI_DBG_RF | BWI_DBG_TXPOWER | BWI_DBG_ATTACH,
"%s\n", "use default 11g TSSI map");
txpower_map = bwi_txpower_map_11g;
} else {
DPRINTF(sc,
BWI_DBG_RF | BWI_DBG_TXPOWER | BWI_DBG_ATTACH,
"%s\n", "use default 11b TSSI map");
txpower_map = bwi_txpower_map_11b;
}
rf->rf_idle_tssi0 = BWI_DEFAULT_IDLE_TSSI;
bcopy(txpower_map, rf->rf_txpower_map0,
sizeof(rf->rf_txpower_map0));
goto back;
}
}
#undef N
/*
* All of the PA parameters from SPROM are valid.
*/
/*
* Extract idle TSSI from SPROM.
*/
val = bwi_read_sprom(sc, BWI_SPROM_IDLE_TSSI);
DPRINTF(sc, BWI_DBG_RF | BWI_DBG_TXPOWER | BWI_DBG_ATTACH,
"sprom idle tssi: 0x%04x\n", val);
if (phy->phy_mode == IEEE80211_MODE_11A)
mask = BWI_SPROM_IDLE_TSSI_MASK_11A;
else
mask = BWI_SPROM_IDLE_TSSI_MASK_11BG;
rf->rf_idle_tssi0 = (int)__SHIFTOUT(val, mask);
if (!IS_VALID_PA_PARAM(rf->rf_idle_tssi0))
rf->rf_idle_tssi0 = 62;
#undef IS_VALID_PA_PARAM
/*
* Calculate TX power map, which is indexed by TSSI
*/
DPRINTF(sc, BWI_DBG_RF | BWI_DBG_ATTACH | BWI_DBG_TXPOWER,
"%s\n", "TSSI-TX power map:");
for (i = 0; i < BWI_TSSI_MAX; ++i) {
error = bwi_rf_calc_txpower(&rf->rf_txpower_map0[i], i,
pa_params);
if (error) {
device_printf(sc->sc_dev,
"bwi_rf_calc_txpower failed\n");
break;
}
#ifdef BWI_DEBUG
if (i != 0 && i % 8 == 0) {
_DPRINTF(sc,
BWI_DBG_RF | BWI_DBG_ATTACH | BWI_DBG_TXPOWER,
"%s\n", "");
}
#endif
_DPRINTF(sc, BWI_DBG_RF | BWI_DBG_ATTACH | BWI_DBG_TXPOWER,
"%d ", rf->rf_txpower_map0[i]);
}
_DPRINTF(sc, BWI_DBG_RF | BWI_DBG_ATTACH | BWI_DBG_TXPOWER,
"%s\n", "");
back:
DPRINTF(sc, BWI_DBG_RF | BWI_DBG_TXPOWER | BWI_DBG_ATTACH,
"idle tssi0: %d\n", rf->rf_idle_tssi0);
return error;
}
static void
bwi_rf_lo_update_11g(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct ifnet *ifp = sc->sc_ifp;
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_tpctl *tpctl = &mac->mac_tpctl;
struct rf_saveregs regs;
uint16_t ant_div, chan_ex;
uint8_t devi_ctrl;
u_int orig_chan;
/*
* Save RF/PHY registers for later restoration
*/
orig_chan = rf->rf_curchan;
bzero(&regs, sizeof(regs));
if (phy->phy_flags & BWI_PHY_F_LINKED) {
SAVE_PHY_REG(mac, &regs, 429);
SAVE_PHY_REG(mac, &regs, 802);
PHY_WRITE(mac, 0x429, regs.phy_429 & 0x7fff);
PHY_WRITE(mac, 0x802, regs.phy_802 & 0xfffc);
}
ant_div = CSR_READ_2(sc, BWI_RF_ANTDIV);
CSR_WRITE_2(sc, BWI_RF_ANTDIV, ant_div | 0x8000);
chan_ex = CSR_READ_2(sc, BWI_RF_CHAN_EX);
SAVE_PHY_REG(mac, &regs, 15);
SAVE_PHY_REG(mac, &regs, 2a);
SAVE_PHY_REG(mac, &regs, 35);
SAVE_PHY_REG(mac, &regs, 60);
SAVE_RF_REG(mac, &regs, 43);
SAVE_RF_REG(mac, &regs, 7a);
SAVE_RF_REG(mac, &regs, 52);
if (phy->phy_flags & BWI_PHY_F_LINKED) {
SAVE_PHY_REG(mac, &regs, 811);
SAVE_PHY_REG(mac, &regs, 812);
SAVE_PHY_REG(mac, &regs, 814);
SAVE_PHY_REG(mac, &regs, 815);
}
/* Force to channel 6 */
bwi_rf_set_chan(mac, 6, 0);
if (phy->phy_flags & BWI_PHY_F_LINKED) {
PHY_WRITE(mac, 0x429, regs.phy_429 & 0x7fff);
PHY_WRITE(mac, 0x802, regs.phy_802 & 0xfffc);
bwi_mac_dummy_xmit(mac);
}
RF_WRITE(mac, 0x43, 0x6);
bwi_phy_set_bbp_atten(mac, 2);
CSR_WRITE_2(sc, BWI_RF_CHAN_EX, 0);
PHY_WRITE(mac, 0x2e, 0x7f);
PHY_WRITE(mac, 0x80f, 0x78);
PHY_WRITE(mac, 0x35, regs.phy_35 & 0xff7f);
RF_WRITE(mac, 0x7a, regs.rf_7a & 0xfff0);
PHY_WRITE(mac, 0x2b, 0x203);
PHY_WRITE(mac, 0x2a, 0x8a3);
if (phy->phy_flags & BWI_PHY_F_LINKED) {
PHY_WRITE(mac, 0x814, regs.phy_814 | 0x3);
PHY_WRITE(mac, 0x815, regs.phy_815 & 0xfffc);
PHY_WRITE(mac, 0x811, 0x1b3);
PHY_WRITE(mac, 0x812, 0xb2);
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
tpctl->tp_ctrl2 = bwi_rf_get_tp_ctrl2(mac);
PHY_WRITE(mac, 0x80f, 0x8078);
/*
* Measure all RF LO
*/
devi_ctrl = _bwi_rf_lo_update_11g(mac, regs.rf_7a);
/*
* Restore saved RF/PHY registers
*/
if (phy->phy_flags & BWI_PHY_F_LINKED) {
PHY_WRITE(mac, 0x15, 0xe300);
PHY_WRITE(mac, 0x812, (devi_ctrl << 8) | 0xa0);
DELAY(5);
PHY_WRITE(mac, 0x812, (devi_ctrl << 8) | 0xa2);
DELAY(2);
PHY_WRITE(mac, 0x812, (devi_ctrl << 8) | 0xa3);
