freebsd-skq/sys/i386/isa/if_fe.c
bde 173432bb17 Removed unused includes.
Ifdefed conditionally used includes.
Finished rev.1.39.  (I only submitted the request.)
1998-06-21 16:51:06 +00:00

3146 lines
83 KiB
C

/*
* All Rights Reserved, Copyright (C) Fujitsu Limited 1995
*
* This software may be used, modified, copied, distributed, and sold, in
* both source and binary form provided that the above copyright, these
* terms and the following disclaimer are retained. The name of the author
* and/or the contributor may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* $Id: if_fe.c,v 1.41 1998/06/07 17:10:31 dfr Exp $
*
* Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
* To be used with FreeBSD 2.x
* Contributed by M. Sekiguchi. <seki@sysrap.cs.fujitsu.co.jp>
*
* This version is intended to be a generic template for various
* MB86960A/MB86965A based Ethernet cards. It currently supports
* Fujitsu FMV-180 series for ISA and Allied-Telesis AT1700/RE2000
* series for ISA, as well as Fujitsu MBH10302 PC card.
* There are some currently-
* unused hooks embedded, which are primarily intended to support
* other types of Ethernet cards, but the author is not sure whether
* they are useful.
*
* This version also includes some alignments for
* RE1000/RE1000+/ME1500 support. It is incomplete, however, since the
* cards are not for AT-compatibles. (They are for PC98 bus -- a
* proprietary bus architecture available only in Japan.) Further
* work for PC98 version will be available as a part of FreeBSD(98)
* project.
*
* This software is a derivative work of if_ed.c version 1.56 by David
* Greenman available as a part of FreeBSD 2.0 RELEASE source distribution.
*
* The following lines are retained from the original if_ed.c:
*
* Copyright (C) 1993, David Greenman. This software may be used, modified,
* copied, distributed, and sold, in both source and binary form provided
* that the above copyright and these terms are retained. Under no
* circumstances is the author responsible for the proper functioning
* of this software, nor does the author assume any responsibility
* for damages incurred with its use.
*/
/*
* TODO:
* o To support MBH10304 PC card. It is another MB8696x based
* PCMCIA Ethernet card by Fujitsu, which is not compatible with
* MBH10302.
* o To merge FreeBSD(98) efforts into a single source file.
* o To support ISA PnP auto configuration for FMV-183/184.
* o To reconsider mbuf usage.
* o To reconsider transmission buffer usage, including
* transmission buffer size (currently 4KB x 2) and pros-and-
* cons of multiple frame transmission.
* o To test IPX codes.
*/
#include "fe.h"
#include "bpfilter.h"
#include "opt_inet.h"
#include "opt_ipx.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/if_dl.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
/* IPX code is not tested. FIXME. */
#ifdef IPX
#include <netipx/ipx.h>
#include <netipx/ipx_if.h>
#endif
/* To be used with IPv6 package of INRIA. */
#ifdef INET6
/* IPv6 added by shin 96.2.6 */
#include <netinet/if_ether6.h>
#endif
/* XNS code is not tested. FIXME. */
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/clock.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/icu.h>
/* PCCARD suport */
#include "card.h"
#if NCARD > 0
#include <sys/kernel.h>
#include <sys/select.h>
#include <pccard/cardinfo.h>
#include <pccard/slot.h>
#endif
#include <i386/isa/ic/mb86960.h>
#include <i386/isa/if_fereg.h>
/*
* This version of fe is an ISA device driver.
* Override the following macro to adapt it to another bus.
* (E.g., PC98.)
*/
#define DEVICE struct isa_device
/*
* Default settings for fe driver specific options.
* They can be set in config file by "options" statements.
*/
/*
* Debug control.
* 0: No debug at all. All debug specific codes are stripped off.
* 1: Silent. No debug messages are logged except emergent ones.
* 2: Brief. Lair events and/or important information are logged.
* 3: Detailed. Logs all information which *may* be useful for debugging.
* 4: Trace. All actions in the driver is logged. Super verbose.
*/
#ifndef FE_DEBUG
#define FE_DEBUG 1
#endif
/*
* Transmit just one packet per a "send" command to 86960.
* This option is intended for performance test. An EXPERIMENTAL option.
*/
#ifndef FE_SINGLE_TRANSMISSION
#define FE_SINGLE_TRANSMISSION 0
#endif
/*
* Device configuration flags.
*/
/* DLCR6 settings. */
#define FE_FLAGS_DLCR6_VALUE 0x007F
/* Force DLCR6 override. */
#define FE_FLAGS_OVERRIDE_DLCR6 0x0080
/* Shouldn't these be defined somewhere else such as isa_device.h? */
#define NO_IOADDR (-1)
#define NO_IRQ 0
/*
* Data type for a multicast address filter on 8696x.
*/
struct fe_filter { u_char data [ FE_FILTER_LEN ]; };
/*
* Special filter values.
*/
static struct fe_filter const fe_filter_nothing = { FE_FILTER_NOTHING };
static struct fe_filter const fe_filter_all = { FE_FILTER_ALL };
/* How many registers does an fe-supported adapter have at maximum? */
#define MAXREGISTERS 32
/*
* fe_softc: per line info and status
*/
static struct fe_softc {
/* Used by "common" codes. */
struct arpcom arpcom; /* Ethernet common */
/* Used by config codes. */
/* Set by probe() and not modified in later phases. */
char * typestr; /* printable name of the interface. */
u_short iobase; /* base I/O address of the adapter. */
u_short ioaddr [ MAXREGISTERS ]; /* I/O addresses of register. */
u_short txb_size; /* size of TX buffer, in bytes */
u_char proto_dlcr4; /* DLCR4 prototype. */
u_char proto_dlcr5; /* DLCR5 prototype. */
u_char proto_dlcr6; /* DLCR6 prototype. */
u_char proto_dlcr7; /* DLCR7 prototype. */
u_char proto_bmpr13; /* BMPR13 prototype. */
/* Vendor specific hooks. */
void ( * init )( struct fe_softc * ); /* Just before fe_init(). */
void ( * stop )( struct fe_softc * ); /* Just after fe_stop(). */
/* Transmission buffer management. */
u_short txb_free; /* free bytes in TX buffer */
u_char txb_count; /* number of packets in TX buffer */
u_char txb_sched; /* number of scheduled packets */
/* Excessive collision counter (see fe_tint() for details. */
u_char tx_excolls; /* # of excessive collisions. */
/* Multicast address filter management. */
u_char filter_change; /* MARs must be changed ASAP. */
struct fe_filter filter;/* new filter value. */
} fe_softc[NFE];
#define sc_if arpcom.ac_if
#define sc_unit arpcom.ac_if.if_unit
#define sc_enaddr arpcom.ac_enaddr
/* Standard driver entry points. These can be static. */
static int fe_probe ( struct isa_device * );
static int fe_attach ( struct isa_device * );
static void fe_init ( int );
static int fe_ioctl ( struct ifnet *, u_long, caddr_t );
static void fe_start ( struct ifnet * );
static void fe_reset ( int );
static void fe_watchdog ( struct ifnet * );
/* Local functions. Order of declaration is confused. FIXME. */
static int fe_probe_fmv ( DEVICE *, struct fe_softc * );
static int fe_probe_ati ( DEVICE *, struct fe_softc * );
static void fe_init_ati ( struct fe_softc * );
static int fe_probe_gwy ( DEVICE *, struct fe_softc * );
#if NCARD > 0
static int fe_probe_mbh ( DEVICE *, struct fe_softc * );
static void fe_init_mbh ( struct fe_softc * );
static int fe_probe_tdk ( DEVICE *, struct fe_softc * );
#endif
static int fe_get_packet ( struct fe_softc *, u_short );
static void fe_stop ( int );
static void fe_tint ( struct fe_softc *, u_char );
static void fe_rint ( struct fe_softc *, u_char );
static void fe_xmit ( struct fe_softc * );
static void fe_emptybuffer ( struct fe_softc * );
static void fe_write_mbufs ( struct fe_softc *, struct mbuf * );
static struct fe_filter
fe_mcaf ( struct fe_softc * );
static int fe_hash ( u_char * );
static void fe_setmode ( struct fe_softc * );
static void fe_loadmar ( struct fe_softc * );
#if FE_DEBUG >= 1
static void fe_dump ( int, struct fe_softc *, char * );
#endif
/* Driver struct used in the config code. This must be public (external.) */
struct isa_driver fedriver =
{
fe_probe,
fe_attach,
"fe",
1 /* It's safe to mark as "sensitive" */
};
/*
* Fe driver specific constants which relate to 86960/86965.
*/
/* Interrupt masks */
#define FE_TMASK ( FE_D2_COLL16 | FE_D2_TXDONE )
#define FE_RMASK ( FE_D3_OVRFLO | FE_D3_CRCERR \
| FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY )
/* Maximum number of iterations for a receive interrupt. */
#define FE_MAX_RECV_COUNT ( ( 65536 - 2048 * 2 ) / 64 )
/*
* Maximum size of SRAM is 65536,
* minimum size of transmission buffer in fe is 2x2KB,
* and minimum amount of received packet including headers
* added by the chip is 64 bytes.
* Hence FE_MAX_RECV_COUNT is the upper limit for number
* of packets in the receive buffer.
*/
/*
* Routines to access contiguous I/O ports.
*/
static void
inblk ( struct fe_softc * sc, int offs, u_char * mem, int len )
{
while ( --len >= 0 ) {
*mem++ = inb( sc->ioaddr[ offs++ ] );
}
}
static void
outblk ( struct fe_softc * sc, int offs, u_char const * mem, int len )
{
while ( --len >= 0 ) {
outb( sc->ioaddr[ offs++ ], *mem++ );
}
}
/* PCCARD Support */
#if NCARD > 0
/*
* PC-Card (PCMCIA) specific code.
*/
static int feinit ( struct pccard_devinfo * );
static void feunload ( struct pccard_devinfo * );
static int fe_card_intr ( struct pccard_devinfo * );
static struct pccard_device fe_info = {
"fe",
feinit,
feunload,
fe_card_intr,
0, /* Attributes - presently unused */
&net_imask /* XXX - Should this also include tty_imask? */
};
DATA_SET(pccarddrv_set, fe_info);
/*
* Initialize the device - called from Slot manager.
*/
static int
feinit(struct pccard_devinfo *devi)
{
struct fe_softc *sc;
/* validate unit number. */
if (devi->isahd.id_unit >= NFE)
return (ENODEV);
/*
* Probe the device. If a value is returned,
* the device was found at the location.
*/
#if FE_DEBUG >= 2
printf("Start Probe\n");
#endif
/* Initialize "minimum" parts of our softc. */
sc = &fe_softc[devi->isahd.id_unit];
sc->sc_unit = devi->isahd.id_unit;
sc->iobase = devi->isahd.id_iobase;
/* Use Ethernet address got from CIS, if one is available. */
if ((devi->misc[0] & 0x03) == 0x00
&& (devi->misc[0] | devi->misc[1] | devi->misc[2]) != 0) {
/* Yes, it looks like a valid Ether address. */
bcopy(devi->misc, sc->sc_enaddr, ETHER_ADDR_LEN);
} else {
/* Indicate we have no Ether address in CIS. */
bzero(sc->sc_enaddr, ETHER_ADDR_LEN);
}
/* Probe supported PC card models. */
if (fe_probe_tdk(&devi->isahd, sc) == 0 &&
fe_probe_mbh(&devi->isahd, sc) == 0)
return (ENXIO);
#if FE_DEBUG >= 2
printf("Start attach\n");
#endif
if (fe_attach(&devi->isahd) == 0)
return (ENXIO);
return (0);
}
/*
* feunload - unload the driver and clear the table.
