cbbb7af746
Changes: - License change; now it's also dual licensed under the MIT licence. - Addition of divmodsi4 and udivmodsi4.
60 lines
2.0 KiB
C
60 lines
2.0 KiB
C
/*===-- divsc3.c - Implement __divsc3 -------------------------------------===
|
|
*
|
|
* The LLVM Compiler Infrastructure
|
|
*
|
|
* This file is dual licensed under the MIT and the University of Illinois Open
|
|
* Source Licenses. See LICENSE.TXT for details.
|
|
*
|
|
* ===----------------------------------------------------------------------===
|
|
*
|
|
* This file implements __divsc3 for the compiler_rt library.
|
|
*
|
|
*===----------------------------------------------------------------------===
|
|
*/
|
|
|
|
#include "int_lib.h"
|
|
#include <math.h>
|
|
#include <complex.h>
|
|
|
|
/* Returns: the quotient of (a + ib) / (c + id) */
|
|
|
|
float _Complex
|
|
__divsc3(float __a, float __b, float __c, float __d)
|
|
{
|
|
int __ilogbw = 0;
|
|
float __logbw = logbf(fmaxf(fabsf(__c), fabsf(__d)));
|
|
if (isfinite(__logbw))
|
|
{
|
|
__ilogbw = (int)__logbw;
|
|
__c = scalbnf(__c, -__ilogbw);
|
|
__d = scalbnf(__d, -__ilogbw);
|
|
}
|
|
float __denom = __c * __c + __d * __d;
|
|
float _Complex z;
|
|
__real__ z = scalbnf((__a * __c + __b * __d) / __denom, -__ilogbw);
|
|
__imag__ z = scalbnf((__b * __c - __a * __d) / __denom, -__ilogbw);
|
|
if (isnan(__real__ z) && isnan(__imag__ z))
|
|
{
|
|
if ((__denom == 0) && (!isnan(__a) || !isnan(__b)))
|
|
{
|
|
__real__ z = copysignf(INFINITY, __c) * __a;
|
|
__imag__ z = copysignf(INFINITY, __c) * __b;
|
|
}
|
|
else if ((isinf(__a) || isinf(__b)) && isfinite(__c) && isfinite(__d))
|
|
{
|
|
__a = copysignf(isinf(__a) ? 1 : 0, __a);
|
|
__b = copysignf(isinf(__b) ? 1 : 0, __b);
|
|
__real__ z = INFINITY * (__a * __c + __b * __d);
|
|
__imag__ z = INFINITY * (__b * __c - __a * __d);
|
|
}
|
|
else if (isinf(__logbw) && __logbw > 0 && isfinite(__a) && isfinite(__b))
|
|
{
|
|
__c = copysignf(isinf(__c) ? 1 : 0, __c);
|
|
__d = copysignf(isinf(__d) ? 1 : 0, __d);
|
|
__real__ z = 0 * (__a * __c + __b * __d);
|
|
__imag__ z = 0 * (__b * __c - __a * __d);
|
|
}
|
|
}
|
|
return z;
|
|
}
|