freebsd-skq/sys/dev/neta/if_mvneta.c
Pawel Biernacki 7029da5c36 Mark more nodes as CTLFLAG_MPSAFE or CTLFLAG_NEEDGIANT (17 of many)
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are
still not MPSAFE (or already are but aren’t properly marked).
Use it in preparation for a general review of all nodes.

This is non-functional change that adds annotations to SYSCTL_NODE and
SYSCTL_PROC nodes using one of the soon-to-be-required flags.

Mark all obvious cases as MPSAFE.  All entries that haven't been marked
as MPSAFE before are by default marked as NEEDGIANT

Approved by:	kib (mentor, blanket)
Commented by:	kib, gallatin, melifaro
Differential Revision:	https://reviews.freebsd.org/D23718
2020-02-26 14:26:36 +00:00

3646 lines
90 KiB
C

/*
* Copyright (c) 2017 Stormshield.
* Copyright (c) 2017 Semihalf.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_platform.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/smp.h>
#include <sys/taskqueue.h>
#ifdef MVNETA_KTR
#include <sys/ktr.h>
#endif
#include <net/ethernet.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp_lro.h>
#include <sys/sockio.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mdio/mdio.h>
#include <arm/mv/mvvar.h>
#if !defined(__aarch64__)
#include <arm/mv/mvreg.h>
#include <arm/mv/mvwin.h>
#endif
#include "if_mvnetareg.h"
#include "if_mvnetavar.h"
#include "miibus_if.h"
#include "mdio_if.h"
#ifdef MVNETA_DEBUG
#define STATIC /* nothing */
#else
#define STATIC static
#endif
#define DASSERT(x) KASSERT((x), (#x))
#define A3700_TCLK_250MHZ 250000000
/* Device Register Initialization */
STATIC int mvneta_initreg(struct ifnet *);
/* Descriptor Ring Control for each of queues */
STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
STATIC int mvneta_dma_create(struct mvneta_softc *);
/* Rx/Tx Queue Control */
STATIC int mvneta_rx_queue_init(struct ifnet *, int);
STATIC int mvneta_tx_queue_init(struct ifnet *, int);
STATIC int mvneta_rx_queue_enable(struct ifnet *, int);
STATIC int mvneta_tx_queue_enable(struct ifnet *, int);
STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
/* Interrupt Handlers */
STATIC void mvneta_disable_intr(struct mvneta_softc *);
STATIC void mvneta_enable_intr(struct mvneta_softc *);
STATIC void mvneta_rxtxth_intr(void *);
STATIC int mvneta_misc_intr(struct mvneta_softc *);
STATIC void mvneta_tick(void *);
/* struct ifnet and mii callbacks*/
STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
#ifdef MVNETA_MULTIQUEUE
STATIC int mvneta_transmit(struct ifnet *, struct mbuf *);
#else /* !MVNETA_MULTIQUEUE */
STATIC void mvneta_start(struct ifnet *);
#endif
STATIC void mvneta_qflush(struct ifnet *);
STATIC void mvneta_tx_task(void *, int);
STATIC int mvneta_ioctl(struct ifnet *, u_long, caddr_t);
STATIC void mvneta_init(void *);
STATIC void mvneta_init_locked(void *);
STATIC void mvneta_stop(struct mvneta_softc *);
STATIC void mvneta_stop_locked(struct mvneta_softc *);
STATIC int mvneta_mediachange(struct ifnet *);
STATIC void mvneta_mediastatus(struct ifnet *, struct ifmediareq *);
STATIC void mvneta_portup(struct mvneta_softc *);
STATIC void mvneta_portdown(struct mvneta_softc *);
/* Link State Notify */
STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
STATIC int mvneta_update_media(struct mvneta_softc *, int);
STATIC void mvneta_adjust_link(struct mvneta_softc *);
STATIC void mvneta_update_eee(struct mvneta_softc *);
STATIC void mvneta_update_fc(struct mvneta_softc *);
STATIC void mvneta_link_isr(struct mvneta_softc *);
STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
STATIC void mvneta_linkup(struct mvneta_softc *);
STATIC void mvneta_linkdown(struct mvneta_softc *);
STATIC void mvneta_linkreset(struct mvneta_softc *);
/* Tx Subroutines */
STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
STATIC void mvneta_tx_set_csumflag(struct ifnet *,
struct mvneta_tx_desc *, struct mbuf *);
STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
STATIC void mvneta_tx_drain(struct mvneta_softc *);
/* Rx Subroutines */
STATIC int mvneta_rx(struct mvneta_softc *, int, int);
STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
STATIC void mvneta_rx_set_csumflag(struct ifnet *,
struct mvneta_rx_desc *, struct mbuf *);
STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
/* MAC address filter */
STATIC void mvneta_filter_setup(struct mvneta_softc *);
/* sysctl(9) */
STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
STATIC void sysctl_mvneta_init(struct mvneta_softc *);
/* MIB */
STATIC void mvneta_clear_mib(struct mvneta_softc *);
STATIC void mvneta_update_mib(struct mvneta_softc *);
/* Switch */
STATIC boolean_t mvneta_find_ethernet_prop_switch(phandle_t, phandle_t);
STATIC boolean_t mvneta_has_switch(device_t);
#define mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
#define mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
STATIC struct mtx mii_mutex;
STATIC int mii_init = 0;
/* Device */
STATIC int mvneta_detach(device_t);
/* MII */
STATIC int mvneta_miibus_readreg(device_t, int, int);
STATIC int mvneta_miibus_writereg(device_t, int, int, int);
/* Clock */
STATIC uint32_t mvneta_get_clk(void);
static device_method_t mvneta_methods[] = {
/* Device interface */
DEVMETHOD(device_detach, mvneta_detach),
/* MII interface */
DEVMETHOD(miibus_readreg, mvneta_miibus_readreg),
DEVMETHOD(miibus_writereg, mvneta_miibus_writereg),