* XXX TODO:
* This is usually called when the card is ejected, but
* can be caused by a modunload of a controller driver.
* The idea is to reset the driver's view of the device
* and ensure that any driver entry points such as
* read and write do not hang.
*/
static void
feunload(struct pccard_devinfo *devi)
{
struct fe_softc *sc = &fe_softc[devi->isahd.id_unit];
printf("fe%d: unload\n", devi->isahd.id_unit);
fe_stop(devi->isahd.id_unit);
}
/*
* fe_card_intr - Shared interrupt called from
* front end of PC-Card handler.
*/
static int
fe_card_intr(struct pccard_devinfo *devi)
{
feintr(devi->isahd.id_unit);
return (1);
}
#endif /* NCARD > 0 */
/*
* Hardware probe routines.
*/
/* How and where to probe; to support automatic I/O address detection. */
struct fe_probe_list
{
int ( * probe ) ( DEVICE *, struct fe_softc * );
u_short const * addresses;
};
/* Lists of possible addresses. */
static u_short const fe_fmv_addr [] =
{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340, 0 };
static u_short const fe_ati_addr [] =
{ 0x240, 0x260, 0x280, 0x2A0, 0x300, 0x320, 0x340, 0x380, 0 };
static struct fe_probe_list const fe_probe_list [] =
{
{ fe_probe_fmv, fe_fmv_addr },
{ fe_probe_ati, fe_ati_addr },
{ fe_probe_gwy, NULL }, /* GWYs cannot be auto detected. */
{ NULL, NULL }
};
/*
* Determine if the device is present
*
* on entry:
* a pointer to an isa_device struct
* on exit:
* zero if device not found
* or number of i/o addresses used (if found)
*/
static int
fe_probe ( DEVICE * dev )
{
struct fe_softc * sc;
int u;
int nports;
struct fe_probe_list const * list;
u_short const * addr;
u_short single [ 2 ];
/* Initialize "minimum" parts of our softc. */
sc = &fe_softc[ dev->id_unit ];
sc->sc_unit = dev->id_unit;
/* Probe each possibility, one at a time. */
for ( list = fe_probe_list; list->probe != NULL; list++ ) {
if ( dev->id_iobase != NO_IOADDR ) {
/* Probe one specific address. */
single[ 0 ] = dev->id_iobase;
single[ 1 ] = 0;
addr = single;
} else if ( list->addresses != NULL ) {
/* Auto detect. */
addr = list->addresses;
} else {
/* We need a list of addresses to do auto detect. */
continue;
}
/* Probe all possible addresses for the board. */
while ( *addr != 0 ) {
/* See if the address is already in use. */
for ( u = 0; u < NFE; u++ ) {
if ( fe_softc[u].iobase == *addr ) break;
}
#if FE_DEBUG >= 3
if ( u == NFE ) {
log( LOG_INFO, "fe%d: probing %d at 0x%x\n",
sc->sc_unit, list - fe_probe_list, *addr );
} else if ( u == sc->sc_unit ) {
log( LOG_INFO, "fe%d: re-probing %d at 0x%x?\n",
sc->sc_unit, list - fe_probe_list, *addr );
} else {
log( LOG_INFO, "fe%d: skipping %d at 0x%x\n",
sc->sc_unit, list - fe_probe_list, *addr );
}
#endif
/* Probe the address if it is free. */
if ( u == NFE || u == sc->sc_unit ) {
/* Probe an address. */
sc->iobase = *addr;
nports = list->probe( dev, sc );
if ( nports > 0 ) {
/* Found. */
dev->id_iobase = *addr;
return ( nports );
}
sc->iobase = 0;
}
/* Try next. */
addr++;
}
}
/* Probe failed. */
return ( 0 );
}
/*
* Check for specific bits in specific registers have specific values.
*/
struct fe_simple_probe_struct
{
u_char port; /* Offset from the base I/O address. */
u_char mask; /* Bits to be checked. */
u_char bits; /* Values to be compared against. */
};
static int
fe_simple_probe ( struct fe_softc const * sc,
struct fe_simple_probe_struct const * sp )
{
struct fe_simple_probe_struct const * p;
for ( p = sp; p->mask != 0; p++ ) {
#if FE_DEBUG >=2
printf("Probe Port:%x,Value:%x,Mask:%x.Bits:%x\n",
p->port,inb(sc->ioaddr[ p->port]),p->mask,p->bits);
#endif
if ( ( inb( sc->ioaddr[ p->port ] ) & p->mask ) != p->bits )
{
return ( 0 );
}
}
return ( 1 );
}
/*
* Routines to read all bytes from the config EEPROM through MB86965A.
* I'm not sure what exactly I'm doing here... I was told just to follow
* the steps, and it worked. Could someone tell me why the following
* code works? (Or, why all similar codes I tried previously doesn't
* work.) FIXME.
*/
static void
fe_strobe_eeprom ( u_short bmpr16 )
{
/*
* We must guarantee 800ns (or more) interval to access slow
* EEPROMs. The following redundant code provides enough
* delay with ISA timing. (Even if the bus clock is "tuned.")
* Some modification will be needed on faster busses.
*/
outb( bmpr16, FE_B16_SELECT );
outb( bmpr16, FE_B16_SELECT );
outb( bmpr16, FE_B16_SELECT | FE_B16_CLOCK );
outb( bmpr16, FE_B16_SELECT | FE_B16_CLOCK );
outb( bmpr16, FE_B16_SELECT );
outb( bmpr16, FE_B16_SELECT );
}
static void
fe_read_eeprom ( struct fe_softc * sc, u_char * data )
{
u_short bmpr16 = sc->ioaddr[ FE_BMPR16 ];
u_short bmpr17 = sc->ioaddr[ FE_BMPR17 ];
u_char n, val, bit;
/* Read bytes from EEPROM; two bytes per an iteration. */
for ( n = 0; n < FE_EEPROM_SIZE / 2; n++ ) {
/* Reset the EEPROM interface. */
outb( bmpr16, 0x00 );
outb( bmpr17, 0x00 );
/* Start EEPROM access. */
outb( bmpr16, FE_B16_SELECT );
outb( bmpr17, FE_B17_DATA );
fe_strobe_eeprom( bmpr16 );
/* Pass the iteration count to the chip. */
val = 0x80 | n;
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
outb( bmpr17, ( val & bit ) ? FE_B17_DATA : 0 );
fe_strobe_eeprom( bmpr16 );
}
outb( bmpr17, 0x00 );
/* Read a byte. */
val = 0;
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
fe_strobe_eeprom( bmpr16 );
if ( inb( bmpr17 ) & FE_B17_DATA ) {
val |= bit;
}
}
*data++ = val;
/* Read one more byte. */
val = 0;
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
fe_strobe_eeprom( bmpr16 );
if ( inb( bmpr17 ) & FE_B17_DATA ) {
val |= bit;
}
}
*data++ = val;
}
/* Reset the EEPROM interface, again. */
outb( bmpr16, 0x00 );
outb( bmpr17, 0x00 );
#if FE_DEBUG >= 3
/* Report what we got. */
data -= FE_EEPROM_SIZE;
log( LOG_INFO, "fe%d: EEPROM:"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x\n",
sc->sc_unit,
data[ 0], data[ 1], data[ 2], data[ 3],
data[ 4], data[ 5], data[ 6], data[ 7],
data[ 8], data[ 9], data[10], data[11],
data[12], data[13], data[14], data[15],
data[16], data[17], data[18], data[19],
data[20], data[21], data[22], data[23],
data[24], data[25], data[26], data[27],
data[28], data[29], data[30], data[31] );
#endif
}
/*
* Hardware (vendor) specific probe routines.
*/
/*
* Probe and initialization for Fujitsu FMV-180 series boards
*/
static int
fe_probe_fmv ( DEVICE * dev, struct fe_softc * sc )
{
int i, n;
static u_short const baseaddr [ 8 ] =
{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
static u_short const irqmap [ 4 ] =
{ IRQ3, IRQ7, IRQ10, IRQ15 };
static struct fe_simple_probe_struct const probe_table [] = {
{ FE_DLCR2, 0x70, 0x00 },
{ FE_DLCR4, 0x08, 0x00 },
/* { FE_DLCR5, 0x80, 0x00 }, Doesn't work. */
{ FE_FMV0, 0x78, 0x50 }, /* ERRDY+PRRDY */
{ FE_FMV1, 0xB0, 0x00 }, /* FMV-183/184 has 0x48 bits. */
{ FE_FMV3, 0x7F, 0x00 },
#if 1
/*
* Test *vendor* part of the station address for Fujitsu.
* The test will gain reliability of probe process, but
* it rejects FMV-180 clone boards manufactured by other vendors.
* We have to turn the test off when such cards are made available.
*/
{ FE_FMV4, 0xFF, 0x00 },
{ FE_FMV5, 0xFF, 0x00 },
{ FE_FMV6, 0xFF, 0x0E },
#else
/*
* We can always verify the *first* 2 bits (in Ethernet
* bit order) are "no multicast" and "no local" even for
* unknown vendors.
*/
{ FE_FMV4, 0x03, 0x00 },
#endif
{ 0 }
};
/* "Hardware revision ID" */
int revision;
/*
* See if the specified address is possible for FMV-180 series.
*/
for ( i = 0; i < 8; i++ ) {
if ( baseaddr[ i ] == sc->iobase ) break;
}
if ( i == 8 ) return 0;
/* Setup an I/O address mapping table. */
for ( i = 0; i < MAXREGISTERS; i++ ) {
sc->ioaddr[ i ] = sc->iobase + i;
}
/* Simple probe. */
if ( !fe_simple_probe( sc, probe_table ) ) return 0;
/* Check if our I/O address matches config info. on EEPROM. */
n = ( inb( sc->ioaddr[ FE_FMV2 ] ) & FE_FMV2_IOS )
>> FE_FMV2_IOS_SHIFT;
if ( baseaddr[ n ] != sc->iobase ) {
#if 0
/* May not work on some revisions of the cards... FIXME. */
return 0;
#else
/* Just log the fact and see what happens... FIXME. */
log( LOG_WARNING, "fe%d: strange I/O config?\n", sc->sc_unit );
#endif
}
/* Find the "hardware revision." */
revision = inb( sc->ioaddr[ FE_FMV1 ] ) & FE_FMV1_REV;
/* Determine the card type. */
sc->typestr = NULL;
switch ( inb( sc->ioaddr[ FE_FMV0 ] ) & FE_FMV0_MEDIA ) {
case 0:
/* No interface? This doesn't seem to be an FMV-180... */
return 0;
case FE_FMV0_MEDIUM_T:
switch ( revision ) {
case 8:
sc->typestr = "FMV-183";
break;
case 12:
sc->typestr = "FMV-183 (on-board)";
break;
}
break;
case FE_FMV0_MEDIUM_T | FE_FMV0_MEDIUM_5:
switch ( revision ) {
case 0:
sc->typestr = "FMV-181";
break;
case 1:
sc->typestr = "FMV-181A";
break;
}
break;
case FE_FMV0_MEDIUM_2:
switch ( revision ) {
case 8:
sc->typestr = "FMV-184 (CSR = 2)";
break;
}
break;
case FE_FMV0_MEDIUM_5:
switch ( revision ) {
case 8:
sc->typestr = "FMV-184 (CSR = 1)";
break;
}
break;
case FE_FMV0_MEDIUM_2 | FE_FMV0_MEDIUM_5:
switch ( revision ) {
case 0:
sc->typestr = "FMV-182";
break;
case 1:
sc->typestr = "FMV-182A";
break;
case 8:
sc->typestr = "FMV-184 (CSR = 3)";
break;
}
break;
}
if ( sc->typestr == NULL ) {
/* Unknown card type... Hope the driver works. */
sc->typestr = "unknown FMV-180 version";
log( LOG_WARNING, "fe%d: %s: %x-%x-%x-%x\n",
sc->sc_unit, sc->typestr,
inb( sc->ioaddr[ FE_FMV0 ] ),
inb( sc->ioaddr[ FE_FMV1 ] ),
inb( sc->ioaddr[ FE_FMV2 ] ),
inb( sc->ioaddr[ FE_FMV3 ] ) );
}
/*
* An FMV-180 has been proved.