} else {
PHY_WRITE(mac, 0x15, devi_ctrl | 0xefa0);
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
tpctl = NULL;
bwi_rf_lo_adjust(mac, tpctl);
PHY_WRITE(mac, 0x2e, 0x807f);
if (phy->phy_flags & BWI_PHY_F_LINKED)
PHY_WRITE(mac, 0x2f, 0x202);
else
PHY_WRITE(mac, 0x2f, 0x101);
CSR_WRITE_2(sc, BWI_RF_CHAN_EX, chan_ex);
RESTORE_PHY_REG(mac, &regs, 15);
RESTORE_PHY_REG(mac, &regs, 2a);
RESTORE_PHY_REG(mac, &regs, 35);
RESTORE_PHY_REG(mac, &regs, 60);
RESTORE_RF_REG(mac, &regs, 43);
RESTORE_RF_REG(mac, &regs, 7a);
regs.rf_52 &= 0xf0;
regs.rf_52 |= (RF_READ(mac, 0x52) & 0xf);
RF_WRITE(mac, 0x52, regs.rf_52);
CSR_WRITE_2(sc, BWI_RF_ANTDIV, ant_div);
if (phy->phy_flags & BWI_PHY_F_LINKED) {
RESTORE_PHY_REG(mac, &regs, 811);
RESTORE_PHY_REG(mac, &regs, 812);
RESTORE_PHY_REG(mac, &regs, 814);
RESTORE_PHY_REG(mac, &regs, 815);
RESTORE_PHY_REG(mac, &regs, 429);
RESTORE_PHY_REG(mac, &regs, 802);
}
bwi_rf_set_chan(mac, orig_chan, 1);
}
static uint32_t
bwi_rf_lo_devi_measure(struct bwi_mac *mac, uint16_t ctrl)
{
struct bwi_phy *phy = &mac->mac_phy;
uint32_t devi = 0;
int i;
if (phy->phy_flags & BWI_PHY_F_LINKED)
ctrl <<= 8;
for (i = 0; i < 8; ++i) {
if (phy->phy_flags & BWI_PHY_F_LINKED) {
PHY_WRITE(mac, 0x15, 0xe300);
PHY_WRITE(mac, 0x812, ctrl | 0xb0);
DELAY(5);
PHY_WRITE(mac, 0x812, ctrl | 0xb2);
DELAY(2);
PHY_WRITE(mac, 0x812, ctrl | 0xb3);
DELAY(4);
PHY_WRITE(mac, 0x15, 0xf300);
} else {
PHY_WRITE(mac, 0x15, ctrl | 0xefa0);
DELAY(2);
PHY_WRITE(mac, 0x15, ctrl | 0xefe0);
DELAY(4);
PHY_WRITE(mac, 0x15, ctrl | 0xffe0);
}
DELAY(8);
devi += PHY_READ(mac, 0x2d);
}
return devi;
}
static uint16_t
bwi_rf_get_tp_ctrl2(struct bwi_mac *mac)
{
uint32_t devi_min;
uint16_t tp_ctrl2 = 0;
int i;
RF_WRITE(mac, 0x52, 0);
DELAY(10);
devi_min = bwi_rf_lo_devi_measure(mac, 0);
for (i = 0; i < 16; ++i) {
uint32_t devi;
RF_WRITE(mac, 0x52, i);
DELAY(10);
devi = bwi_rf_lo_devi_measure(mac, 0);
if (devi < devi_min) {
devi_min = devi;
tp_ctrl2 = i;
}
}
return tp_ctrl2;
}
static uint8_t
_bwi_rf_lo_update_11g(struct bwi_mac *mac, uint16_t orig_rf7a)
{
#define RF_ATTEN_LISTSZ 14
#define BBP_ATTEN_MAX 4 /* half */
static const int rf_atten_list[RF_ATTEN_LISTSZ] =
{ 3, 1, 5, 7, 9, 2, 0, 4, 6, 8, 1, 2, 3, 4 };
static const int rf_atten_init_list[RF_ATTEN_LISTSZ] =
{ 0, 3, 1, 5, 7, 3, 2, 0, 4, 6, -1, -1, -1, -1 };
static const int rf_lo_measure_order[RF_ATTEN_LISTSZ] =
{ 3, 1, 5, 7, 9, 2, 0, 4, 6, 8, 10, 11, 12, 13 };
struct ifnet *ifp = mac->mac_sc->sc_ifp;
struct bwi_rf_lo lo_save, *lo;
uint8_t devi_ctrl = 0;
int idx, adj_rf7a = 0;
bzero(&lo_save, sizeof(lo_save));
for (idx = 0; idx < RF_ATTEN_LISTSZ; ++idx) {
int init_rf_atten = rf_atten_init_list[idx];
int rf_atten = rf_atten_list[idx];
int bbp_atten;
for (bbp_atten = 0; bbp_atten < BBP_ATTEN_MAX; ++bbp_atten) {
uint16_t tp_ctrl2, rf7a;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
if (idx == 0) {
bzero(&lo_save, sizeof(lo_save));
} else if (init_rf_atten < 0) {
lo = bwi_get_rf_lo(mac,
rf_atten, 2 * bbp_atten);
bcopy(lo, &lo_save, sizeof(lo_save));
} else {
lo = bwi_get_rf_lo(mac,
init_rf_atten, 0);
bcopy(lo, &lo_save, sizeof(lo_save));
}
devi_ctrl = 0;
adj_rf7a = 0;
/*
* XXX
* Linux driver overflows 'val'
*/
if (init_rf_atten >= 0) {
int val;
val = rf_atten * 2 + bbp_atten;
if (val > 14) {
adj_rf7a = 1;
if (val > 17)
devi_ctrl = 1;
if (val > 19)
devi_ctrl = 2;
}
}
} else {
lo = bwi_get_rf_lo(mac,
rf_atten, 2 * bbp_atten);
if (!bwi_rf_lo_isused(mac, lo))
continue;
bcopy(lo, &lo_save, sizeof(lo_save));
devi_ctrl = 3;
adj_rf7a = 0;
}
RF_WRITE(mac, BWI_RFR_ATTEN, rf_atten);
tp_ctrl2 = mac->mac_tpctl.tp_ctrl2;
if (init_rf_atten < 0)
tp_ctrl2 |= (3 << 4);
RF_WRITE(mac, BWI_RFR_TXPWR, tp_ctrl2);
DELAY(10);
bwi_phy_set_bbp_atten(mac, bbp_atten * 2);
rf7a = orig_rf7a & 0xfff0;
if (adj_rf7a)
rf7a |= 0x8;
RF_WRITE(mac, 0x7a, rf7a);
lo = bwi_get_rf_lo(mac,
rf_lo_measure_order[idx], bbp_atten * 2);
bwi_rf_lo_measure_11g(mac, &lo_save, lo, devi_ctrl);