/* MDIO interface */
DEVMETHOD(mdio_readreg, mvneta_miibus_readreg),
DEVMETHOD(mdio_writereg, mvneta_miibus_writereg),
/* End */
DEVMETHOD_END
};
DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
DRIVER_MODULE(miibus, mvneta, miibus_driver, miibus_devclass, 0, 0);
DRIVER_MODULE(mdio, mvneta, mdio_driver, mdio_devclass, 0, 0);
MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
MODULE_DEPEND(mvneta, ether, 1, 1, 1);
MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
/*
* List of MIB register and names
*/
enum mvneta_mib_idx
{
MVNETA_MIB_RX_GOOD_OCT_IDX,
MVNETA_MIB_RX_BAD_OCT_IDX,
MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
MVNETA_MIB_RX_GOOD_FRAME_IDX,
MVNETA_MIB_RX_BAD_FRAME_IDX,
MVNETA_MIB_RX_BCAST_FRAME_IDX,
MVNETA_MIB_RX_MCAST_FRAME_IDX,
MVNETA_MIB_RX_FRAME64_OCT_IDX,
MVNETA_MIB_RX_FRAME127_OCT_IDX,
MVNETA_MIB_RX_FRAME255_OCT_IDX,
MVNETA_MIB_RX_FRAME511_OCT_IDX,
MVNETA_MIB_RX_FRAME1023_OCT_IDX,
MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
MVNETA_MIB_TX_GOOD_OCT_IDX,
MVNETA_MIB_TX_GOOD_FRAME_IDX,
MVNETA_MIB_TX_EXCES_COL_IDX,
MVNETA_MIB_TX_MCAST_FRAME_IDX,
MVNETA_MIB_TX_BCAST_FRAME_IDX,
MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
MVNETA_MIB_FC_SENT_IDX,
MVNETA_MIB_FC_GOOD_IDX,
MVNETA_MIB_FC_BAD_IDX,
MVNETA_MIB_PKT_UNDERSIZE_IDX,
MVNETA_MIB_PKT_FRAGMENT_IDX,
MVNETA_MIB_PKT_OVERSIZE_IDX,
MVNETA_MIB_PKT_JABBER_IDX,
MVNETA_MIB_MAC_RX_ERR_IDX,
MVNETA_MIB_MAC_CRC_ERR_IDX,
MVNETA_MIB_MAC_COL_IDX,
MVNETA_MIB_MAC_LATE_COL_IDX,
};
STATIC struct mvneta_mib_def {
uint32_t regnum;
int reg64;
const char *sysctl_name;
const char *desc;
} mvneta_mib_list[] = {
[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
"rx_good_oct", "Good Octets Rx"},
[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
"rx_bad_oct", "Bad Octets Rx"},
[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
"tx_mac_err", "MAC Transmit Error"},
[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
"rx_good_frame", "Good Frames Rx"},
[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
"rx_bad_frame", "Bad Frames Rx"},
[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
"rx_bcast_frame", "Broadcast Frames Rx"},
[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
"rx_mcast_frame", "Multicast Frames Rx"},
[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
"rx_frame_1_64", "Frame Size 1 - 64"},
[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
"rx_frame_65_127", "Frame Size 65 - 127"},
[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
"rx_frame_128_255", "Frame Size 128 - 255"},
[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
"rx_frame_256_511", "Frame Size 256 - 511"},
[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
"rx_frame_512_1023", "Frame Size 512 - 1023"},
[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
"rx_fame_1024_max", "Frame Size 1024 - Max"},
[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
"tx_good_oct", "Good Octets Tx"},
[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
"tx_good_frame", "Good Frames Tx"},
[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
"tx_exces_collision", "Excessive Collision"},
[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
"tx_mcast_frame", "Multicast Frames Tx"},
[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
"tx_bcast_frame", "Broadcast Frames Tx"},
[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
"tx_mac_ctl_err", "Unknown MAC Control"},
[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
"fc_tx", "Flow Control Tx"},
[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
"fc_rx_good", "Good Flow Control Rx"},
[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
"fc_rx_bad", "Bad Flow Control Rx"},
[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
"pkt_undersize", "Undersized Packets Rx"},
[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
"pkt_fragment", "Fragmented Packets Rx"},
[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
"pkt_oversize", "Oversized Packets Rx"},
[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
"pkt_jabber", "Jabber Packets Rx"},
[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
"mac_rx_err", "MAC Rx Errors"},
[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
"mac_crc_err", "MAC CRC Errors"},
[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
"mac_collision", "MAC Collision"},
[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
"mac_late_collision", "MAC Late Collision"},
};
static struct resource_spec res_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0}
};
static struct {
driver_intr_t *handler;
char * description;
} mvneta_intrs[] = {
{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
};
STATIC uint32_t
mvneta_get_clk()
{
#if defined(__aarch64__)
return (A3700_TCLK_250MHZ);
#else
return (get_tclk());
#endif
}
static int
mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
{
unsigned int mac_h;
unsigned int mac_l;
mac_l = (addr[4] << 8) | (addr[5]);
mac_h = (addr[0] << 24) | (addr[1] << 16) |
(addr[2] << 8) | (addr[3] << 0);
MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
return (0);
}
static int
mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
{
uint32_t mac_l, mac_h;
#ifdef FDT
if (mvneta_fdt_mac_address(sc, addr) == 0)
return (0);
#endif
/*
* Fall back -- use the currently programmed address.