* Determine which IRQ to be used.
*
* In this version, we give a priority to the kernel config file.
* If the EEPROM and config don't match, say it to the user for
* an attention.
*/
n = ( inb( sc->ioaddr[ FE_FMV2 ] ) & FE_FMV2_IRS )
>> FE_FMV2_IRS_SHIFT;
if ( dev->id_irq == NO_IRQ ) {
/* Just use the probed value. */
dev->id_irq = irqmap[ n ];
} else if ( dev->id_irq != irqmap[ n ] ) {
/* Don't match. */
log( LOG_WARNING,
"fe%d: check IRQ in config; it may be incorrect\n",
sc->sc_unit );
}
/*
* Initialize constants in the per-line structure.
*/
/* Get our station address from EEPROM. */
inblk( sc, FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN );
/* Make sure we got a valid station address. */
if ( ( sc->sc_enaddr[ 0 ] & 0x03 ) != 0x00
|| ( sc->sc_enaddr[ 0 ] == 0x00
&& sc->sc_enaddr[ 1 ] == 0x00
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) return 0;
/*
* Register values which (may) depend on board design.
*
* Program the 86960 as follows:
* SRAM: 32KB, 100ns, byte-wide access.
* Transmission buffer: 4KB x 2.
* System bus interface: 16 bits.
*/
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
sc->proto_dlcr5 = 0;
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
/*
* Minimum initialization of the hardware.
* We write into registers; hope I/O ports have no
* overlap with other boards.
*/
/* Initialize ASIC. */
outb( sc->ioaddr[ FE_FMV3 ], 0 );
outb( sc->ioaddr[ FE_FMV10 ], 0 );
/* Initialize 86960. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Disable all interrupts. */
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
/* "Refresh" hardware configuration. FIXME. */
outb( sc->ioaddr[ FE_FMV2 ], inb( sc->ioaddr[ FE_FMV2 ] ) );
/* Turn the "master interrupt control" flag of ASIC on. */
outb( sc->ioaddr[ FE_FMV3 ], FE_FMV3_IRQENB );
/*
* That's all. FMV-180 occupies 32 I/O addresses, by the way.
*/
return 32;
}
/*
* Probe and initialization for Allied-Telesis AT1700/RE2000 series.
*/
static int
fe_probe_ati ( DEVICE * dev, struct fe_softc * sc )
{
int i, n;
u_char eeprom [ FE_EEPROM_SIZE ];
u_char save16, save17;
static u_short const baseaddr [ 8 ] =
{ 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
static u_short const irqmaps [ 4 ][ 4 ] =
{
{ IRQ3, IRQ4, IRQ5, IRQ9 },
{ IRQ10, IRQ11, IRQ12, IRQ15 },
{ IRQ3, IRQ11, IRQ5, IRQ15 },
{ IRQ10, IRQ11, IRQ14, IRQ15 },
};
static struct fe_simple_probe_struct const probe_table [] = {
{ FE_DLCR2, 0x70, 0x00 },
{ FE_DLCR4, 0x08, 0x00 },
{ FE_DLCR5, 0x80, 0x00 },
#if 0
{ FE_BMPR16, 0x1B, 0x00 },
{ FE_BMPR17, 0x7F, 0x00 },
#endif
{ 0 }
};
/* Assume we have 86965 and no need to restore these. */
save16 = 0;
save17 = 0;
#if FE_DEBUG >= 3
log( LOG_INFO, "fe%d: probe (0x%x) for ATI\n",
sc->sc_unit, sc->iobase );
fe_dump( LOG_INFO, sc, NULL );
#endif
/*
* See if the specified address is possible for MB86965A JLI mode.
*/
for ( i = 0; i < 8; i++ ) {
if ( baseaddr[ i ] == sc->iobase ) break;
}
if ( i == 8 ) goto NOTFOUND;
/* Setup an I/O address mapping table. */
for ( i = 0; i < MAXREGISTERS; i++ ) {
sc->ioaddr[ i ] = sc->iobase + i;
}
/*
* We should test if MB86965A is on the base address now.
* Unfortunately, it is very hard to probe it reliably, since
* we have no way to reset the chip under software control.
* On cold boot, we could check the "signature" bit patterns
* described in the Fujitsu document. On warm boot, however,
* we can predict almost nothing about register values.
*/
if ( !fe_simple_probe( sc, probe_table ) ) goto NOTFOUND;
/* Check if our I/O address matches config info on 86965. */
n = ( inb( sc->ioaddr[ FE_BMPR19 ] ) & FE_B19_ADDR )
>> FE_B19_ADDR_SHIFT;
if ( baseaddr[ n ] != sc->iobase ) goto NOTFOUND;
/*
* We are now almost sure we have an AT1700 at the given
* address. So, read EEPROM through 86965. We have to write
* into LSI registers to read from EEPROM. I want to avoid it
* at this stage, but I cannot test the presence of the chip
* any further without reading EEPROM. FIXME.
*/
save16 = inb( sc->ioaddr[ FE_BMPR16 ] );
save17 = inb( sc->ioaddr[ FE_BMPR17 ] );
fe_read_eeprom( sc, eeprom );
/* Make sure the EEPROM is turned off. */
outb( sc->ioaddr[ FE_BMPR16 ], 0 );
outb( sc->ioaddr[ FE_BMPR17 ], 0 );
/* Make sure that config info in EEPROM and 86965 agree. */
if ( eeprom[ FE_EEPROM_CONF ] != inb( sc->ioaddr[ FE_BMPR19 ] ) ) {
goto NOTFOUND;
}
/*
* The following model identification codes are stolen from
* from the NetBSD port of the fe driver. My reviewers
* suggested minor revision.
*/
/* Determine the card type. */
switch (eeprom[FE_ATI_EEP_MODEL]) {
case FE_ATI_MODEL_AT1700T:
sc->typestr = "AT-1700T/RE2001";
break;
case FE_ATI_MODEL_AT1700BT:
sc->typestr = "AT-1700BT/RE2003";
break;
case FE_ATI_MODEL_AT1700FT:
sc->typestr = "AT-1700FT/RE2009";
break;
case FE_ATI_MODEL_AT1700AT:
sc->typestr = "AT-1700AT/RE2005";
break;
default:
sc->typestr = "unknown AT-1700/RE2000 ?";
break;
}
/*
* Try to determine IRQ settings.
* Different models use different ranges of IRQs.
*/
if ( dev->id_irq == NO_IRQ ) {
n = ( inb( sc->ioaddr[ FE_BMPR19 ] ) & FE_B19_IRQ )
>> FE_B19_IRQ_SHIFT;
switch ( eeprom[ FE_ATI_EEP_REVISION ] & 0xf0 ) {
case 0x30:
dev->id_irq = irqmaps[ 3 ][ n ];
break;
case 0x10:
case 0x50:
dev->id_irq = irqmaps[ 2 ][ n ];
break;
case 0x40:
case 0x60:
if ( eeprom[ FE_ATI_EEP_MAGIC ] & 0x04 ) {
dev->id_irq = irqmaps[ 1 ][ n ];
} else {
dev->id_irq = irqmaps[ 0 ][ n ];
}
break;
default:
dev->id_irq = irqmaps[ 0 ][ n ];
break;
}
}
/*
* Initialize constants in the per-line structure.
*/
/* Get our station address from EEPROM. */
bcopy( eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN );
#if 1
/*
* This test doesn't work well for AT1700 look-alike by
* other vendors.
*/
/* Make sure the vendor part is for Allied-Telesis. */
if ( sc->sc_enaddr[ 0 ] != 0x00
|| sc->sc_enaddr[ 1 ] != 0x00
|| sc->sc_enaddr[ 2 ] != 0xF4 ) return 0;
#else
/* Make sure we got a valid station address. */
if ( ( sc->sc_enaddr[ 0 ] & 0x03 ) != 0x00
|| ( sc->sc_enaddr[ 0 ] == 0x00
&& sc->sc_enaddr[ 1 ] == 0x00
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) return 0;
#endif
/*
* Program the 86960 as follows:
* SRAM: 32KB, 100ns, byte-wide access.
* Transmission buffer: 4KB x 2.
* System bus interface: 16 bits.
*/
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL; /* FIXME */
sc->proto_dlcr5 = 0;
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
#if 0 /* XXXX Should we use this? FIXME. */
sc->proto_bmpr13 = eeprom[ FE_ATI_EEP_MEDIA ];
#else
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
#endif
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "ATI found" );
#endif
/* Setup hooks. This may solves a nasty bug. FIXME. */
sc->init = fe_init_ati;
/* Initialize 86965. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Disable all interrupts. */
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "end of fe_probe_ati()" );
#endif
/*
* That's all. AT1700 occupies 32 I/O addresses, by the way.
*/
return 32;
NOTFOUND:
/*
* We have no AT1700 at a given address.
* Restore BMPR16 and BMPR17 if we have destroyed them,
* hoping that the hardware on the address didn't get
* bad side effect.
*/
if ( save16 != 0 | save17 != 0 ) {
outb( sc->ioaddr[ FE_BMPR16 ], save16 );
outb( sc->ioaddr[ FE_BMPR17 ], save17 );
}
return ( 0 );
}
/* ATI specific initialization routine. */
static void
fe_init_ati ( struct fe_softc * sc )
{
/*
* I've told that the following operation "Resets" the chip.
* Hope this solve a bug which hangs up the driver under
* heavy load... FIXME.
*/
/* Minimal initialization of 86965. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* "Reset" by wrting into an undocument register location. */
outb( sc->ioaddr[ 0x1F ], 0 );
/* How long do we have to wait after the reset? FIXME. */
DELAY( 300 );
}
/*
* Probe and initialization for Gateway Communications' old cards.
*/
static int
fe_probe_gwy ( DEVICE * dev, struct fe_softc * sc )
{
int i;
static struct fe_simple_probe_struct probe_table [] = {
{ FE_DLCR2, 0x70, 0x00 },
{ FE_DLCR4, 0x08, 0x00 },
{ FE_DLCR7, 0xC0, 0x00 },
/*
* Test *vendor* part of the address for Gateway.
* This test is essential to identify Gateway's cards.
* We shuld define some symbolic names for the
* following offsets. FIXME.
*/
{ 0x18, 0xFF, 0x00 },
{ 0x19, 0xFF, 0x00 },
{ 0x1A, 0xFF, 0x61 },
{ 0 }
};
/*
* We need explicit IRQ and supported address.
* I'm not sure which address and IRQ is possible for Gateway
* Ethernet family. The following accepts everything. FIXME.