}
}
return devi_ctrl;
#undef RF_ATTEN_LISTSZ
#undef BBP_ATTEN_MAX
}
static void
bwi_rf_lo_measure_11g(struct bwi_mac *mac, const struct bwi_rf_lo *src_lo,
struct bwi_rf_lo *dst_lo, uint8_t devi_ctrl)
{
#define LO_ADJUST_MIN 1
#define LO_ADJUST_MAX 8
#define LO_ADJUST(hi, lo) { .ctrl_hi = hi, .ctrl_lo = lo }
static const struct bwi_rf_lo rf_lo_adjust[LO_ADJUST_MAX] = {
LO_ADJUST(1, 1),
LO_ADJUST(1, 0),
LO_ADJUST(1, -1),
LO_ADJUST(0, -1),
LO_ADJUST(-1, -1),
LO_ADJUST(-1, 0),
LO_ADJUST(-1, 1),
LO_ADJUST(0, 1)
};
#undef LO_ADJUST
struct bwi_rf_lo lo_min;
uint32_t devi_min;
int found, loop_count, adjust_state;
bcopy(src_lo, &lo_min, sizeof(lo_min));
RF_LO_WRITE(mac, &lo_min);
devi_min = bwi_rf_lo_devi_measure(mac, devi_ctrl);
loop_count = 12; /* XXX */
adjust_state = 0;
do {
struct bwi_rf_lo lo_base;
int i, fin;
found = 0;
if (adjust_state == 0) {
i = LO_ADJUST_MIN;
fin = LO_ADJUST_MAX;
} else if (adjust_state % 2 == 0) {
i = adjust_state - 1;
fin = adjust_state + 1;
} else {
i = adjust_state - 2;
fin = adjust_state + 2;
}
if (i < LO_ADJUST_MIN)
i += LO_ADJUST_MAX;
KASSERT(i <= LO_ADJUST_MAX && i >= LO_ADJUST_MIN, ("i %d", i));
if (fin > LO_ADJUST_MAX)
fin -= LO_ADJUST_MAX;
KASSERT(fin <= LO_ADJUST_MAX && fin >= LO_ADJUST_MIN,
("fin %d", fin));
bcopy(&lo_min, &lo_base, sizeof(lo_base));
for (;;) {
struct bwi_rf_lo lo;
lo.ctrl_hi = lo_base.ctrl_hi +
rf_lo_adjust[i - 1].ctrl_hi;
lo.ctrl_lo = lo_base.ctrl_lo +
rf_lo_adjust[i - 1].ctrl_lo;
if (abs(lo.ctrl_lo) < 9 && abs(lo.ctrl_hi) < 9) {
uint32_t devi;
RF_LO_WRITE(mac, &lo);
devi = bwi_rf_lo_devi_measure(mac, devi_ctrl);
if (devi < devi_min) {
devi_min = devi;
adjust_state = i;
found = 1;
bcopy(&lo, &lo_min, sizeof(lo_min));
}
}
if (i == fin)
break;
if (i == LO_ADJUST_MAX)
i = LO_ADJUST_MIN;
else
++i;
}
} while (loop_count-- && found);
bcopy(&lo_min, dst_lo, sizeof(*dst_lo));
#undef LO_ADJUST_MIN
#undef LO_ADJUST_MAX
}
static void
bwi_rf_calc_nrssi_slope_11b(struct bwi_mac *mac)
{
#define SAVE_RF_MAX 3
#define SAVE_PHY_MAX 8
static const uint16_t save_rf_regs[SAVE_RF_MAX] =
{ 0x7a, 0x52, 0x43 };
static const uint16_t save_phy_regs[SAVE_PHY_MAX] =
{ 0x30, 0x26, 0x15, 0x2a, 0x20, 0x5a, 0x59, 0x58 };
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
struct bwi_phy *phy = &mac->mac_phy;
uint16_t save_rf[SAVE_RF_MAX];
uint16_t save_phy[SAVE_PHY_MAX];
uint16_t ant_div, bbp_atten, chan_ex;
int16_t nrssi[2];
int i;
/*
* Save RF/PHY registers for later restoration
*/
for (i = 0; i < SAVE_RF_MAX; ++i)
save_rf[i] = RF_READ(mac, save_rf_regs[i]);
for (i = 0; i < SAVE_PHY_MAX; ++i)
save_phy[i] = PHY_READ(mac, save_phy_regs[i]);
ant_div = CSR_READ_2(sc, BWI_RF_ANTDIV);
bbp_atten = CSR_READ_2(sc, BWI_BBP_ATTEN);
chan_ex = CSR_READ_2(sc, BWI_RF_CHAN_EX);
/*
* Calculate nrssi0
*/
if (phy->phy_rev >= 5)
RF_CLRBITS(mac, 0x7a, 0xff80);
else
RF_CLRBITS(mac, 0x7a, 0xfff0);
PHY_WRITE(mac, 0x30, 0xff);
CSR_WRITE_2(sc, BWI_BPHY_CTRL, 0x7f7f);
PHY_WRITE(mac, 0x26, 0);
PHY_SETBITS(mac, 0x15, 0x20);
PHY_WRITE(mac, 0x2a, 0x8a3);
RF_SETBITS(mac, 0x7a, 0x80);
nrssi[0] = (int16_t)PHY_READ(mac, 0x27);
/*
* Calculate nrssi1
*/
RF_CLRBITS(mac, 0x7a, 0xff80);
if (phy->phy_version >= 2)
CSR_WRITE_2(sc, BWI_BBP_ATTEN, 0x40);
else if (phy->phy_version == 0)
CSR_WRITE_2(sc, BWI_BBP_ATTEN, 0x122);
else
CSR_CLRBITS_2(sc, BWI_RF_CHAN_EX, 0xdfff);
PHY_WRITE(mac, 0x20, 0x3f3f);
PHY_WRITE(mac, 0x15, 0xf330);
RF_WRITE(mac, 0x5a, 0x60);
RF_CLRBITS(mac, 0x43, 0xff0f);
PHY_WRITE(mac, 0x5a, 0x480);
PHY_WRITE(mac, 0x59, 0x810);
PHY_WRITE(mac, 0x58, 0xd);
DELAY(20);
nrssi[1] = (int16_t)PHY_READ(mac, 0x27);
/*
* Restore saved RF/PHY registers
*/
PHY_WRITE(mac, save_phy_regs[0], save_phy[0]);
RF_WRITE(mac, save_rf_regs[0], save_rf[0]);
CSR_WRITE_2(sc, BWI_RF_ANTDIV, ant_div);
for (i = 1; i < 4; ++i)
PHY_WRITE(mac, save_phy_regs[i], save_phy[i]);
bwi_rf_work_around(mac, rf->rf_curchan);
if (phy->phy_version != 0)
CSR_WRITE_2(sc, BWI_RF_CHAN_EX, chan_ex);