*/
mac_l = MVNETA_READ(sc, MVNETA_MACAL);
mac_h = MVNETA_READ(sc, MVNETA_MACAH);
if (mac_l == 0 && mac_h == 0) {
/*
* Generate pseudo-random MAC.
* Set lower part to random number | unit number.
*/
mac_l = arc4random() & ~0xff;
mac_l |= device_get_unit(sc->dev) & 0xff;
mac_h = arc4random();
mac_h &= ~(3 << 24); /* Clear multicast and LAA bits */
if (bootverbose) {
device_printf(sc->dev,
"Could not acquire MAC address. "
"Using randomized one.\n");
}
}
addr[0] = (mac_h & 0xff000000) >> 24;
addr[1] = (mac_h & 0x00ff0000) >> 16;
addr[2] = (mac_h & 0x0000ff00) >> 8;
addr[3] = (mac_h & 0x000000ff);
addr[4] = (mac_l & 0x0000ff00) >> 8;
addr[5] = (mac_l & 0x000000ff);
return (0);
}
STATIC boolean_t
mvneta_find_ethernet_prop_switch(phandle_t ethernet, phandle_t node)
{
boolean_t ret;
phandle_t child, switch_eth_handle, switch_eth;
for (child = OF_child(node); child != 0; child = OF_peer(child)) {
if (OF_getencprop(child, "ethernet", (void*)&switch_eth_handle,
sizeof(switch_eth_handle)) > 0) {
if (switch_eth_handle > 0) {
switch_eth = OF_node_from_xref(
switch_eth_handle);
if (switch_eth == ethernet)
return (true);
}
}
ret = mvneta_find_ethernet_prop_switch(ethernet, child);
if (ret != 0)
return (ret);
}
return (false);
}
STATIC boolean_t
mvneta_has_switch(device_t self)
{
phandle_t node;
node = ofw_bus_get_node(self);
return mvneta_find_ethernet_prop_switch(node, OF_finddevice("/"));
}
STATIC int
mvneta_dma_create(struct mvneta_softc *sc)
{
size_t maxsize, maxsegsz;
size_t q;
int error;
/*
* Create Tx DMA
*/
maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* parent */
16, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
maxsize, /* maxsize */
1, /* nsegments */
maxsegsz, /* maxsegsz */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->tx_dtag); /* dmat */
if (error != 0) {
device_printf(sc->dev,
"Failed to create DMA tag for Tx descriptors.\n");
goto fail;
}
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
MVNETA_MAX_FRAME, /* maxsize */
MVNETA_TX_SEGLIMIT, /* nsegments */
MVNETA_MAX_FRAME, /* maxsegsz */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->txmbuf_dtag);
if (error != 0) {
device_printf(sc->dev,
"Failed to create DMA tag for Tx mbufs.\n");
goto fail;
}
for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
error = mvneta_ring_alloc_tx_queue(sc, q);
if (error != 0) {
device_printf(sc->dev,
"Failed to allocate DMA safe memory for TxQ: %zu\n", q);
goto fail;
}
}
/*
* Create Rx DMA.
*/
/* Create tag for Rx descripors */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* parent */
32, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
1, /* nsegments */
sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->rx_dtag); /* dmat */
if (error != 0) {
device_printf(sc->dev,
"Failed to create DMA tag for Rx descriptors.\n");
goto fail;
}
/* Create tag for Rx buffers */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* parent */
32, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
MVNETA_MAX_FRAME, 1, /* maxsize, nsegments */
MVNETA_MAX_FRAME, /* maxsegsz */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->rxbuf_dtag); /* dmat */
if (error != 0) {
device_printf(sc->dev,
"Failed to create DMA tag for Rx buffers.\n");
goto fail;
}
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
device_printf(sc->dev,
"Failed to allocate DMA safe memory for RxQ: %zu\n", q);
goto fail;
}
}
return (0);
fail:
mvneta_detach(sc->dev);
return (error);
}
/* ARGSUSED */
int
mvneta_attach(device_t self)
{
struct mvneta_softc *sc;
struct ifnet *ifp;
device_t child;
int ifm_target;
int q, error;
#if !defined(__aarch64__)
uint32_t reg;
#endif
sc = device_get_softc(self);
sc->dev = self;
mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
error = bus_alloc_resources(self, res_spec, sc->res);
if (error) {
device_printf(self, "could not allocate resources\n");
return (ENXIO);
}
sc->version = MVNETA_READ(sc, MVNETA_PV);
device_printf(self, "version is %x\n", sc->version);
callout_init(&sc->tick_ch, 0);
/*
* make sure DMA engines are in reset state
*/
MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
#if !defined(__aarch64__)
/*
* Disable port snoop for buffers and descriptors
* to avoid L2 caching of both without DRAM copy.