*/
if ( dev->id_irq == NO_IRQ || ( sc->iobase & ~0x3E0 ) != 0 ) {
return ( 0 );
}
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "top of probe" );
#endif
/* Setup an I/O address mapping table. */
for ( i = 0; i < MAXREGISTERS; i++ ) {
sc->ioaddr[ i ] = sc->iobase + i;
}
/* See if the card is on its address. */
if ( !fe_simple_probe( sc, probe_table ) ) {
return 0;
}
/* Determine the card type. */
sc->typestr = "Gateway Ethernet w/ Fujitsu chipset";
/* Get our station address from EEPROM. */
inblk( sc, 0x18, sc->sc_enaddr, ETHER_ADDR_LEN );
/*
* Program the 86960 as follows:
* SRAM: 16KB, 100ns, byte-wide access.
* Transmission buffer: 2KB x 2.
* System bus interface: 16 bits.
* Make sure to clear out ID bits in DLCR7
* (They actually are Encoder/Decoder control in NICE.)
*/
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
sc->proto_dlcr5 = 0;
sc->proto_dlcr6 = FE_D6_BUFSIZ_16KB | FE_D6_TXBSIZ_2x2KB
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
sc->proto_dlcr7 = FE_D7_BYTSWP_LH;
sc->proto_bmpr13 = 0;
/* Minimal initialization of 86960. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Disable all interrupts. */
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
/* That's all. The card occupies 32 I/O addresses, as always. */
return 32;
}
#if NCARD > 0
/*
* Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
* Note that this is for 10302 only; MBH10304 is handled by fe_probe_tdk().
*/
static int
fe_probe_mbh ( DEVICE * dev, struct fe_softc * sc )
{
int i,type;
static struct fe_simple_probe_struct probe_table [] = {
{ FE_DLCR0, 0x09, 0x00 },
{ FE_DLCR2, 0x79, 0x00 },
{ FE_DLCR4, 0x08, 0x00 },
{ FE_DLCR6, 0xFF, 0xB6 },
/*
* The following location has the first byte of the card's
* Ethernet (MAC) address.
* We can always verify the *first* 2 bits (in Ethernet
* bit order) are "global" and "unicast" for any vendors'.
*/
{ FE_MBH10, 0x03, 0x00 },
/* Just a gap? Seems reliable, anyway. */
{ 0x12, 0xFF, 0x00 },
{ 0x13, 0xFF, 0x00 },
{ 0x14, 0xFF, 0x00 },
{ 0x15, 0xFF, 0x00 },
{ 0x16, 0xFF, 0x00 },
{ 0x17, 0xFF, 0x00 },
#if 0
{ 0x18, 0xFF, 0xFF },
{ 0x19, 0xFF, 0xFF },
#endif
{ 0 }
};
/*
* We need explicit IRQ and supported address.
*/
if ( dev->id_irq == NO_IRQ || ( sc->iobase & ~0x3E0 ) != 0 ) {
return ( 0 );
}
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "top of probe" );
#endif
/* Setup an I/O address mapping table. */
for ( i = 0; i < MAXREGISTERS; i++ ) {
sc->ioaddr[ i ] = sc->iobase + i;
}
/*
* See if MBH10302 is on its address.
* I'm not sure the following probe code works. FIXME.
*/
if ( !fe_simple_probe( sc, probe_table ) ) return 0;
/* Determine the card type. */
sc->typestr = "MBH10302 (PCMCIA)";
/*
* Initialize constants in the per-line structure.
*/
/* Get our station address from EEPROM. */
inblk( sc, FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN );
/* Make sure we got a valid station address. */
if ( sc->sc_enaddr[ 0 ] == 0x00
&& sc->sc_enaddr[ 1 ] == 0x00
&& sc->sc_enaddr[ 2 ] == 0x00 ) return 0;
/*
* Program the 86960 as follows:
* SRAM: 32KB, 100ns, byte-wide access.
* Transmission buffer: 4KB x 2.
* System bus interface: 16 bits.
*/
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
sc->proto_dlcr5 = 0;
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
/* Setup hooks. We need a special initialization procedure. */
sc->init = fe_init_mbh;
/*
* Minimum initialization.
*/
/* Minimal initialization of 86960. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Disable all interrupts. */
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
#if 1 /* FIXME. */
/* Initialize system bus interface and encoder/decoder operation. */
outb( sc->ioaddr[ FE_MBH0 ], FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE );
#endif
/*
* That's all. MBH10302 occupies 32 I/O addresses, by the way.
*/
return 32;
}
/* MBH specific initialization routine. */
static void
fe_init_mbh ( struct fe_softc * sc )
{
/* Minimal initialization of 86960. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Disable all interrupts. */
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
/* Enable master interrupt flag. */
outb( sc->ioaddr[ FE_MBH0 ], FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE );
}
/*
* Probe and initialization for TDK/CONTEC PCMCIA Ethernet interface.
* by MASUI Kenji <masui@cs.titech.ac.jp>
*
* (Contec uses TDK Ethenet chip -- hosokawa)
*
* This version of fe_probe_tdk has been rewrote to handle
* *generic* PC card implementation of Fujitsu MB8696x and compatibles.
* The name _tdk is just for a historical reason. <seki> :-)
*/
static int
fe_probe_tdk ( DEVICE * dev, struct fe_softc * sc )
{
int i;
static struct fe_simple_probe_struct probe_table [] = {
{ FE_DLCR2, 0x70, 0x00 },
{ FE_DLCR4, 0x08, 0x00 },
/* { FE_DLCR5, 0x80, 0x00 }, Does not work well. */
{ 0 }
};
/* We need an IRQ. */
if ( dev->id_irq == NO_IRQ ) {
return ( 0 );
}
/* Generic driver needs Ethernet address taken from CIS. */
if (sc->arpcom.ac_enaddr[0] == 0
&& sc->arpcom.ac_enaddr[1] == 0
&& sc->arpcom.ac_enaddr[2] == 0) {
return 0;
}
/* Setup an I/O address mapping table; we need only 16 ports. */
for (i = 0; i < 16; i++) {
sc->ioaddr[i] = sc->iobase + i;
}
/* Fill unused slots with a safe address. */
for (i = 16; i < MAXREGISTERS; i++) {
sc->ioaddr[i] = sc->iobase;
}
/*
* See if C-NET(PC)C is on its address.
*/
if ( !fe_simple_probe( sc, probe_table ) ) return 0;
/* Determine the card type. */
sc->typestr = "Generic MB8696x Ethernet (PCMCIA)";
/*
* Initialize constants in the per-line structure.
*/
/* The station address *must*be* already in sc_enaddr;
Make sure we got a valid station address. */
if ( ( sc->sc_enaddr[ 0 ] & 0x03 ) != 0x00
|| ( sc->sc_enaddr[ 0 ] == 0x00
&& sc->sc_enaddr[ 1 ] == 0x00
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) return 0;
/*
* Program the 86965 as follows:
* SRAM: 32KB, 100ns, byte-wide access.
* Transmission buffer: 4KB x 2.
* System bus interface: 16 bits.
* XXX: Should we remove IDENT_NICE from DLCR7? Or,
* even add IDENT_EC instead? FIXME.
*/
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
sc->proto_dlcr5 = 0;
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
/* Minimul initialization of 86960. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Disable all interrupts. */
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
/*
* That's all. C-NET(PC)C occupies 16 I/O addresses.
*
* Some PC cards (e.g., TDK and Contec) have 16 I/O addresses,
* while some others (e.g., Fujitsu) have 32. Fortunately,
* this generic driver never accesses latter 16 ports in 32
* ports cards. So, we can assume the *generic* PC cards
* always have 16 ports.
*
* Moreover, PC card probe is isolated from ISA probe, and PC
* card probe routine doesn't use "# of ports" returned by this
* function. 16 v.s. 32 is not important now.
*/
return 16;
}
#endif /* NCARD > 0 */
/*
* Install interface into kernel networking data structures
*/
static int
fe_attach ( DEVICE * dev )
{
#if NCARD > 0
static int already_ifattach[NFE];
#endif
struct fe_softc *sc = &fe_softc[dev->id_unit];
/*
* Initialize ifnet structure
*/
sc->sc_if.if_softc = sc;
sc->sc_if.if_unit = sc->sc_unit;
sc->sc_if.if_name = "fe";
sc->sc_if.if_output = ether_output;
sc->sc_if.if_start = fe_start;
sc->sc_if.if_ioctl = fe_ioctl;
sc->sc_if.if_watchdog = fe_watchdog;
/*
* Set default interface flags.
*/
sc->sc_if.if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
/*
* Set maximum size of output queue, if it has not been set.
* It is done here as this driver may be started after the
* system initialization (i.e., the interface is PCMCIA.)
*
* I'm not sure this is really necessary, but, even if it is,
* it should be done somewhere else, e.g., in if_attach(),
* since it must be a common workaround for all network drivers.
* FIXME.
*/
if ( sc->sc_if.if_snd.ifq_maxlen == 0 ) {
sc->sc_if.if_snd.ifq_maxlen = ifqmaxlen;
}
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "attach()" );
#endif
#if FE_SINGLE_TRANSMISSION
/* Override txb config to allocate minimum. */
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
#endif
/* Modify hardware config if it is requested. */
if ( dev->id_flags & FE_FLAGS_OVERRIDE_DLCR6 ) {
sc->proto_dlcr6 = dev->id_flags & FE_FLAGS_DLCR6_VALUE;
}
/* Find TX buffer size, based on the hardware dependent proto. */
switch ( sc->proto_dlcr6 & FE_D6_TXBSIZ ) {
case FE_D6_TXBSIZ_2x2KB: sc->txb_size = 2048; break;
case FE_D6_TXBSIZ_2x4KB: sc->txb_size = 4096; break;
case FE_D6_TXBSIZ_2x8KB: sc->txb_size = 8192; break;
default:
/* Oops, we can't work with single buffer configuration. */
#if FE_DEBUG >= 2
log( LOG_WARNING, "fe%d: strange TXBSIZ config; fixing\n",
sc->sc_unit );
#endif
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
sc->txb_size = 2048;
break;
}
/* Attach and stop the interface. */
#if NCARD > 0
if (already_ifattach[dev->id_unit] != 1) {
if_attach(&sc->sc_if);
already_ifattach[dev->id_unit] = 1;
}
#else
if_attach(&sc->sc_if);
#endif
fe_stop(sc->sc_unit); /* This changes the state to IDLE. */
ether_ifattach(&sc->sc_if);
/* Print additional info when attached. */
printf( "fe%d: address %6D, type %s\n", sc->sc_unit,
sc->sc_enaddr, ":" , sc->typestr );
#if FE_DEBUG >= 3
{
int buf, txb, bbw, sbw, ram;
buf = txb = bbw = sbw = ram = -1;
switch ( sc->proto_dlcr6 & FE_D6_BUFSIZ ) {
case FE_D6_BUFSIZ_8KB: buf = 8; break;
case FE_D6_BUFSIZ_16KB: buf = 16; break;
case FE_D6_BUFSIZ_32KB: buf = 32; break;
case FE_D6_BUFSIZ_64KB: buf = 64; break;
}
switch ( sc->proto_dlcr6 & FE_D6_TXBSIZ ) {
case FE_D6_TXBSIZ_2x2KB: txb = 2; break;
case FE_D6_TXBSIZ_2x4KB: txb = 4; break;
case FE_D6_TXBSIZ_2x8KB: txb = 8; break;
}
switch ( sc->proto_dlcr6 & FE_D6_BBW ) {
case FE_D6_BBW_BYTE: bbw = 8; break;
case FE_D6_BBW_WORD: bbw = 16; break;
}
switch ( sc->proto_dlcr6 & FE_D6_SBW ) {
case FE_D6_SBW_BYTE: sbw = 8; break;
case FE_D6_SBW_WORD: sbw = 16; break;
}
switch ( sc->proto_dlcr6 & FE_D6_SRAM ) {
case FE_D6_SRAM_100ns: ram = 100; break;
case FE_D6_SRAM_150ns: ram = 150; break;
}
printf( "fe%d: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
sc->sc_unit, buf, bbw, ram, txb, sbw );
}
#endif
#if NBPFILTER > 0
/* If BPF is in the kernel, call the attach for it. */
bpfattach( &sc->sc_if, DLT_EN10MB, sizeof(struct ether_header));
#endif
return 1;
}
/*
* Reset interface.