for (; i < SAVE_PHY_MAX; ++i)
PHY_WRITE(mac, save_phy_regs[i], save_phy[i]);
for (i = 1; i < SAVE_RF_MAX; ++i)
RF_WRITE(mac, save_rf_regs[i], save_rf[i]);
/*
* Install calculated narrow RSSI values
*/
if (nrssi[0] == nrssi[1])
rf->rf_nrssi_slope = 0x10000;
else
rf->rf_nrssi_slope = 0x400000 / (nrssi[0] - nrssi[1]);
if (nrssi[0] <= -4) {
rf->rf_nrssi[0] = nrssi[0];
rf->rf_nrssi[1] = nrssi[1];
}
#undef SAVE_RF_MAX
#undef SAVE_PHY_MAX
}
static void
bwi_rf_set_nrssi_ofs_11g(struct bwi_mac *mac)
{
#define SAVE_RF_MAX 2
#define SAVE_PHY_COMM_MAX 10
#define SAVE_PHY6_MAX 8
static const uint16_t save_rf_regs[SAVE_RF_MAX] =
{ 0x7a, 0x43 };
static const uint16_t save_phy_comm_regs[SAVE_PHY_COMM_MAX] = {
0x0001, 0x0811, 0x0812, 0x0814,
0x0815, 0x005a, 0x0059, 0x0058,
0x000a, 0x0003
};
static const uint16_t save_phy6_regs[SAVE_PHY6_MAX] = {
0x002e, 0x002f, 0x080f, 0x0810,
0x0801, 0x0060, 0x0014, 0x0478
};
struct bwi_phy *phy = &mac->mac_phy;
uint16_t save_rf[SAVE_RF_MAX];
uint16_t save_phy_comm[SAVE_PHY_COMM_MAX];
uint16_t save_phy6[SAVE_PHY6_MAX];
uint16_t rf7b = 0xffff;
int16_t nrssi;
int i, phy6_idx = 0;
for (i = 0; i < SAVE_PHY_COMM_MAX; ++i)
save_phy_comm[i] = PHY_READ(mac, save_phy_comm_regs[i]);
for (i = 0; i < SAVE_RF_MAX; ++i)
save_rf[i] = RF_READ(mac, save_rf_regs[i]);
PHY_CLRBITS(mac, 0x429, 0x8000);
PHY_FILT_SETBITS(mac, 0x1, 0x3fff, 0x4000);
PHY_SETBITS(mac, 0x811, 0xc);
PHY_FILT_SETBITS(mac, 0x812, 0xfff3, 0x4);
PHY_CLRBITS(mac, 0x802, 0x3);
if (phy->phy_rev >= 6) {
for (i = 0; i < SAVE_PHY6_MAX; ++i)
save_phy6[i] = PHY_READ(mac, save_phy6_regs[i]);
PHY_WRITE(mac, 0x2e, 0);
PHY_WRITE(mac, 0x2f, 0);
PHY_WRITE(mac, 0x80f, 0);
PHY_WRITE(mac, 0x810, 0);
PHY_SETBITS(mac, 0x478, 0x100);
PHY_SETBITS(mac, 0x801, 0x40);
PHY_SETBITS(mac, 0x60, 0x40);
PHY_SETBITS(mac, 0x14, 0x200);
}
RF_SETBITS(mac, 0x7a, 0x70);
RF_SETBITS(mac, 0x7a, 0x80);
DELAY(30);
nrssi = bwi_nrssi_11g(mac);
if (nrssi == 31) {
for (i = 7; i >= 4; --i) {
RF_WRITE(mac, 0x7b, i);
DELAY(20);
nrssi = bwi_nrssi_11g(mac);
if (nrssi < 31 && rf7b == 0xffff)
rf7b = i;
}
if (rf7b == 0xffff)
rf7b = 4;
} else {
struct bwi_gains gains;
RF_CLRBITS(mac, 0x7a, 0xff80);
PHY_SETBITS(mac, 0x814, 0x1);
PHY_CLRBITS(mac, 0x815, 0x1);
PHY_SETBITS(mac, 0x811, 0xc);
PHY_SETBITS(mac, 0x812, 0xc);
PHY_SETBITS(mac, 0x811, 0x30);
PHY_SETBITS(mac, 0x812, 0x30);
PHY_WRITE(mac, 0x5a, 0x480);
PHY_WRITE(mac, 0x59, 0x810);
PHY_WRITE(mac, 0x58, 0xd);
if (phy->phy_version == 0)
PHY_WRITE(mac, 0x3, 0x122);
else
PHY_SETBITS(mac, 0xa, 0x2000);
PHY_SETBITS(mac, 0x814, 0x4);
PHY_CLRBITS(mac, 0x815, 0x4);
PHY_FILT_SETBITS(mac, 0x3, 0xff9f, 0x40);
RF_SETBITS(mac, 0x7a, 0xf);
bzero(&gains, sizeof(gains));
gains.tbl_gain1 = 3;
gains.tbl_gain2 = 0;
gains.phy_gain = 1;
bwi_set_gains(mac, &gains);
RF_FILT_SETBITS(mac, 0x43, 0xf0, 0xf);
DELAY(30);
nrssi = bwi_nrssi_11g(mac);
if (nrssi == -32) {
for (i = 0; i < 4; ++i) {
RF_WRITE(mac, 0x7b, i);
DELAY(20);
nrssi = bwi_nrssi_11g(mac);
if (nrssi > -31 && rf7b == 0xffff)
rf7b = i;
}
if (rf7b == 0xffff)
rf7b = 3;
} else {
rf7b = 0;
}
}
RF_WRITE(mac, 0x7b, rf7b);
/*
* Restore saved RF/PHY registers
*/
if (phy->phy_rev >= 6) {
for (phy6_idx = 0; phy6_idx < 4; ++phy6_idx) {
PHY_WRITE(mac, save_phy6_regs[phy6_idx],
save_phy6[phy6_idx]);
}
}
/* Saved PHY registers 0, 1, 2 are handled later */
for (i = 3; i < SAVE_PHY_COMM_MAX; ++i)
PHY_WRITE(mac, save_phy_comm_regs[i], save_phy_comm[i]);
for (i = SAVE_RF_MAX - 1; i >= 0; --i)
RF_WRITE(mac, save_rf_regs[i], save_rf[i]);
PHY_SETBITS(mac, 0x802, 0x3);
PHY_SETBITS(mac, 0x429, 0x8000);
bwi_set_gains(mac, NULL);
if (phy->phy_rev >= 6) {
for (; phy6_idx < SAVE_PHY6_MAX; ++phy6_idx) {
PHY_WRITE(mac, save_phy6_regs[phy6_idx],
save_phy6[phy6_idx]);
}
}
PHY_WRITE(mac, save_phy_comm_regs[0], save_phy_comm[0]);
PHY_WRITE(mac, save_phy_comm_regs[2], save_phy_comm[2]);
PHY_WRITE(mac, save_phy_comm_regs[1], save_phy_comm[1]);
#undef SAVE_RF_MAX