* Obtain coherency settings from the first MBUS
* window attribute.
*/
if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
}
#endif
/*
* MAC address
*/
if (mvneta_get_mac_address(sc, sc->enaddr)) {
device_printf(self, "no mac address.\n");
return (ENXIO);
}
mvneta_set_mac_address(sc, sc->enaddr);
mvneta_disable_intr(sc);
/* Allocate network interface */
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(self, "if_alloc() failed\n");
mvneta_detach(self);
return (ENOMEM);
}
if_initname(ifp, device_get_name(self), device_get_unit(self));
/*
* We can support 802.1Q VLAN-sized frames and jumbo
* Ethernet frames.
*/
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
#ifdef MVNETA_MULTIQUEUE
ifp->if_transmit = mvneta_transmit;
ifp->if_qflush = mvneta_qflush;
#else /* !MVNETA_MULTIQUEUE */
ifp->if_start = mvneta_start;
ifp->if_snd.ifq_drv_maxlen = MVNETA_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
#endif
ifp->if_init = mvneta_init;
ifp->if_ioctl = mvneta_ioctl;
/*
* We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
*/
ifp->if_capabilities |= IFCAP_HWCSUM;
/*
* As VLAN hardware tagging is not supported
* but is necessary to perform VLAN hardware checksums,
* it is done in the driver
*/
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
/*
* Currently IPv6 HW checksum is broken, so make sure it is disabled.
*/
ifp->if_capabilities &= ~IFCAP_HWCSUM_IPV6;
ifp->if_capenable = ifp->if_capabilities;
/*
* Disabled option(s):
* - Support for Large Receive Offload
*/
ifp->if_capabilities |= IFCAP_LRO;
ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
sc->rx_frame_size = MCLBYTES; /* ether_ifattach() always sets normal mtu */
/*
* Device DMA Buffer allocation.
* Handles resource deallocation in case of failure.
*/
error = mvneta_dma_create(sc);
if (error != 0) {
mvneta_detach(self);
return (error);
}
/* Initialize queues */
for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
error = mvneta_ring_init_tx_queue(sc, q);
if (error != 0) {
mvneta_detach(self);
return (error);
}
}
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
error = mvneta_ring_init_rx_queue(sc, q);
if (error != 0) {
mvneta_detach(self);
return (error);
}
}
ether_ifattach(ifp, sc->enaddr);
/*
* Enable DMA engines and Initialize Device Registers.
*/
MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
mvneta_sc_lock(sc);
mvneta_filter_setup(sc);
mvneta_sc_unlock(sc);
mvneta_initreg(ifp);
/*
* Now MAC is working, setup MII.
*/
if (mii_init == 0) {
/*
* MII bus is shared by all MACs and all PHYs in SoC.
* serializing the bus access should be safe.
*/
mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
mii_init = 1;
}
/* Attach PHY(s) */
if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
MII_OFFSET_ANY, 0);
if (error != 0) {
if (bootverbose) {
device_printf(self,
"MII attach failed, error: %d\n", error);
}
ether_ifdetach(sc->ifp);
mvneta_detach(self);
return (error);
}
sc->mii = device_get_softc(sc->miibus);
sc->phy_attached = 1;
/* Disable auto-negotiation in MAC - rely on PHY layer */
mvneta_update_autoneg(sc, FALSE);
} else if (sc->use_inband_status == TRUE) {
/* In-band link status */
ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
mvneta_mediastatus);
/* Configure media */
ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
0, NULL);
ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
0, NULL);
ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
0, NULL);
ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
/* Enable auto-negotiation */
mvneta_update_autoneg(sc, TRUE);
mvneta_sc_lock(sc);
if (MVNETA_IS_LINKUP(sc))
mvneta_linkup(sc);
else
mvneta_linkdown(sc);
mvneta_sc_unlock(sc);
} else {
/* Fixed-link, use predefined values */
mvneta_update_autoneg(sc, FALSE);
ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
mvneta_mediastatus);
ifm_target = IFM_ETHER;
switch (sc->phy_speed) {
case 2500:
if (sc->phy_mode != MVNETA_PHY_SGMII &&
sc->phy_mode != MVNETA_PHY_QSGMII) {
device_printf(self,
"2.5G speed can work only in (Q)SGMII mode\n");
ether_ifdetach(sc->ifp);
mvneta_detach(self);
return (ENXIO);
}
ifm_target |= IFM_2500_T;
break;
case 1000:
ifm_target |= IFM_1000_T;
break;
case 100:
ifm_target |= IFM_100_TX;
break;
case 10:
ifm_target |= IFM_10_T;
break;
default:
ether_ifdetach(sc->ifp);
mvneta_detach(self);