*/
static void
fe_reset ( int unit )
{
/*
* Stop interface and re-initialize.
*/
fe_stop(unit);
fe_init(unit);
}
/*
* Stop everything on the interface.
*
* All buffered packets, both transmitting and receiving,
* if any, will be lost by stopping the interface.
*/
static void
fe_stop ( int unit )
{
struct fe_softc *sc = &fe_softc[unit];
int s;
s = splimp();
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "stop()" );
#endif
/* Disable interrupts. */
outb( sc->ioaddr[ FE_DLCR2 ], 0x00 );
outb( sc->ioaddr[ FE_DLCR3 ], 0x00 );
/* Stop interface hardware. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Clear all interrupt status. */
outb( sc->ioaddr[ FE_DLCR0 ], 0xFF );
outb( sc->ioaddr[ FE_DLCR1 ], 0xFF );
/* Put the chip in stand-by mode. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR7 ], sc->proto_dlcr7 | FE_D7_POWER_DOWN );
DELAY( 200 );
/* Reset transmitter variables and interface flags. */
sc->sc_if.if_flags &= ~( IFF_OACTIVE | IFF_RUNNING );
sc->sc_if.if_timer = 0;
sc->txb_free = sc->txb_size;
sc->txb_count = 0;
sc->txb_sched = 0;
/* MAR loading can be delayed. */
sc->filter_change = 0;
/* Update config status also. */
/* Call a hook. */
if ( sc->stop ) sc->stop( sc );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "end of stop()" );
#endif
(void) splx(s);
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to
* generate an interrupt after a transmit has been started on it.
*/
static void
fe_watchdog ( struct ifnet *ifp )
{
struct fe_softc *sc = (struct fe_softc *)ifp;
#if FE_DEBUG >= 1
/* A "debug" message. */
log( LOG_ERR, "fe%d: transmission timeout (%d+%d)%s\n",
ifp->if_unit, sc->txb_sched, sc->txb_count,
( ifp->if_flags & IFF_UP ) ? "" : " when down" );
if ( sc->sc_if.if_opackets == 0 && sc->sc_if.if_ipackets == 0 ) {
log( LOG_WARNING, "fe%d: wrong IRQ setting in config?\n",
ifp->if_unit );
}
#endif
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, NULL );
#endif
/* Record how many packets are lost by this accident. */
ifp->if_oerrors += sc->txb_sched + sc->txb_count;
/* Put the interface into known initial state. */
if ( ifp->if_flags & IFF_UP ) {
fe_reset( ifp->if_unit );
} else {
fe_stop( ifp->if_unit );
}
}
/*
* Initialize device.
*/
static void
fe_init ( int unit )
{
struct fe_softc *sc = &fe_softc[unit];
int s;
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "init()" );
#endif
/* We need an address. */
if (TAILQ_EMPTY(&sc->sc_if.if_addrhead)) { /* XXX unlikely */
#if FE_DEBUG >= 1
log( LOG_ERR, "fe%d: init() without any address\n",
sc->sc_unit );
#endif
return;
}
#if FE_DEBUG >= 1
/*
* Make sure we have a valid station address.
* The following test is applicable for any Ethernet interfaces.
* It can be done in somewhere common to all of them. FIXME.
*/
if ( ( sc->sc_enaddr[ 0 ] & 0x01 ) != 0
|| ( sc->sc_enaddr[ 0 ] == 0x00
&& sc->sc_enaddr[ 1 ] == 0x00
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) {
log( LOG_ERR, "fe%d: invalid station address (%6D)\n",
sc->sc_unit, sc->sc_enaddr, ":" );
return;
}
#endif
/* Start initializing 86960. */
s = splimp();
/* Call a hook. */
if ( sc->init ) sc->init( sc );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "after init hook" );
#endif
/*
* Make sure to disable the chip, also.
* This may also help re-programming the chip after
* hot insertion of PCMCIAs.
*/
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Power up the chip and select register bank for DLCRs. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR7 ],
sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP );
DELAY( 200 );
/* Feed the station address. */
outblk( sc, FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN );
/* Clear multicast address filter to receive nothing. */
outb( sc->ioaddr[ FE_DLCR7 ],
sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP );
outblk( sc, FE_MAR8, fe_filter_nothing.data, FE_FILTER_LEN );
/* Select the BMPR bank for runtime register access. */
outb( sc->ioaddr[ FE_DLCR7 ],
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP );
/* Initialize registers. */
outb( sc->ioaddr[ FE_DLCR0 ], 0xFF ); /* Clear all bits. */
outb( sc->ioaddr[ FE_DLCR1 ], 0xFF ); /* ditto. */
outb( sc->ioaddr[ FE_DLCR2 ], 0x00 );
outb( sc->ioaddr[ FE_DLCR3 ], 0x00 );
outb( sc->ioaddr[ FE_DLCR4 ], sc->proto_dlcr4 );
outb( sc->ioaddr[ FE_DLCR5 ], sc->proto_dlcr5 );
outb( sc->ioaddr[ FE_BMPR10 ], 0x00 );
outb( sc->ioaddr[ FE_BMPR11 ], FE_B11_CTRL_SKIP | FE_B11_MODE1 );
outb( sc->ioaddr[ FE_BMPR12 ], 0x00 );
outb( sc->ioaddr[ FE_BMPR13 ], sc->proto_bmpr13 );
outb( sc->ioaddr[ FE_BMPR14 ], 0x00 );
outb( sc->ioaddr[ FE_BMPR15 ], 0x00 );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "just before enabling DLC" );
#endif
/* Enable interrupts. */
outb( sc->ioaddr[ FE_DLCR2 ], FE_TMASK );
outb( sc->ioaddr[ FE_DLCR3 ], FE_RMASK );
/* Enable transmitter and receiver. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_ENABLE );
DELAY( 200 );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "just after enabling DLC" );
#endif
/*
* Make sure to empty the receive buffer.
*
* This may be redundant, but *if* the receive buffer were full
* at this point, then the driver would hang. I have experienced
* some strange hang-up just after UP. I hope the following
* code solve the problem.
*
* I have changed the order of hardware initialization.
* I think the receive buffer cannot have any packets at this
* point in this version. The following code *must* be
* redundant now. FIXME.
*
* I've heard a rumore that on some PC card implementation of
* 8696x, the receive buffer can have some data at this point.
* The following message helps discovering the fact. FIXME.
*/
if ( !( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) ) {
log( LOG_WARNING,
"fe%d: receive buffer has some data after reset\n",
sc->sc_unit );
fe_emptybuffer( sc );
}
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "after ERB loop" );
#endif
/* Do we need this here? Actually, no. I must be paranoia. */
outb( sc->ioaddr[ FE_DLCR0 ], 0xFF ); /* Clear all bits. */
outb( sc->ioaddr[ FE_DLCR1 ], 0xFF ); /* ditto. */
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "after FIXME" );
#endif
/* Set 'running' flag, because we are now running. */
sc->sc_if.if_flags |= IFF_RUNNING;
/*
* At this point, the interface is running properly,
* except that it receives *no* packets. we then call
* fe_setmode() to tell the chip what packets to be
* received, based on the if_flags and multicast group
* list. It completes the initialization process.
*/
fe_setmode( sc );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "after setmode" );
#endif
/* ...and attempt to start output queued packets. */
fe_start( &sc->sc_if );
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, "init() done" );
#endif
(void) splx(s);
}
/*
* This routine actually starts the transmission on the interface
*/
static void
fe_xmit ( struct fe_softc * sc )
{
/*
* Set a timer just in case we never hear from the board again.
* We use longer timeout for multiple packet transmission.
* I'm not sure this timer value is appropriate. FIXME.
*/
sc->sc_if.if_timer = 1 + sc->txb_count;
/* Update txb variables. */
sc->txb_sched = sc->txb_count;
sc->txb_count = 0;
sc->txb_free = sc->txb_size;
sc->tx_excolls = 0;
/* Start transmitter, passing packets in TX buffer. */
outb( sc->ioaddr[ FE_BMPR10 ], sc->txb_sched | FE_B10_START );
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splimp _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
void
fe_start ( struct ifnet *ifp )
{
struct fe_softc *sc = ifp->if_softc;
struct mbuf *m;
#if FE_DEBUG >= 1
/* Just a sanity check. */
if ( ( sc->txb_count == 0 ) != ( sc->txb_free == sc->txb_size ) ) {
/*
* Txb_count and txb_free co-works to manage the
* transmission buffer. Txb_count keeps track of the
* used potion of the buffer, while txb_free does unused
* potion. So, as long as the driver runs properly,
* txb_count is zero if and only if txb_free is same
* as txb_size (which represents whole buffer.)
*/
log( LOG_ERR, "fe%d: inconsistent txb variables (%d, %d)\n",
sc->sc_unit, sc->txb_count, sc->txb_free );
/*
* So, what should I do, then?
*
* We now know txb_count and txb_free contradicts. We
* cannot, however, tell which is wrong. More
* over, we cannot peek 86960 transmission buffer or
* reset the transmission buffer. (In fact, we can
* reset the entire interface. I don't want to do it.)
*
* If txb_count is incorrect, leaving it as-is will cause
* sending of garbage after next interrupt. We have to
* avoid it. Hence, we reset the txb_count here. If
* txb_free was incorrect, resetting txb_count just loose
* some packets. We can live with it.
*/
sc->txb_count = 0;
}
#endif
#if FE_DEBUG >= 1
/*
* First, see if there are buffered packets and an idle
* transmitter - should never happen at this point.
*/
if ( ( sc->txb_count > 0 ) && ( sc->txb_sched == 0 ) ) {
log( LOG_ERR,
"fe%d: transmitter idle with %d buffered packets\n",
sc->sc_unit, sc->txb_count );
fe_xmit( sc );
}
#endif
/*
* Stop accepting more transmission packets temporarily, when
* a filter change request is delayed. Updating the MARs on
* 86960 flushes the transmission buffer, so it is delayed
* until all buffered transmission packets have been sent
* out.
*/
if ( sc->filter_change ) {
/*
* Filter change request is delayed only when the DLC is
* working. DLC soon raise an interrupt after finishing
* the work.
*/
goto indicate_active;
}
for (;;) {
/*
* See if there is room to put another packet in the buffer.
* We *could* do better job by peeking the send queue to
* know the length of the next packet. Current version just
* tests against the worst case (i.e., longest packet). FIXME.
*
* When adding the packet-peek feature, don't forget adding a
* test on txb_count against QUEUEING_MAX.
* There is a little chance the packet count exceeds
* the limit. Assume transmission buffer is 8KB (2x8KB
* configuration) and an application sends a bunch of small
* (i.e., minimum packet sized) packets rapidly. An 8KB
* buffer can hold 130 blocks of 62 bytes long...
*/
if ( sc->txb_free
< ETHER_MAX_LEN - ETHER_CRC_LEN + FE_DATA_LEN_LEN ) {
/* No room. */
goto indicate_active;
}
#if FE_SINGLE_TRANSMISSION
if ( sc->txb_count > 0 ) {
/* Just one packet per a transmission buffer. */
goto indicate_active;
}
#endif
/*
* Get the next mbuf chain for a packet to send.