#undef SAVE_PHY_COMM_MAX
#undef SAVE_PHY6_MAX
}
static void
bwi_rf_calc_nrssi_slope_11g(struct bwi_mac *mac)
{
#define SAVE_RF_MAX 3
#define SAVE_PHY_COMM_MAX 4
#define SAVE_PHY3_MAX 8
static const uint16_t save_rf_regs[SAVE_RF_MAX] =
{ 0x7a, 0x52, 0x43 };
static const uint16_t save_phy_comm_regs[SAVE_PHY_COMM_MAX] =
{ 0x15, 0x5a, 0x59, 0x58 };
static const uint16_t save_phy3_regs[SAVE_PHY3_MAX] = {
0x002e, 0x002f, 0x080f, 0x0810,
0x0801, 0x0060, 0x0014, 0x0478
};
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
struct bwi_rf *rf = &mac->mac_rf;
uint16_t save_rf[SAVE_RF_MAX];
uint16_t save_phy_comm[SAVE_PHY_COMM_MAX];
uint16_t save_phy3[SAVE_PHY3_MAX];
uint16_t ant_div, bbp_atten, chan_ex;
struct bwi_gains gains;
int16_t nrssi[2];
int i, phy3_idx = 0;
if (rf->rf_rev >= 9)
return;
else if (rf->rf_rev == 8)
bwi_rf_set_nrssi_ofs_11g(mac);
PHY_CLRBITS(mac, 0x429, 0x8000);
PHY_CLRBITS(mac, 0x802, 0x3);
/*
* Save RF/PHY registers for later restoration
*/
ant_div = CSR_READ_2(sc, BWI_RF_ANTDIV);
CSR_SETBITS_2(sc, BWI_RF_ANTDIV, 0x8000);
for (i = 0; i < SAVE_RF_MAX; ++i)
save_rf[i] = RF_READ(mac, save_rf_regs[i]);
for (i = 0; i < SAVE_PHY_COMM_MAX; ++i)
save_phy_comm[i] = PHY_READ(mac, save_phy_comm_regs[i]);
bbp_atten = CSR_READ_2(sc, BWI_BBP_ATTEN);
chan_ex = CSR_READ_2(sc, BWI_RF_CHAN_EX);
if (phy->phy_rev >= 3) {
for (i = 0; i < SAVE_PHY3_MAX; ++i)
save_phy3[i] = PHY_READ(mac, save_phy3_regs[i]);
PHY_WRITE(mac, 0x2e, 0);
PHY_WRITE(mac, 0x810, 0);
if (phy->phy_rev == 4 || phy->phy_rev == 6 ||
phy->phy_rev == 7) {
PHY_SETBITS(mac, 0x478, 0x100);
PHY_SETBITS(mac, 0x810, 0x40);
} else if (phy->phy_rev == 3 || phy->phy_rev == 5) {
PHY_CLRBITS(mac, 0x810, 0x40);
}
PHY_SETBITS(mac, 0x60, 0x40);
PHY_SETBITS(mac, 0x14, 0x200);
}
/*
* Calculate nrssi0
*/
RF_SETBITS(mac, 0x7a, 0x70);
bzero(&gains, sizeof(gains));
gains.tbl_gain1 = 0;
gains.tbl_gain2 = 8;
gains.phy_gain = 0;
bwi_set_gains(mac, &gains);
RF_CLRBITS(mac, 0x7a, 0xff08);
if (phy->phy_rev >= 2) {
PHY_FILT_SETBITS(mac, 0x811, 0xffcf, 0x30);
PHY_FILT_SETBITS(mac, 0x812, 0xffcf, 0x10);
}
RF_SETBITS(mac, 0x7a, 0x80);
DELAY(20);
nrssi[0] = bwi_nrssi_11g(mac);
/*
* Calculate nrssi1
*/
RF_CLRBITS(mac, 0x7a, 0xff80);
if (phy->phy_version >= 2)
PHY_FILT_SETBITS(mac, 0x3, 0xff9f, 0x40);
CSR_SETBITS_2(sc, BWI_RF_CHAN_EX, 0x2000);
RF_SETBITS(mac, 0x7a, 0xf);
PHY_WRITE(mac, 0x15, 0xf330);
if (phy->phy_rev >= 2) {
PHY_FILT_SETBITS(mac, 0x812, 0xffcf, 0x20);
PHY_FILT_SETBITS(mac, 0x811, 0xffcf, 0x20);
}
bzero(&gains, sizeof(gains));
gains.tbl_gain1 = 3;
gains.tbl_gain2 = 0;
gains.phy_gain = 1;
bwi_set_gains(mac, &gains);
if (rf->rf_rev == 8) {
RF_WRITE(mac, 0x43, 0x1f);
} else {
RF_FILT_SETBITS(mac, 0x52, 0xff0f, 0x60);
RF_FILT_SETBITS(mac, 0x43, 0xfff0, 0x9);
}
PHY_WRITE(mac, 0x5a, 0x480);
PHY_WRITE(mac, 0x59, 0x810);
PHY_WRITE(mac, 0x58, 0xd);
DELAY(20);
nrssi[1] = bwi_nrssi_11g(mac);
/*
* Install calculated narrow RSSI values
*/
if (nrssi[1] == nrssi[0])
rf->rf_nrssi_slope = 0x10000;
else
rf->rf_nrssi_slope = 0x400000 / (nrssi[0] - nrssi[1]);
if (nrssi[0] >= -4) {
rf->rf_nrssi[0] = nrssi[1];
rf->rf_nrssi[1] = nrssi[0];
}
/*
* Restore saved RF/PHY registers
*/
if (phy->phy_rev >= 3) {
for (phy3_idx = 0; phy3_idx < 4; ++phy3_idx) {
PHY_WRITE(mac, save_phy3_regs[phy3_idx],
save_phy3[phy3_idx]);
}
}
if (phy->phy_rev >= 2) {
PHY_CLRBITS(mac, 0x812, 0x30);
PHY_CLRBITS(mac, 0x811, 0x30);
}
for (i = 0; i < SAVE_RF_MAX; ++i)
RF_WRITE(mac, save_rf_regs[i], save_rf[i]);
CSR_WRITE_2(sc, BWI_RF_ANTDIV, ant_div);
CSR_WRITE_2(sc, BWI_BBP_ATTEN, bbp_atten);
CSR_WRITE_2(sc, BWI_RF_CHAN_EX, chan_ex);
for (i = 0; i < SAVE_PHY_COMM_MAX; ++i)
PHY_WRITE(mac, save_phy_comm_regs[i], save_phy_comm[i]);
bwi_rf_work_around(mac, rf->rf_curchan);
PHY_SETBITS(mac, 0x802, 0x3);
bwi_set_gains(mac, NULL);
PHY_SETBITS(mac, 0x429, 0x8000);
if (phy->phy_rev >= 3) {
for (; phy3_idx < SAVE_PHY3_MAX; ++phy3_idx) {
PHY_WRITE(mac, save_phy3_regs[phy3_idx],