return (ENXIO);
}
if (sc->phy_fdx)
ifm_target |= IFM_FDX;
else
ifm_target |= IFM_HDX;
ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
if_link_state_change(sc->ifp, LINK_STATE_UP);
if (mvneta_has_switch(self)) {
if (bootverbose)
device_printf(self, "This device is attached to a switch\n");
child = device_add_child(sc->dev, "mdio", -1);
if (child == NULL) {
ether_ifdetach(sc->ifp);
mvneta_detach(self);
return (ENXIO);
}
bus_generic_attach(sc->dev);
bus_generic_attach(child);
}
/* Configure MAC media */
mvneta_update_media(sc, ifm_target);
}
sysctl_mvneta_init(sc);
callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
error = bus_setup_intr(self, sc->res[1],
INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
&sc->ih_cookie[0]);
if (error) {
device_printf(self, "could not setup %s\n",
mvneta_intrs[0].description);
ether_ifdetach(sc->ifp);
mvneta_detach(self);
return (error);
}
return (0);
}
STATIC int
mvneta_detach(device_t dev)
{
struct mvneta_softc *sc;
int q;
sc = device_get_softc(dev);
mvneta_stop(sc);
/* Detach network interface */
if (sc->ifp)
if_free(sc->ifp);
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
mvneta_ring_dealloc_rx_queue(sc, q);
for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
mvneta_ring_dealloc_tx_queue(sc, q);
if (sc->tx_dtag != NULL)
bus_dma_tag_destroy(sc->tx_dtag);
if (sc->rx_dtag != NULL)
bus_dma_tag_destroy(sc->rx_dtag);
if (sc->txmbuf_dtag != NULL)
bus_dma_tag_destroy(sc->txmbuf_dtag);
if (sc->rxbuf_dtag != NULL)
bus_dma_tag_destroy(sc->rxbuf_dtag);
bus_release_resources(dev, res_spec, sc->res);
return (0);
}
/*
* MII
*/
STATIC int
mvneta_miibus_readreg(device_t dev, int phy, int reg)
{
struct mvneta_softc *sc;
struct ifnet *ifp;
uint32_t smi, val;
int i;
sc = device_get_softc(dev);
ifp = sc->ifp;
mtx_lock(&mii_mutex);
for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
break;
DELAY(1);
}
if (i == MVNETA_PHY_TIMEOUT) {
if_printf(ifp, "SMI busy timeout\n");
mtx_unlock(&mii_mutex);
return (-1);
}
smi = MVNETA_SMI_PHYAD(phy) |
MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
MVNETA_WRITE(sc, MVNETA_SMI, smi);
for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
break;
DELAY(1);
}
if (i == MVNETA_PHY_TIMEOUT) {
if_printf(ifp, "SMI busy timeout\n");
mtx_unlock(&mii_mutex);
return (-1);
}
for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
smi = MVNETA_READ(sc, MVNETA_SMI);
if (smi & MVNETA_SMI_READVALID)
break;
DELAY(1);
}
if (i == MVNETA_PHY_TIMEOUT) {
if_printf(ifp, "SMI busy timeout\n");
mtx_unlock(&mii_mutex);
return (-1);
}
mtx_unlock(&mii_mutex);
#ifdef MVNETA_KTR
CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", ifp->if_xname, i,
MVNETA_PHY_TIMEOUT);
#endif
val = smi & MVNETA_SMI_DATA_MASK;
#ifdef MVNETA_KTR
CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, phy,
reg, val);
#endif
return (val);
}
STATIC int
mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct mvneta_softc *sc;
struct ifnet *ifp;
uint32_t smi;
int i;
sc = device_get_softc(dev);
ifp = sc->ifp;
#ifdef MVNETA_KTR
CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname,
phy, reg, val);
#endif
mtx_lock(&mii_mutex);
for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
break;
DELAY(1);
}
if (i == MVNETA_PHY_TIMEOUT) {
if_printf(ifp, "SMI busy timeout\n");
mtx_unlock(&mii_mutex);
return (0);
}
smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
MVNETA_WRITE(sc, MVNETA_SMI, smi);
for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
break;
DELAY(1);
}
mtx_unlock(&mii_mutex);
if (i == MVNETA_PHY_TIMEOUT)
if_printf(ifp, "phy write timed out\n");
return (0);
}
STATIC void
mvneta_portup(struct mvneta_softc *sc)
{
int q;
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
mvneta_rx_lockq(sc, q);
mvneta_rx_queue_enable(sc->ifp, q);
mvneta_rx_unlockq(sc, q);
}
for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
mvneta_tx_lockq(sc, q);
mvneta_tx_queue_enable(sc->ifp, q);
mvneta_tx_unlockq(sc, q);
}
}
STATIC void
mvneta_portdown(struct mvneta_softc *sc)
{
struct mvneta_rx_ring *rx;
struct mvneta_tx_ring *tx;
int q, cnt;
uint32_t reg;
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
rx = MVNETA_RX_RING(sc, q);
mvneta_rx_lockq(sc, q);
rx->queue_status = MVNETA_QUEUE_DISABLED;
mvneta_rx_unlockq(sc, q);
}
for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