*/
IF_DEQUEUE( &sc->sc_if.if_snd, m );
if ( m == NULL ) {
/* No more packets to send. */
goto indicate_inactive;
}
/*
* Copy the mbuf chain into the transmission buffer.
* txb_* variables are updated as necessary.
*/
fe_write_mbufs( sc, m );
/* Start transmitter if it's idle. */
if ( ( sc->txb_count > 0 ) && ( sc->txb_sched == 0 ) ) {
fe_xmit( sc );
}
/*
* Tap off here if there is a bpf listener,
* and the device is *not* in promiscuous mode.
* (86960 receives self-generated packets if
* and only if it is in "receive everything"
* mode.)
*/
#if NBPFILTER > 0
if ( sc->sc_if.if_bpf
&& !( sc->sc_if.if_flags & IFF_PROMISC ) ) {
bpf_mtap( &sc->sc_if, m );
}
#endif
m_freem( m );
}
indicate_inactive:
/*
* We are using the !OACTIVE flag to indicate to
* the outside world that we can accept an
* additional packet rather than that the
* transmitter is _actually_ active. Indeed, the
* transmitter may be active, but if we haven't
* filled all the buffers with data then we still
* want to accept more.
*/
sc->sc_if.if_flags &= ~IFF_OACTIVE;
return;
indicate_active:
/*
* The transmitter is active, and there are no room for
* more outgoing packets in the transmission buffer.
*/
sc->sc_if.if_flags |= IFF_OACTIVE;
return;
}
/*
* Drop (skip) a packet from receive buffer in 86960 memory.
*/
static void
fe_droppacket ( struct fe_softc * sc, int len )
{
int i;
/*
* 86960 manual says that we have to read 8 bytes from the buffer
* before skip the packets and that there must be more than 8 bytes
* remaining in the buffer when issue a skip command.
* Remember, we have already read 4 bytes before come here.
*/
if ( len > 12 ) {
/* Read 4 more bytes, and skip the rest of the packet. */
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
outb( sc->ioaddr[ FE_BMPR14 ], FE_B14_SKIP );
} else {
/* We should not come here unless receiving RUNTs. */
for ( i = 0; i < len; i += 2 ) {
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
}
}
}
/*
* Empty receiving buffer.
*/
static void
fe_emptybuffer ( struct fe_softc * sc )
{
int i;
u_char saved_dlcr5;
#if FE_DEBUG >= 2
log( LOG_WARNING, "fe%d: emptying receive buffer\n", sc->sc_unit );
#endif
/*
* Stop receiving packets, temporarily.
*/
saved_dlcr5 = inb( sc->ioaddr[ FE_DLCR5 ] );
outb( sc->ioaddr[ FE_DLCR5 ], sc->proto_dlcr5 );
DELAY(1300);
/*
* When we come here, the receive buffer management should
* have been broken. So, we cannot use skip operation.
* Just discard everything in the buffer.
*/
for (i = 0; i < 32768; i++) {
if ( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) break;
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
}
/*
* Double check.
*/
if ( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) {
log( LOG_ERR, "fe%d: could not empty receive buffer\n",
sc->sc_unit );
/* Hmm. What should I do if this happens? FIXME. */
}
/*
* Restart receiving packets.
*/
outb( sc->ioaddr[ FE_DLCR5 ], saved_dlcr5 );
}
/*
* Transmission interrupt handler
* The control flow of this function looks silly. FIXME.
*/
static void
fe_tint ( struct fe_softc * sc, u_char tstat )
{
int left;
int col;
/*
* Handle "excessive collision" interrupt.
*/
if ( tstat & FE_D0_COLL16 ) {
/*
* Find how many packets (including this collided one)
* are left unsent in transmission buffer.
*/
left = inb( sc->ioaddr[ FE_BMPR10 ] );
#if FE_DEBUG >= 2
log( LOG_WARNING, "fe%d: excessive collision (%d/%d)\n",
sc->sc_unit, left, sc->txb_sched );
#endif
#if FE_DEBUG >= 3
fe_dump( LOG_INFO, sc, NULL );
#endif
/*
* Clear the collision flag (in 86960) here
* to avoid confusing statistics.
*/
outb( sc->ioaddr[ FE_DLCR0 ], FE_D0_COLLID );
/*
* Restart transmitter, skipping the
* collided packet.
*
* We *must* skip the packet to keep network running
* properly. Excessive collision error is an
* indication of the network overload. If we
* tried sending the same packet after excessive
* collision, the network would be filled with
* out-of-time packets. Packets belonging
* to reliable transport (such as TCP) are resent
* by some upper layer.
*/
outb( sc->ioaddr[ FE_BMPR11 ],
FE_B11_CTRL_SKIP | FE_B11_MODE1 );
/* Update statistics. */
sc->tx_excolls++;
}
/*
* Handle "transmission complete" interrupt.
*/
if ( tstat & FE_D0_TXDONE ) {
/*
* Add in total number of collisions on last
* transmission. We also clear "collision occurred" flag
* here.
*
* 86960 has a design flaw on collision count on multiple
* packet transmission. When we send two or more packets
* with one start command (that's what we do when the
* transmission queue is crowded), 86960 informs us number
* of collisions occurred on the last packet on the
* transmission only. Number of collisions on previous
* packets are lost. I have told that the fact is clearly
* stated in the Fujitsu document.
*
* I considered not to mind it seriously. Collision
* count is not so important, anyway. Any comments? FIXME.
*/
if ( inb( sc->ioaddr[ FE_DLCR0 ] ) & FE_D0_COLLID ) {
/* Clear collision flag. */
outb( sc->ioaddr[ FE_DLCR0 ], FE_D0_COLLID );
/* Extract collision count from 86960. */
col = inb( sc->ioaddr[ FE_DLCR4 ] );
col = ( col & FE_D4_COL ) >> FE_D4_COL_SHIFT;
if ( col == 0 ) {
/*
* Status register indicates collisions,
* while the collision count is zero.
* This can happen after multiple packet
* transmission, indicating that one or more
* previous packet(s) had been collided.
*
* Since the accurate number of collisions
* has been lost, we just guess it as 1;
* Am I too optimistic? FIXME.
*/
col = 1;
}
sc->sc_if.if_collisions += col;
#if FE_DEBUG >= 3
log( LOG_WARNING, "fe%d: %d collision(s) (%d)\n",
sc->sc_unit, col, sc->txb_sched );
#endif
}
/*
* Update transmission statistics.
* Be sure to reflect number of excessive collisions.
*/
sc->sc_if.if_opackets += sc->txb_sched - sc->tx_excolls;
sc->sc_if.if_oerrors += sc->tx_excolls;
sc->sc_if.if_collisions += sc->tx_excolls * 16;
sc->txb_sched = 0;
/*
* The transmitter is no more active.
* Reset output active flag and watchdog timer.
*/
sc->sc_if.if_flags &= ~IFF_OACTIVE;
sc->sc_if.if_timer = 0;
/*
* If more data is ready to transmit in the buffer, start
* transmitting them. Otherwise keep transmitter idle,
* even if more data is queued. This gives receive
* process a slight priority.
*/
if ( sc->txb_count > 0 ) fe_xmit( sc );
}
}
/*
* Ethernet interface receiver interrupt.
*/
static void
fe_rint ( struct fe_softc * sc, u_char rstat )
{
u_short len;
u_char status;
int i;
/*
* Update statistics if this interrupt is caused by an error.
*/
if ( rstat & ( FE_D1_OVRFLO | FE_D1_CRCERR
| FE_D1_ALGERR | FE_D1_SRTPKT ) ) {
#if FE_DEBUG >= 2
log( LOG_WARNING,
"fe%d: receive error: %s%s%s%s(%02x)\n",
sc->sc_unit,
rstat & FE_D1_OVRFLO ? "OVR " : "",
rstat & FE_D1_CRCERR ? "CRC " : "",
rstat & FE_D1_ALGERR ? "ALG " : "",
rstat & FE_D1_SRTPKT ? "LEN " : "",
rstat );
#endif
sc->sc_if.if_ierrors++;
}
/*
* MB86960 has a flag indicating "receive queue empty."
* We just loop, checking the flag, to pull out all received
* packets.
*
* We limit the number of iterations to avoid infinite-loop.
* The upper bound is set to unrealistic high value.
*/
for (i = 0; i < FE_MAX_RECV_COUNT * 2; i++) {
/* Stop the iteration if 86960 indicates no packets. */
if ( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) break;
/*
* Extract A receive status byte.
* As our 86960 is in 16 bit bus access mode, we have to
* use inw() to get the status byte. The significant
* value is returned in lower 8 bits.
*/
status = ( u_char )inw( sc->ioaddr[ FE_BMPR8 ] );
#if FE_DEBUG >= 4
log( LOG_INFO, "fe%d: receive status = %04x\n",
sc->sc_unit, status );
#endif
/*
* Extract the packet length.
* It is a sum of a header (14 bytes) and a payload.
* CRC has been stripped off by the 86960.
*/
len = inw( sc->ioaddr[ FE_BMPR8 ] );
#if FE_DEBUG >= 1
/*
* If there was an error with the received packet, it
* must be an indication of out-of-sync on receive
* buffer, because we have programmed the 8696x to
* to discard errored packets, even when the interface
* is in promiscuous mode. We have to re-synchronize.
*/
if (!(status & FE_RPH_GOOD)) {
log(LOG_ERR,
"fe%d: corrupted receive status byte (%02x)\n",
sc->arpcom.ac_if.if_unit, status);
sc->arpcom.ac_if.if_ierrors++;
fe_emptybuffer( sc );
break;
}
#endif
#if FE_DEBUG >= 1
/*
* MB86960 checks the packet length and drop big packet
* before passing it to us. There are no chance we can
* get big packets through it, even if they are actually
* sent over a line. Hence, if the length exceeds
* the specified limit, it means some serious failure,
* such as out-of-sync on receive buffer management.
*
* Same for short packets, since we have programmed
* 86960 to drop short packets.
*/
if ( len > ETHER_MAX_LEN - ETHER_CRC_LEN
|| len < ETHER_MIN_LEN - ETHER_CRC_LEN ) {
log( LOG_WARNING,
"fe%d: received a %s packet? (%u bytes)\n",
sc->sc_unit,
len < ETHER_MIN_LEN - ETHER_CRC_LEN
? "partial" : "big",
len );
sc->sc_if.if_ierrors++;
fe_emptybuffer( sc );
break;
}
#endif
/*
* Go get a packet.
*/
if ( fe_get_packet( sc, len ) < 0 ) {
#if FE_DEBUG >= 2
log( LOG_WARNING, "%s%d: out of mbuf;"
" dropping a packet (%u bytes)\n",
sc->sc_unit, len );
#endif
/* Skip a packet, updating statistics. */
sc->sc_if.if_ierrors++;
fe_droppacket( sc, len );
/*
* Try extracting other packets, although they will
* cause out-of-mbuf error again. This is required
* to keep receiver interrupt comming.
* (Earlier versions had a bug on this point.)
*/
continue;
}
/* Successfully received a packet. Update stat. */
sc->sc_if.if_ipackets++;
}
}
/*
* Ethernet interface interrupt processor
*/
void
feintr ( int unit )
{
struct fe_softc *sc = &fe_softc[unit];
u_char tstat, rstat;
/*
* Loop until there are no more new interrupt conditions.
*/
for (;;) {
#if FE_DEBUG >= 4
fe_dump( LOG_INFO, sc, "intr()" );
#endif
/*
* Get interrupt conditions, masking unneeded flags.