save_phy3[phy3_idx]);
}
}
bwi_rf_init_sw_nrssi_table(mac);
bwi_rf_set_nrssi_thr_11g(mac);
#undef SAVE_RF_MAX
#undef SAVE_PHY_COMM_MAX
#undef SAVE_PHY3_MAX
}
static void
bwi_rf_init_sw_nrssi_table(struct bwi_mac *mac)
{
struct bwi_rf *rf = &mac->mac_rf;
int d, i;
d = 0x1f - rf->rf_nrssi[0];
for (i = 0; i < BWI_NRSSI_TBLSZ; ++i) {
int val;
val = (((i - d) * rf->rf_nrssi_slope) / 0x10000) + 0x3a;
if (val < 0)
val = 0;
else if (val > 0x3f)
val = 0x3f;
rf->rf_nrssi_table[i] = val;
}
}
void
bwi_rf_init_hw_nrssi_table(struct bwi_mac *mac, uint16_t adjust)
{
int i;
for (i = 0; i < BWI_NRSSI_TBLSZ; ++i) {
int16_t val;
val = bwi_nrssi_read(mac, i);
val -= adjust;
if (val < -32)
val = -32;
else if (val > 31)
val = 31;
bwi_nrssi_write(mac, i, val);
}
}
static void
bwi_rf_set_nrssi_thr_11b(struct bwi_mac *mac)
{
struct bwi_rf *rf = &mac->mac_rf;
int32_t thr;
if (rf->rf_type != BWI_RF_T_BCM2050 ||
(mac->mac_sc->sc_card_flags & BWI_CARD_F_SW_NRSSI) == 0)
return;
/*
* Calculate nrssi threshold
*/
if (rf->rf_rev >= 6) {
thr = (rf->rf_nrssi[1] - rf->rf_nrssi[0]) * 32;
thr += 20 * (rf->rf_nrssi[0] + 1);
thr /= 40;
} else {
thr = rf->rf_nrssi[1] - 5;
}
if (thr < 0)
thr = 0;
else if (thr > 0x3e)
thr = 0x3e;
PHY_READ(mac, BWI_PHYR_NRSSI_THR_11B); /* dummy read */
PHY_WRITE(mac, BWI_PHYR_NRSSI_THR_11B, (((uint16_t)thr) << 8) | 0x1c);
if (rf->rf_rev >= 6) {
PHY_WRITE(mac, 0x87, 0xe0d);
PHY_WRITE(mac, 0x86, 0xc0b);
PHY_WRITE(mac, 0x85, 0xa09);
PHY_WRITE(mac, 0x84, 0x808);
PHY_WRITE(mac, 0x83, 0x808);
PHY_WRITE(mac, 0x82, 0x604);
PHY_WRITE(mac, 0x81, 0x302);
PHY_WRITE(mac, 0x80, 0x100);
}
}
static __inline int32_t
_nrssi_threshold(const struct bwi_rf *rf, int32_t val)
{
val *= (rf->rf_nrssi[1] - rf->rf_nrssi[0]);
val += (rf->rf_nrssi[0] << 6);
if (val < 32)
val += 31;
else
val += 32;
val >>= 6;
if (val < -31)
val = -31;
else if (val > 31)
val = 31;
return val;
}
static void
bwi_rf_set_nrssi_thr_11g(struct bwi_mac *mac)
{
int32_t thr1, thr2;
uint16_t thr;
/*
* Find the two nrssi thresholds
*/
if ((mac->mac_phy.phy_flags & BWI_PHY_F_LINKED) == 0 ||
(mac->mac_sc->sc_card_flags & BWI_CARD_F_SW_NRSSI) == 0) {
int16_t nrssi;
nrssi = bwi_nrssi_read(mac, 0x20);
if (nrssi >= 32)
nrssi -= 64;
if (nrssi < 3) {
thr1 = 0x2b;
thr2 = 0x27;
} else {
thr1 = 0x2d;
thr2 = 0x2b;
}
} else {
/* TODO Interfere mode */
thr1 = _nrssi_threshold(&mac->mac_rf, 0x11);
thr2 = _nrssi_threshold(&mac->mac_rf, 0xe);
}
#define NRSSI_THR1_MASK __BITS(5, 0)
#define NRSSI_THR2_MASK __BITS(11, 6)
thr = __SHIFTIN((uint32_t)thr1, NRSSI_THR1_MASK) |
__SHIFTIN((uint32_t)thr2, NRSSI_THR2_MASK);
PHY_FILT_SETBITS(mac, BWI_PHYR_NRSSI_THR_11G, 0xf000, thr);
#undef NRSSI_THR1_MASK
#undef NRSSI_THR2_MASK
}
void
bwi_rf_clear_tssi(struct bwi_mac *mac)
{
/* XXX use function pointer */
if (mac->mac_phy.phy_mode == IEEE80211_MODE_11A) {
/* TODO:11A */
} else {
uint16_t val;
int i;
val = __SHIFTIN(BWI_INVALID_TSSI, BWI_LO_TSSI_MASK) |
__SHIFTIN(BWI_INVALID_TSSI, BWI_HI_TSSI_MASK);
for (i = 0; i < 2; ++i) {
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ,
BWI_COMM_MOBJ_TSSI_DS + (i * 2), val);
}
for (i = 0; i < 2; ++i) {
MOBJ_WRITE_2(mac, BWI_COMM_MOBJ,
BWI_COMM_MOBJ_TSSI_OFDM + (i * 2), val);
}
}
}
void
bwi_rf_clear_state(struct bwi_rf *rf)
{
int i;
rf->rf_flags &= ~BWI_RF_CLEAR_FLAGS;
bzero(rf->rf_lo, sizeof(rf->rf_lo));
bzero(rf->rf_lo_used, sizeof(rf->rf_lo_used));
rf->rf_nrssi_slope = 0;
rf->rf_nrssi[0] = BWI_INVALID_NRSSI;
rf->rf_nrssi[1] = BWI_INVALID_NRSSI;
for (i = 0; i < BWI_NRSSI_TBLSZ; ++i)
rf->rf_nrssi_table[i] = i;
rf->rf_lo_gain = 0;
rf->rf_rx_gain = 0;
bcopy(rf->rf_txpower_map0, rf->rf_txpower_map,
sizeof(rf->rf_txpower_map));
rf->rf_idle_tssi = rf->rf_idle_tssi0;
}
static void
bwi_rf_on_11a(struct bwi_mac *mac)
{
/* TODO:11A */
}
static void
bwi_rf_on_11bg(struct bwi_mac *mac)
{
struct bwi_phy *phy = &mac->mac_phy;
PHY_WRITE(mac, 0x15, 0x8000);
PHY_WRITE(mac, 0x15, 0xcc00);
if (phy->phy_flags & BWI_PHY_F_LINKED)