tx = MVNETA_TX_RING(sc, q);
mvneta_tx_lockq(sc, q);
tx->queue_status = MVNETA_QUEUE_DISABLED;
mvneta_tx_unlockq(sc, q);
}
/* Wait for all Rx activity to terminate. */
reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
reg = MVNETA_RQC_DIS(reg);
MVNETA_WRITE(sc, MVNETA_RQC, reg);
cnt = 0;
do {
if (cnt >= RX_DISABLE_TIMEOUT) {
if_printf(sc->ifp,
"timeout for RX stopped. rqc 0x%x\n", reg);
break;
}
cnt++;
reg = MVNETA_READ(sc, MVNETA_RQC);
} while ((reg & MVNETA_RQC_EN_MASK) != 0);
/* Wait for all Tx activity to terminate. */
reg = MVNETA_READ(sc, MVNETA_PIE);
reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
MVNETA_WRITE(sc, MVNETA_PIE, reg);
reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
reg = MVNETA_TQC_DIS(reg);
MVNETA_WRITE(sc, MVNETA_TQC, reg);
cnt = 0;
do {
if (cnt >= TX_DISABLE_TIMEOUT) {
if_printf(sc->ifp,
"timeout for TX stopped. tqc 0x%x\n", reg);
break;
}
cnt++;
reg = MVNETA_READ(sc, MVNETA_TQC);
} while ((reg & MVNETA_TQC_EN_MASK) != 0);
/* Wait for all Tx FIFO is empty */
cnt = 0;
do {
if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
if_printf(sc->ifp,
"timeout for TX FIFO drained. ps0 0x%x\n", reg);
break;
}
cnt++;
reg = MVNETA_READ(sc, MVNETA_PS0);
} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
((reg & MVNETA_PS0_TXINPROG) != 0));
}
/*
* Device Register Initialization
* reset device registers to device driver default value.
* the device is not enabled here.
*/
STATIC int
mvneta_initreg(struct ifnet *ifp)
{
struct mvneta_softc *sc;
int q, i;
uint32_t reg;
sc = ifp->if_softc;
#ifdef MVNETA_KTR
CTR1(KTR_SPARE2, "%s initializing device register", ifp->if_xname);
#endif
/* Disable Legacy WRR, Disable EJP, Release from reset. */
MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
/* Enable mbus retry. */
MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
/* Init TX/RX Queue Registers */
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
mvneta_rx_lockq(sc, q);
if (mvneta_rx_queue_init(ifp, q) != 0) {
device_printf(sc->dev,
"initialization failed: cannot initialize queue\n");
mvneta_rx_unlockq(sc, q);
return (ENOBUFS);
}
mvneta_rx_unlockq(sc, q);
}
for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
mvneta_tx_lockq(sc, q);
if (mvneta_tx_queue_init(ifp, q) != 0) {
device_printf(sc->dev,
"initialization failed: cannot initialize queue\n");
mvneta_tx_unlockq(sc, q);
return (ENOBUFS);
}
mvneta_tx_unlockq(sc, q);
}
/*
* Ethernet Unit Control - disable automatic PHY management by HW.
* In case the port uses SMI-controlled PHY, poll its status with
* mii_tick() and update MAC settings accordingly.
*/
reg = MVNETA_READ(sc, MVNETA_EUC);
reg &= ~MVNETA_EUC_POLLING;
MVNETA_WRITE(sc, MVNETA_EUC, reg);
/* EEE: Low Power Idle */
reg = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
reg = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
reg = MVNETA_LPIC2_MUSTSET;
MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
/* Port MAC Control set 0 */
reg = MVNETA_PMACC0_MUSTSET; /* must write 0x1 */
reg &= ~MVNETA_PMACC0_PORTEN; /* port is still disabled */
reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
/* Port MAC Control set 2 */
reg = MVNETA_READ(sc, MVNETA_PMACC2);
switch (sc->phy_mode) {
case MVNETA_PHY_QSGMII:
reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
break;
case MVNETA_PHY_SGMII:
reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
break;
case MVNETA_PHY_RGMII:
case MVNETA_PHY_RGMII_ID:
reg |= MVNETA_PMACC2_RGMIIEN;
break;
}
reg |= MVNETA_PMACC2_MUSTSET;
reg &= ~MVNETA_PMACC2_PORTMACRESET;
MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
/* Port Configuration Extended: enable Tx CRC generation */
reg = MVNETA_READ(sc, MVNETA_PXCX);
reg &= ~MVNETA_PXCX_TXCRCDIS;
MVNETA_WRITE(sc, MVNETA_PXCX, reg);
/* clear MIB counter registers(clear by read) */
for (i = 0; i < nitems(mvneta_mib_list); i++) {
if (mvneta_mib_list[i].reg64)
MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
else
MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
}
MVNETA_READ(sc, MVNETA_PDFC);
MVNETA_READ(sc, MVNETA_POFC);
/* Set SDC register except IPGINT bits */
reg = MVNETA_SDC_RXBSZ_16_64BITWORDS;
reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
reg |= MVNETA_SDC_BLMR;
reg |= MVNETA_SDC_BLMT;
MVNETA_WRITE(sc, MVNETA_SDC, reg);
return (0);
}
STATIC void
mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
{
if (error != 0)
return;
*(bus_addr_t *)arg = segs->ds_addr;
}
STATIC int
mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
{
struct mvneta_rx_ring *rx;
struct mvneta_buf *rxbuf;
bus_dmamap_t dmap;
int i, error;
if (q >= MVNETA_RX_QNUM_MAX)
return (EINVAL);
rx = MVNETA_RX_RING(sc, q);
mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
/* Allocate DMA memory for Rx descriptors */
error = bus_dmamem_alloc(sc->rx_dtag,
(void**)&(rx->desc),
BUS_DMA_NOWAIT | BUS_DMA_ZERO,
&rx->desc_map);
if (error != 0 || rx->desc == NULL)
goto fail;
error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
rx->desc,
sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
if (error != 0)
goto fail;
for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
if (error != 0) {
device_printf(sc->dev,
"Failed to create DMA map for Rx buffer num: %d\n", i);
goto fail;
}
rxbuf = &rx->rxbuf[i];
rxbuf->dmap = dmap;
rxbuf->m = NULL;
}
return (0);
fail:
mvneta_ring_dealloc_rx_queue(sc, q);
device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
return (error);
}
STATIC int
mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
{
struct mvneta_tx_ring *tx;
int error;
if (q >= MVNETA_TX_QNUM_MAX)
return (EINVAL);
tx = MVNETA_TX_RING(sc, q);
mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
error = bus_dmamem_alloc(sc->tx_dtag,
(void**)&(tx->desc),
BUS_DMA_NOWAIT | BUS_DMA_ZERO,
&tx->desc_map);
if (error != 0 || tx->desc == NULL)
goto fail;
error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
tx->desc,
sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
if (error != 0)
goto fail;
#ifdef MVNETA_MULTIQUEUE
tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
&tx->ring_mtx);
if (tx->br == NULL) {
device_printf(sc->dev,
"Could not setup buffer ring for TxQ(%d)\n", q);
error = ENOMEM;
goto fail;
}
#endif
return (0);
fail:
mvneta_ring_dealloc_tx_queue(sc, q);
device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
return (error);
}
STATIC void
mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
{
struct mvneta_tx_ring *tx;
struct mvneta_buf *txbuf;
void *kva;
int error;
int i;
if (q >= MVNETA_TX_QNUM_MAX)
return;
tx = MVNETA_TX_RING(sc, q);
if (tx->taskq != NULL) {
/* Remove task */
while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
taskqueue_drain(tx->taskq, &tx->task);
}
#ifdef MVNETA_MULTIQUEUE
if (tx->br != NULL)
drbr_free(tx->br, M_DEVBUF);
#endif
if (sc->txmbuf_dtag != NULL) {
if (mtx_name(&tx->ring_mtx) != NULL) {
/*
* It is assumed that maps are being loaded after mutex
* is initialized. Therefore we can skip unloading maps
* when mutex is empty.
*/
mvneta_tx_lockq(sc, q);
mvneta_ring_flush_tx_queue(sc, q);
mvneta_tx_unlockq(sc, q);
}
for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
txbuf = &tx->txbuf[i];
if (txbuf->dmap != NULL) {
error = bus_dmamap_destroy(sc->txmbuf_dtag,
txbuf->dmap);
if (error != 0) {
panic("%s: map busy for Tx descriptor (Q%d, %d)",
__func__, q, i);
}
}
}
}
if (tx->desc_pa != 0)
bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
kva = (void *)tx->desc;
if (kva != NULL)
bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
if (mtx_name(&tx->ring_mtx) != NULL)
mtx_destroy(&tx->ring_mtx);
memset(tx, 0, sizeof(*tx));
}
STATIC void
mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
{
struct mvneta_rx_ring *rx;
struct lro_ctrl *lro;
void *kva;
if (q >= MVNETA_RX_QNUM_MAX)
return;
rx = MVNETA_RX_RING(sc, q);
mvneta_ring_flush_rx_queue(sc, q);
if (rx->desc_pa != 0)
bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
kva = (void *)rx->desc;
if (kva != NULL)
bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
lro = &rx->lro;
tcp_lro_free(lro);
if (mtx_name(&rx->ring_mtx) != NULL)
mtx_destroy(&rx->ring_mtx);
memset(rx, 0, sizeof(*rx));
}
STATIC int
mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
{
struct mvneta_rx_ring *rx;
struct lro_ctrl *lro;
int error;
if (q >= MVNETA_RX_QNUM_MAX)
return (0);
rx = MVNETA_RX_RING(sc, q);
rx->dma = rx->cpu = 0;
rx->queue_th_received = MVNETA_RXTH_COUNT;
rx->queue_th_time = (mvneta_get_clk() / 1000) / 10; /* 0.1 [ms] */
/* Initialize LRO */
rx->lro_enabled = FALSE;
if ((sc->ifp->if_capenable & IFCAP_LRO) != 0) {
lro = &rx->lro;
error = tcp_lro_init(lro);
if (error != 0)
device_printf(sc->dev, "LRO Initialization failed!\n");