*/
tstat = inb( sc->ioaddr[ FE_DLCR0 ] ) & FE_TMASK;
rstat = inb( sc->ioaddr[ FE_DLCR1 ] ) & FE_RMASK;
#if FE_DEBUG >= 1
/* Test for a "dead-lock" condition. */
if ((rstat & FE_D1_PKTRDY) == 0
&& (inb(sc->ioaddr[FE_DLCR5]) & FE_D5_BUFEMP) == 0
&& (inb(sc->ioaddr[FE_DLCR1]) & FE_D1_PKTRDY) == 0) {
/*
* PKTRDY is off, while receive buffer is not empty.
* We did a double check to avoid a race condition...
* So, we should have missed an interrupt.
*/
log(LOG_WARNING,
"fe%d: missed a receiver interrupt?\n",
sc->arpcom.ac_if.if_unit);
/* Simulate the missed interrupt condition. */
rstat |= FE_D1_PKTRDY;
}
#endif
/* Stop processing if there are no interrupts to handle. */
if ( tstat == 0 && rstat == 0 ) break;
/*
* Reset the conditions we are acknowledging.
*/
outb( sc->ioaddr[ FE_DLCR0 ], tstat );
outb( sc->ioaddr[ FE_DLCR1 ], rstat );
/*
* Handle transmitter interrupts. Handle these first because
* the receiver will reset the board under some conditions.
*/
if ( tstat ) {
fe_tint( sc, tstat );
}
/*
* Handle receiver interrupts
*/
if ( rstat ) {
fe_rint( sc, rstat );
}
/*
* Update the multicast address filter if it is
* needed and possible. We do it now, because
* we can make sure the transmission buffer is empty,
* and there is a good chance that the receive queue
* is empty. It will minimize the possibility of
* packet loss.
*/
if ( sc->filter_change
&& sc->txb_count == 0 && sc->txb_sched == 0 ) {
fe_loadmar(sc);
sc->sc_if.if_flags &= ~IFF_OACTIVE;
}
/*
* If it looks like the transmitter can take more data,
* attempt to start output on the interface. This is done
* after handling the receiver interrupt to give the
* receive operation priority.
*
* BTW, I'm not sure in what case the OACTIVE is on at
* this point. Is the following test redundant?
*
* No. This routine polls for both transmitter and
* receiver interrupts. 86960 can raise a receiver
* interrupt when the transmission buffer is full.
*/
if ( ( sc->sc_if.if_flags & IFF_OACTIVE ) == 0 ) {
fe_start( &sc->sc_if );
}
}
}
/*
* Process an ioctl request. This code needs some work - it looks
* pretty ugly.
*/
static int
fe_ioctl ( struct ifnet * ifp, u_long command, caddr_t data )
{
struct fe_softc *sc = ifp->if_softc;
int s, error = 0;
#if FE_DEBUG >= 3
log( LOG_INFO, "fe%d: ioctl(%x)\n", sc->sc_unit, command );
#endif
s = splimp();
switch (command) {
case SIOCSIFADDR:
{
struct ifaddr * ifa = ( struct ifaddr * )data;
sc->sc_if.if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
fe_init( sc->sc_unit ); /* before arp_ifinit */
arp_ifinit( &sc->arpcom, ifa );
break;
#endif
#ifdef IPX
/*
* XXX - This code is probably wrong
*/
case AF_IPX:
{
register struct ipx_addr *ina
= &(IA_SIPX(ifa)->sipx_addr);
if (ipx_nullhost(*ina))
ina->x_host =
*(union ipx_host *) (sc->sc_enaddr); else {
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->sc_enaddr,
sizeof(sc->sc_enaddr));
}
/*
* Set new address
*/
fe_init(sc->sc_unit);
break;
}
#endif
#ifdef INET6
case AF_INET6:
/* IPV6 added by shin 96.2.6 */
fe_init(sc->sc_unit);
ndp6_ifinit(&sc->arpcom, ifa);
break;
#endif
#ifdef NS
/*
* XXX - This code is probably wrong
*/
case AF_NS:
{
register struct ns_addr *ina
= &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *) (sc->sc_enaddr);
else {
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->sc_enaddr,
sizeof(sc->sc_enaddr));
}
/*
* Set new address
*/
fe_init(sc->sc_unit);
break;
}
#endif
default:
fe_init( sc->sc_unit );
break;
}
break;
}
#ifdef SIOCGIFADDR
case SIOCGIFADDR:
{
struct ifreq * ifr = ( struct ifreq * )data;
struct sockaddr * sa = ( struct sockaddr * )&ifr->ifr_data;
bcopy((caddr_t)sc->sc_enaddr,
(caddr_t)sa->sa_data, ETHER_ADDR_LEN);
break;
}
#endif
#ifdef SIOCGIFPHYSADDR
case SIOCGIFPHYSADDR:
{
struct ifreq * ifr = ( struct ifreq * )data;
bcopy((caddr_t)sc->sc_enaddr,
(caddr_t)&ifr->ifr_data, ETHER_ADDR_LEN);
break;
}
#endif
#ifdef notdef
#ifdef SIOCSIFPHYSADDR
case SIOCSIFPHYSADDR:
{
/*
* Set the physical (Ethernet) address of the interface.
* When and by whom is this command used? FIXME.
*/
struct ifreq * ifr = ( struct ifreq * )data;
bcopy((caddr_t)&ifr->ifr_data,
(caddr_t)sc->sc_enaddr, ETHER_ADDR_LEN);
fe_setlinkaddr( sc );
break;
}
#endif
#endif /* notdef */
#ifdef SIOCSIFFLAGS
case SIOCSIFFLAGS:
{
/*
* Switch interface state between "running" and
* "stopped", reflecting the UP flag.
*/
if ( sc->sc_if.if_flags & IFF_UP ) {
if ( ( sc->sc_if.if_flags & IFF_RUNNING ) == 0 ) {
fe_init( sc->sc_unit );
}
} else {
if ( ( sc->sc_if.if_flags & IFF_RUNNING ) != 0 ) {
fe_stop( sc->sc_unit );
}
}
/*
* Promiscuous and/or multicast flags may have changed,
* so reprogram the multicast filter and/or receive mode.
*/
fe_setmode( sc );
#if FE_DEBUG >= 1
/* "ifconfig fe0 debug" to print register dump. */
if ( sc->sc_if.if_flags & IFF_DEBUG ) {
fe_dump( LOG_DEBUG, sc, "SIOCSIFFLAGS(DEBUG)" );
}
#endif
break;
}
#endif
#ifdef SIOCADDMULTI
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
fe_setmode( sc );
error = 0;
break;
#endif
#ifdef SIOCSIFMTU
case SIOCSIFMTU:
{
/*
* Set the interface MTU.
*/
struct ifreq * ifr = ( struct ifreq * )data;
if ( ifr->ifr_mtu > ETHERMTU ) {
error = EINVAL;
} else {
sc->sc_if.if_mtu = ifr->ifr_mtu;
}
break;
}
#endif
default:
error = EINVAL;
}
(void) splx(s);
return (error);
}
/*
* Retrieve packet from receive buffer and send to the next level up via
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
* Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
*/
static int
fe_get_packet ( struct fe_softc * sc, u_short len )
{
struct ether_header *eh;
struct mbuf *m;
/*
* NFS wants the data be aligned to the word (4 byte)
* boundary. Ethernet header has 14 bytes. There is a
* 2-byte gap.
*/
#define NFS_MAGIC_OFFSET 2
/*
* This function assumes that an Ethernet packet fits in an
* mbuf (with a cluster attached when necessary.) On FreeBSD
* 2.0 for x86, which is the primary target of this driver, an
* mbuf cluster has 4096 bytes, and we are happy. On ancient
* BSDs, such as vanilla 4.3 for 386, a cluster size was 1024,
* however. If the following #error message were printed upon
* compile, you need to rewrite this function.
*/
#if ( MCLBYTES < ETHER_MAX_LEN - ETHER_CRC_LEN + NFS_MAGIC_OFFSET )
#error "Too small MCLBYTES to use fe driver."
#endif
/*
* Our strategy has one more problem. There is a policy on
* mbuf cluster allocation. It says that we must have at
* least MINCLSIZE (208 bytes on FreeBSD 2.0 for x86) to
* allocate a cluster. For a packet of a size between
* (MHLEN - 2) to (MINCLSIZE - 2), our code violates the rule...
* On the other hand, the current code is short, simple,
* and fast, however. It does no harmful thing, just waists
* some memory. Any comments? FIXME.
*/
/* Allocate an mbuf with packet header info. */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if ( m == NULL ) return -1;
/* Attach a cluster if this packet doesn't fit in a normal mbuf. */
if ( len > MHLEN - NFS_MAGIC_OFFSET ) {
MCLGET( m, M_DONTWAIT );
if ( !( m->m_flags & M_EXT ) ) {
m_freem( m );
return -1;
}
}
/* Initialize packet header info. */
m->m_pkthdr.rcvif = &sc->sc_if;
m->m_pkthdr.len = len;
/* Set the length of this packet. */
m->m_len = len;
/* The following silliness is to make NFS happy */
m->m_data += NFS_MAGIC_OFFSET;
/* Get a packet. */
insw( sc->ioaddr[ FE_BMPR8 ], m->m_data, ( len + 1 ) >> 1 );
/* Get (actually just point to) the header part. */
eh = mtod( m, struct ether_header *);
#define ETHER_ADDR_IS_MULTICAST(A) (*(char *)(A) & 1)
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If it is, hand off the raw packet to bpf.
*/
if ( sc->sc_if.if_bpf ) {
bpf_mtap( &sc->sc_if, m );
}
#endif
/*
* Make sure this packet is (or may be) directed to us.
* That is, the packet is either unicasted to our address,
* or broad/multi-casted. If any other packets are
* received, it is an indication of an error -- probably
* 86960 is in a wrong operation mode.
* Promiscuous mode is an exception. Under the mode, all
* packets on the media must be received. (We must have
* programmed the 86960 so.)
*/
if ( ( sc->sc_if.if_flags & IFF_PROMISC )
&& !ETHER_ADDR_IS_MULTICAST( eh->ether_dhost )
&& bcmp( eh->ether_dhost, sc->sc_enaddr, ETHER_ADDR_LEN ) != 0 ) {
/*
* The packet was not for us. This is normal since
* we are now in promiscuous mode. Just drop the packet.
*/
m_freem( m );
return 0;
}
#if FE_DEBUG >= 3
if ( !ETHER_ADDR_IS_MULTICAST( eh->ether_dhost )
&& bcmp( eh->ether_dhost, sc->sc_enaddr, ETHER_ADDR_LEN ) != 0 ) {
/*
* This packet was not for us. We can't be in promiscuous
* mode since the case was handled by above test.
* We found an error (of this driver.)
*/
log( LOG_WARNING,
"fe%d: got an unwanted packet, dst = %6D\n",
sc->sc_unit, eh->ether_dhost , ":" );
m_freem( m );
return 0;
}
#endif
/* Strip off the Ethernet header. */
m->m_pkthdr.len -= sizeof ( struct ether_header );
m->m_len -= sizeof ( struct ether_header );
m->m_data += sizeof ( struct ether_header );
/* Feed the packet to upper layer. */
ether_input( &sc->sc_if, eh, m );
return 0;
}
/*
* Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
* Returns number of bytes actually written, including length word.
*
* If an mbuf chain is too long for an Ethernet frame, it is not sent.