PHY_WRITE(mac, 0x15, 0xc0);
else
PHY_WRITE(mac, 0x15, 0);
bwi_rf_set_chan(mac, 6 /* XXX */, 1);
}
void
bwi_rf_set_ant_mode(struct bwi_mac *mac, int ant_mode)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_phy *phy = &mac->mac_phy;
uint16_t val;
KASSERT(ant_mode == BWI_ANT_MODE_0 ||
ant_mode == BWI_ANT_MODE_1 ||
ant_mode == BWI_ANT_MODE_AUTO, ("ant_mode %d", ant_mode));
HFLAGS_CLRBITS(mac, BWI_HFLAG_AUTO_ANTDIV);
if (phy->phy_mode == IEEE80211_MODE_11B) {
/* NOTE: v4/v3 conflicts, take v3 */
if (mac->mac_rev == 2)
val = BWI_ANT_MODE_AUTO;
else
val = ant_mode;
val <<= 7;
PHY_FILT_SETBITS(mac, 0x3e2, 0xfe7f, val);
} else { /* 11a/g */
/* XXX reg/value naming */
val = ant_mode << 7;
PHY_FILT_SETBITS(mac, 0x401, 0x7e7f, val);
if (ant_mode == BWI_ANT_MODE_AUTO)
PHY_CLRBITS(mac, 0x42b, 0x100);
if (phy->phy_mode == IEEE80211_MODE_11A) {
/* TODO:11A */
} else { /* 11g */
if (ant_mode == BWI_ANT_MODE_AUTO)
PHY_SETBITS(mac, 0x48c, 0x2000);
else
PHY_CLRBITS(mac, 0x48c, 0x2000);
if (phy->phy_rev >= 2) {
PHY_SETBITS(mac, 0x461, 0x10);
PHY_FILT_SETBITS(mac, 0x4ad, 0xff00, 0x15);
if (phy->phy_rev == 2) {
PHY_WRITE(mac, 0x427, 0x8);
} else {
PHY_FILT_SETBITS(mac, 0x427,
0xff00, 0x8);
}
if (phy->phy_rev >= 6)
PHY_WRITE(mac, 0x49b, 0xdc);
}
}
}
/* XXX v4 set AUTO_ANTDIV unconditionally */
if (ant_mode == BWI_ANT_MODE_AUTO)
HFLAGS_SETBITS(mac, BWI_HFLAG_AUTO_ANTDIV);
val = ant_mode << 8;
MOBJ_FILT_SETBITS_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_TX_BEACON,
0xfc3f, val);
MOBJ_FILT_SETBITS_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_TX_ACK,
0xfc3f, val);
MOBJ_FILT_SETBITS_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_TX_PROBE_RESP,
0xfc3f, val);
/* XXX what's these */
if (phy->phy_mode == IEEE80211_MODE_11B)
CSR_SETBITS_2(sc, 0x5e, 0x4);
CSR_WRITE_4(sc, 0x100, 0x1000000);
if (mac->mac_rev < 5)
CSR_WRITE_4(sc, 0x10c, 0x1000000);
mac->mac_rf.rf_ant_mode = ant_mode;
}
int
bwi_rf_get_latest_tssi(struct bwi_mac *mac, int8_t tssi[], uint16_t ofs)
{
int i;
for (i = 0; i < 4; ) {
uint16_t val;
val = MOBJ_READ_2(mac, BWI_COMM_MOBJ, ofs + i);
tssi[i++] = (int8_t)__SHIFTOUT(val, BWI_LO_TSSI_MASK);
tssi[i++] = (int8_t)__SHIFTOUT(val, BWI_HI_TSSI_MASK);
}
for (i = 0; i < 4; ++i) {
if (tssi[i] == BWI_INVALID_TSSI)
return EINVAL;
}
return 0;
}
int
bwi_rf_tssi2dbm(struct bwi_mac *mac, int8_t tssi, int8_t *txpwr)
{
struct bwi_rf *rf = &mac->mac_rf;
int pwr_idx;
pwr_idx = rf->rf_idle_tssi + (int)tssi - rf->rf_base_tssi;
#if 0
if (pwr_idx < 0 || pwr_idx >= BWI_TSSI_MAX)
return EINVAL;
#else
if (pwr_idx < 0)
pwr_idx = 0;
else if (pwr_idx >= BWI_TSSI_MAX)
pwr_idx = BWI_TSSI_MAX - 1;
#endif
*txpwr = rf->rf_txpower_map[pwr_idx];
return 0;
}
static int
bwi_rf_calc_rssi_bcm2050(struct bwi_mac *mac, const struct bwi_rxbuf_hdr *hdr)
{
uint16_t flags1, flags3;
int rssi, lna_gain;
rssi = hdr->rxh_rssi;
flags1 = le16toh(hdr->rxh_flags1);
flags3 = le16toh(hdr->rxh_flags3);
if (flags1 & BWI_RXH_F1_OFDM) {
if (rssi > 127)
rssi -= 256;
if (flags3 & BWI_RXH_F3_BCM2050_RSSI)
rssi += 17;
else
rssi -= 4;
return rssi;
}
if (mac->mac_sc->sc_card_flags & BWI_CARD_F_SW_NRSSI) {
struct bwi_rf *rf = &mac->mac_rf;
if (rssi >= BWI_NRSSI_TBLSZ)
rssi = BWI_NRSSI_TBLSZ - 1;
rssi = ((31 - (int)rf->rf_nrssi_table[rssi]) * -131) / 128;
rssi -= 67;
} else {
rssi = ((31 - rssi) * -149) / 128;
rssi -= 68;
}
if (mac->mac_phy.phy_mode != IEEE80211_MODE_11G)
return rssi;
if (flags3 & BWI_RXH_F3_BCM2050_RSSI)
rssi += 20;
lna_gain = __SHIFTOUT(le16toh(hdr->rxh_phyinfo),
BWI_RXH_PHYINFO_LNAGAIN);
DPRINTF(mac->mac_sc, BWI_DBG_RF | BWI_DBG_RX,
"lna_gain %d, phyinfo 0x%04x\n",
lna_gain, le16toh(hdr->rxh_phyinfo));
switch (lna_gain) {
case 0:
rssi += 27;
break;
case 1:
rssi += 6;
break;
case 2:
rssi += 12;
break;
case 3:
/*
* XXX
* According to v3 spec, we should do _nothing_ here,
* but it seems that the result RSSI will be too low
* (relative to what ath(4) says). Raise it a little
* bit.