* Packets shorter than Ethernet minimum are legal, and we pad them
* before sending out. An exception is "partial" packets which are
* shorter than mandatory Ethernet header.
*/
static void
fe_write_mbufs ( struct fe_softc *sc, struct mbuf *m )
{
u_short addr_bmpr8 = sc->ioaddr[ FE_BMPR8 ];
u_short length, len;
struct mbuf *mp;
u_char *data;
u_short savebyte; /* WARNING: Architecture dependent! */
#define NO_PENDING_BYTE 0xFFFF
static u_char padding [ ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_HDR_LEN ];
#if FE_DEBUG >= 1
/* First, count up the total number of bytes to copy */
length = 0;
for ( mp = m; mp != NULL; mp = mp->m_next ) {
length += mp->m_len;
}
#else
/* Just use the length value in the packet header. */
length = m->m_pkthdr.len;
#endif
#if FE_DEBUG >= 2
/* Check if this matches the one in the packet header. */
if ( length != m->m_pkthdr.len ) {
log( LOG_WARNING, "fe%d: packet length mismatch? (%d/%d)\n",
sc->sc_unit, length, m->m_pkthdr.len );
}
#endif
#if FE_DEBUG >= 1
/*
* Should never send big packets. If such a packet is passed,
* it should be a bug of upper layer. We just ignore it.
* ... Partial (too short) packets, neither.
*/
if ( length < ETHER_HDR_LEN
|| length > ETHER_MAX_LEN - ETHER_CRC_LEN ) {
log( LOG_ERR,
"fe%d: got an out-of-spec packet (%u bytes) to send\n",
sc->sc_unit, length );
sc->sc_if.if_oerrors++;
return;
}
#endif
/*
* Put the length word for this frame.
* Does 86960 accept odd length? -- Yes.
* Do we need to pad the length to minimum size by ourselves?
* -- Generally yes. But for (or will be) the last
* packet in the transmission buffer, we can skip the
* padding process. It may gain performance slightly. FIXME.
*/
outw( addr_bmpr8, max( length, ETHER_MIN_LEN - ETHER_CRC_LEN ) );
/*
* Update buffer status now.
* Truncate the length up to an even number, since we use outw().
*/
length = ( length + 1 ) & ~1;
sc->txb_free -= FE_DATA_LEN_LEN + max( length, ETHER_MIN_LEN - ETHER_CRC_LEN);
sc->txb_count++;
/*
* Transfer the data from mbuf chain to the transmission buffer.
* MB86960 seems to require that data be transferred as words, and
* only words. So that we require some extra code to patch
* over odd-length mbufs.
*/
savebyte = NO_PENDING_BYTE;
for ( mp = m; mp != 0; mp = mp->m_next ) {
/* Ignore empty mbuf. */
len = mp->m_len;
if ( len == 0 ) continue;
/* Find the actual data to send. */
data = mtod(mp, caddr_t);
/* Finish the last byte. */
if ( savebyte != NO_PENDING_BYTE ) {
outw( addr_bmpr8, savebyte | ( *data << 8 ) );
data++;
len--;
savebyte = NO_PENDING_BYTE;
}
/* output contiguous words */
if (len > 1) {
outsw( addr_bmpr8, data, len >> 1);
data += len & ~1;
len &= 1;
}
/* Save a remaining byte, if there is one. */
if ( len > 0 ) {
savebyte = *data;
}
}
/* Spit the last byte, if the length is odd. */
if ( savebyte != NO_PENDING_BYTE ) {
outw( addr_bmpr8, savebyte );
}
/* Pad to the Ethernet minimum length, if the packet is too short. */
if ( length < ETHER_MIN_LEN - ETHER_CRC_LEN ) {
outsw( addr_bmpr8, padding, ( ETHER_MIN_LEN - ETHER_CRC_LEN - length ) >> 1);
}
}
/*
* Compute hash value for an Ethernet address
*/
static int
fe_hash ( u_char * ep )
{
#define FE_HASH_MAGIC_NUMBER 0xEDB88320L
u_long hash = 0xFFFFFFFFL;
int i, j;
u_char b;
u_long m;
for ( i = ETHER_ADDR_LEN; --i >= 0; ) {
b = *ep++;
for ( j = 8; --j >= 0; ) {
m = hash;
hash >>= 1;
if ( ( m ^ b ) & 1 ) hash ^= FE_HASH_MAGIC_NUMBER;
b >>= 1;
}
}
return ( ( int )( hash >> 26 ) );
}
/*
* Compute the multicast address filter from the
* list of multicast addresses we need to listen to.
*/
static struct fe_filter
fe_mcaf ( struct fe_softc *sc )
{
int index;
struct fe_filter filter;
struct ifmultiaddr *ifma;
filter = fe_filter_nothing;
for (ifma = sc->arpcom.ac_if.if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
index = fe_hash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
#if FE_DEBUG >= 4
log( LOG_INFO, "fe%d: hash(%6D) == %d\n",
sc->sc_unit, enm->enm_addrlo , ":", index );
#endif
filter.data[index >> 3] |= 1 << (index & 7);
}
return ( filter );
}
/*
* Calculate a new "multicast packet filter" and put the 86960
* receiver in appropriate mode.
*/
static void
fe_setmode ( struct fe_softc *sc )
{
int flags = sc->sc_if.if_flags;
/*
* If the interface is not running, we postpone the update
* process for receive modes and multicast address filter
* until the interface is restarted. It reduces some
* complicated job on maintaining chip states. (Earlier versions
* of this driver had a bug on that point...)
*
* To complete the trick, fe_init() calls fe_setmode() after
* restarting the interface.
*/
if ( !( flags & IFF_RUNNING ) ) return;
/*
* Promiscuous mode is handled separately.
*/
if ( flags & IFF_PROMISC ) {
/*
* Program 86960 to receive all packets on the segment
* including those directed to other stations.
* Multicast filter stored in MARs are ignored
* under this setting, so we don't need to update it.
*
* Promiscuous mode in FreeBSD 2 is used solely by
* BPF, and BPF only listens to valid (no error) packets.
* So, we ignore erroneous ones even in this mode.
* (Older versions of fe driver mistook the point.)
*/
outb( sc->ioaddr[ FE_DLCR5 ],
sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1 );
sc->filter_change = 0;
#if FE_DEBUG >= 3
log( LOG_INFO, "fe%d: promiscuous mode\n", sc->sc_unit );
#endif
return;
}
/*
* Turn the chip to the normal (non-promiscuous) mode.
*/
outb( sc->ioaddr[ FE_DLCR5 ], sc->proto_dlcr5 | FE_D5_AFM1 );
/*
* Find the new multicast filter value.
* I'm not sure we have to handle modes other than MULTICAST.
* Who sets ALLMULTI? Who turns MULTICAST off? FIXME.
*/
if ( flags & IFF_ALLMULTI ) {
sc->filter = fe_filter_all;
} else if ( flags & IFF_MULTICAST ) {
sc->filter = fe_mcaf( sc );
} else {
sc->filter = fe_filter_nothing;
}
sc->filter_change = 1;
#if FE_DEBUG >= 3
log( LOG_INFO, "fe%d: address filter: [%8D]\n",
sc->sc_unit, sc->filter.data, " " );
#endif
/*
* We have to update the multicast filter in the 86960, A.S.A.P.
*
* Note that the DLC (Data Link Control unit, i.e. transmitter
* and receiver) must be stopped when feeding the filter, and
* DLC trashes all packets in both transmission and receive
* buffers when stopped.
*
* ... Are the above sentences correct? I have to check the
* manual of the MB86960A. FIXME.
*
* To reduce the packet loss, we delay the filter update
* process until buffers are empty.
*/
if ( sc->txb_sched == 0 && sc->txb_count == 0
&& !( inb( sc->ioaddr[ FE_DLCR1 ] ) & FE_D1_PKTRDY ) ) {
/*
* Buffers are (apparently) empty. Load
* the new filter value into MARs now.
*/
fe_loadmar(sc);
} else {
/*
* Buffers are not empty. Mark that we have to update
* the MARs. The new filter will be loaded by feintr()
* later.
*/
#if FE_DEBUG >= 4
log( LOG_INFO, "fe%d: filter change delayed\n", sc->sc_unit );
#endif
}
}
/*
* Load a new multicast address filter into MARs.
*
* The caller must have splimp'ed before fe_loadmar.
* This function starts the DLC upon return. So it can be called only
* when the chip is working, i.e., from the driver's point of view, when
* a device is RUNNING. (I mistook the point in previous versions.)
*/
static void
fe_loadmar ( struct fe_softc * sc )
{
/* Stop the DLC (transmitter and receiver). */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
DELAY( 200 );
/* Select register bank 1 for MARs. */
outb( sc->ioaddr[ FE_DLCR7 ],
sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP );
/* Copy filter value into the registers. */
outblk( sc, FE_MAR8, sc->filter.data, FE_FILTER_LEN );
/* Restore the bank selection for BMPRs (i.e., runtime registers). */
outb( sc->ioaddr[ FE_DLCR7 ],
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP );
/* Restart the DLC. */
DELAY( 200 );
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_ENABLE );
DELAY( 200 );
/* We have just updated the filter. */
sc->filter_change = 0;
#if FE_DEBUG >= 3
log( LOG_INFO, "fe%d: address filter changed\n", sc->sc_unit );
#endif
}
#if FE_DEBUG >= 1
static void
fe_dump ( int level, struct fe_softc * sc, char * message )
{
log( level, "fe%d: %s,"
" DLCR = %02x %02x %02x %02x %02x %02x %02x %02x,"
" BMPR = xx xx %02x %02x %02x %02x %02x %02x,"
" asic = %02x %02x %02x %02x %02x %02x %02x %02x"
" + %02x %02x %02x %02x %02x %02x %02x %02x\n",
sc->sc_unit, message ? message : "registers",
inb( sc->ioaddr[ FE_DLCR0 ] ), inb( sc->ioaddr[ FE_DLCR1 ] ),
inb( sc->ioaddr[ FE_DLCR2 ] ), inb( sc->ioaddr[ FE_DLCR3 ] ),
inb( sc->ioaddr[ FE_DLCR4 ] ), inb( sc->ioaddr[ FE_DLCR5 ] ),
inb( sc->ioaddr[ FE_DLCR6 ] ), inb( sc->ioaddr[ FE_DLCR7 ] ),
inb( sc->ioaddr[ FE_BMPR10 ] ), inb( sc->ioaddr[ FE_BMPR11 ] ),
inb( sc->ioaddr[ FE_BMPR12 ] ), inb( sc->ioaddr[ FE_BMPR13 ] ),
inb( sc->ioaddr[ FE_BMPR14 ] ), inb( sc->ioaddr[ FE_BMPR15 ] ),
inb( sc->ioaddr[ 0x10 ] ), inb( sc->ioaddr[ 0x11 ] ),
inb( sc->ioaddr[ 0x12 ] ), inb( sc->ioaddr[ 0x13 ] ),
inb( sc->ioaddr[ 0x14 ] ), inb( sc->ioaddr[ 0x15 ] ),
inb( sc->ioaddr[ 0x16 ] ), inb( sc->ioaddr[ 0x17 ] ),
inb( sc->ioaddr[ 0x18 ] ), inb( sc->ioaddr[ 0x19 ] ),
inb( sc->ioaddr[ 0x1A ] ), inb( sc->ioaddr[ 0x1B ] ),
inb( sc->ioaddr[ 0x1C ] ), inb( sc->ioaddr[ 0x1D ] ),
inb( sc->ioaddr[ 0x1E ] ), inb( sc->ioaddr[ 0x1F ] ) );
}
#endif