*/
rssi += 5;
break;
default:
panic("impossible lna gain %d", lna_gain);
}
return rssi;
}
static int
bwi_rf_calc_rssi_bcm2053(struct bwi_mac *mac, const struct bwi_rxbuf_hdr *hdr)
{
uint16_t flags1;
int rssi;
rssi = (((int)hdr->rxh_rssi - 11) * 103) / 64;
flags1 = le16toh(hdr->rxh_flags1);
if (flags1 & BWI_RXH_F1_BCM2053_RSSI)
rssi -= 109;
else
rssi -= 83;
return rssi;
}
static int
bwi_rf_calc_rssi_bcm2060(struct bwi_mac *mac, const struct bwi_rxbuf_hdr *hdr)
{
int rssi;
rssi = hdr->rxh_rssi;
if (rssi > 127)
rssi -= 256;
return rssi;
}
static int
bwi_rf_calc_noise_bcm2050(struct bwi_mac *mac)
{
uint16_t val;
int noise;
val = MOBJ_READ_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_RF_NOISE);
noise = (int)val; /* XXX check bounds? */
if (mac->mac_sc->sc_card_flags & BWI_CARD_F_SW_NRSSI) {
struct bwi_rf *rf = &mac->mac_rf;
if (noise >= BWI_NRSSI_TBLSZ)
noise = BWI_NRSSI_TBLSZ - 1;
noise = ((31 - (int)rf->rf_nrssi_table[noise]) * -131) / 128;
noise -= 67;
} else {
noise = ((31 - noise) * -149) / 128;
noise -= 68;
}
return noise;
}
static int
bwi_rf_calc_noise_bcm2053(struct bwi_mac *mac)
{
uint16_t val;
int noise;
val = MOBJ_READ_2(mac, BWI_COMM_MOBJ, BWI_COMM_MOBJ_RF_NOISE);
noise = (int)val; /* XXX check bounds? */
noise = ((noise - 11) * 103) / 64;
noise -= 109;
return noise;
}
static int
bwi_rf_calc_noise_bcm2060(struct bwi_mac *mac)
{
/* XXX Dont know how to calc */
return (BWI_NOISE_FLOOR);
}
static uint16_t
bwi_rf_lo_measure_11b(struct bwi_mac *mac)
{
uint16_t val;
int i;
val = 0;
for (i = 0; i < 10; ++i) {
PHY_WRITE(mac, 0x15, 0xafa0);
DELAY(1);
PHY_WRITE(mac, 0x15, 0xefa0);
DELAY(10);
PHY_WRITE(mac, 0x15, 0xffa0);
DELAY(40);
val += PHY_READ(mac, 0x2c);
}
return val;
}
static void
bwi_rf_lo_update_11b(struct bwi_mac *mac)
{
struct bwi_softc *sc = mac->mac_sc;
struct bwi_rf *rf = &mac->mac_rf;
struct rf_saveregs regs;
uint16_t rf_val, phy_val, min_val, val;
uint16_t rf52, bphy_ctrl;
int i;
DPRINTF(sc, BWI_DBG_RF | BWI_DBG_INIT, "%s enter\n", __func__);
bzero(&regs, sizeof(regs));
bphy_ctrl = 0;
/*
* Save RF/PHY registers for later restoration
*/
SAVE_PHY_REG(mac, &regs, 15);
rf52 = RF_READ(mac, 0x52) & 0xfff0;
if (rf->rf_type == BWI_RF_T_BCM2050) {
SAVE_PHY_REG(mac, &regs, 0a);
SAVE_PHY_REG(mac, &regs, 2a);
SAVE_PHY_REG(mac, &regs, 35);
SAVE_PHY_REG(mac, &regs, 03);
SAVE_PHY_REG(mac, &regs, 01);
SAVE_PHY_REG(mac, &regs, 30);
SAVE_RF_REG(mac, &regs, 43);
SAVE_RF_REG(mac, &regs, 7a);
bphy_ctrl = CSR_READ_2(sc, BWI_BPHY_CTRL);
SAVE_RF_REG(mac, &regs, 52);
regs.rf_52 &= 0xf0;
PHY_WRITE(mac, 0x30, 0xff);
CSR_WRITE_2(sc, BWI_PHY_CTRL, 0x3f3f);
PHY_WRITE(mac, 0x35, regs.phy_35 & 0xff7f);
RF_WRITE(mac, 0x7a, regs.rf_7a & 0xfff0);
}
PHY_WRITE(mac, 0x15, 0xb000);
if (rf->rf_type == BWI_RF_T_BCM2050) {
PHY_WRITE(mac, 0x2b, 0x203);
PHY_WRITE(mac, 0x2a, 0x8a3);
} else {
PHY_WRITE(mac, 0x2b, 0x1402);
}
/*
* Setup RF signal
*/
rf_val = 0;
min_val = UINT16_MAX;
for (i = 0; i < 4; ++i) {
RF_WRITE(mac, 0x52, rf52 | i);
bwi_rf_lo_measure_11b(mac); /* Ignore return value */
}
for (i = 0; i < 10; ++i) {
RF_WRITE(mac, 0x52, rf52 | i);
val = bwi_rf_lo_measure_11b(mac) / 10;
if (val < min_val) {
min_val = val;
rf_val = i;
}
}
RF_WRITE(mac, 0x52, rf52 | rf_val);
/*
* Setup PHY signal
*/
phy_val = 0;
min_val = UINT16_MAX;
for (i = -4; i < 5; i += 2) {
int j;
for (j = -4; j < 5; j += 2) {
uint16_t phy2f;
phy2f = (0x100 * i) + j;
if (j < 0)
phy2f += 0x100;
PHY_WRITE(mac, 0x2f, phy2f);
val = bwi_rf_lo_measure_11b(mac) / 10;
if (val < min_val) {
min_val = val;
phy_val = phy2f;
}
}
}
PHY_WRITE(mac, 0x2f, phy_val + 0x101);
/*
* Restore saved RF/PHY registers
*/
if (rf->rf_type == BWI_RF_T_BCM2050) {
RESTORE_PHY_REG(mac, &regs, 0a);
RESTORE_PHY_REG(mac, &regs, 2a);
RESTORE_PHY_REG(mac, &regs, 35);
RESTORE_PHY_REG(mac, &regs, 03);
RESTORE_PHY_REG(mac, &regs, 01);
RESTORE_PHY_REG(mac, &regs, 30);
RESTORE_RF_REG(mac, &regs, 43);
RESTORE_RF_REG(mac, &regs, 7a);
RF_FILT_SETBITS(mac, 0x52, 0xf, regs.rf_52);
CSR_WRITE_2(sc, BWI_BPHY_CTRL, bphy_ctrl);
}
RESTORE_PHY_REG(mac, &regs, 15);
bwi_rf_work_around(mac, rf->rf_curchan);
}