else {
rx->lro_enabled = TRUE;
lro->ifp = sc->ifp;
}
}
return (0);
}
STATIC int
mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
{
struct mvneta_tx_ring *tx;
struct mvneta_buf *txbuf;
int i, error;
if (q >= MVNETA_TX_QNUM_MAX)
return (0);
tx = MVNETA_TX_RING(sc, q);
/* Tx handle */
for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
txbuf = &tx->txbuf[i];
txbuf->m = NULL;
/* Tx handle needs DMA map for busdma_load_mbuf() */
error = bus_dmamap_create(sc->txmbuf_dtag, 0,
&txbuf->dmap);
if (error != 0) {
device_printf(sc->dev,
"can't create dma map (tx ring %d)\n", i);
return (error);
}
}
tx->dma = tx->cpu = 0;
tx->used = 0;
tx->drv_error = 0;
tx->queue_status = MVNETA_QUEUE_DISABLED;
tx->queue_hung = FALSE;
tx->ifp = sc->ifp;
tx->qidx = q;
TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
taskqueue_thread_enqueue, &tx->taskq);
taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
device_get_nameunit(sc->dev), q);
return (0);
}
STATIC void
mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
{
struct mvneta_tx_ring *tx;
struct mvneta_buf *txbuf;
int i;
tx = MVNETA_TX_RING(sc, q);
KASSERT_TX_MTX(sc, q);
/* Tx handle */
for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
txbuf = &tx->txbuf[i];
bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
if (txbuf->m != NULL) {
m_freem(txbuf->m);
txbuf->m = NULL;
}
}
tx->dma = tx->cpu = 0;
tx->used = 0;
}
STATIC void
mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
{
struct mvneta_rx_ring *rx;
struct mvneta_buf *rxbuf;
int i;
rx = MVNETA_RX_RING(sc, q);
KASSERT_RX_MTX(sc, q);
/* Rx handle */
for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
rxbuf = &rx->rxbuf[i];
mvneta_rx_buf_free(sc, rxbuf);
}
rx->dma = rx->cpu = 0;
}
/*
* Rx/Tx Queue Control
*/
STATIC int
mvneta_rx_queue_init(struct ifnet *ifp, int q)
{
struct mvneta_softc *sc;
struct mvneta_rx_ring *rx;
uint32_t reg;
sc = ifp->if_softc;
KASSERT_RX_MTX(sc, q);
rx = MVNETA_RX_RING(sc, q);
DASSERT(rx->desc_pa != 0);
/* descriptor address */
MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
/* Rx buffer size and descriptor ring size */
reg = MVNETA_PRXDQS_BUFFERSIZE(sc->rx_frame_size >> 3);
reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
#ifdef MVNETA_KTR
CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", ifp->if_xname, q,
MVNETA_READ(sc, MVNETA_PRXDQS(q)));
#endif
/* Rx packet offset address */
reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
#ifdef MVNETA_KTR
CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", ifp->if_xname, q,
MVNETA_READ(sc, MVNETA_PRXC(q)));
#endif
/* if DMA is not working, register is not updated */
DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
return (0);
}
STATIC int
mvneta_tx_queue_init(struct ifnet *ifp, int q)
{
struct mvneta_softc *sc;
struct mvneta_tx_ring *tx;
uint32_t reg;
sc = ifp->if_softc;
KASSERT_TX_MTX(sc, q);
tx = MVNETA_TX_RING(sc, q);
DASSERT(tx->desc_pa != 0);
/* descriptor address */
MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
/* descriptor ring size */
reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
/* if DMA is not working, register is not updated */
DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
return (0);
}
STATIC int
mvneta_rx_queue_enable(struct ifnet *ifp, int q)
{
struct mvneta_softc *sc;
struct mvneta_rx_ring *rx;
uint32_t reg;
sc = ifp->if_softc;
rx = MVNETA_RX_RING(sc, q);
KASSERT_RX_MTX(sc, q);
/* Set Rx interrupt threshold */
reg = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
/* Unmask RXTX_TH Intr. */
reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
/* Enable Rx queue */
reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
reg |= MVNETA_RQC_ENQ(q);
MVNETA_WRITE(sc, MVNETA_RQC, reg);
rx->queue_status = MVNETA_QUEUE_WORKING;
return (0);
}
STATIC int
mvneta_tx_queue_enable(struct ifnet *ifp, int q)
{
struct mvneta_softc *sc;
struct mvneta_tx_ring *tx;
sc = ifp->if_softc;
tx = MVNETA_TX_RING(sc, q);
KASSERT_TX_MTX(sc, q);
/* Enable Tx queue */
MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
tx->queue_status = MVNETA_QUEUE_IDLE;
tx->queue_hung = FALSE;
return (0);
}
STATIC __inline void
mvneta_rx_lockq(struct mvneta_softc *sc, int q)
{
DASSERT(q >= 0);
DASSERT(q < MVNETA_RX_QNUM_MAX);
mtx_lock(&sc->rx_ring[q].ring_mtx);
}
STATIC __inline void
mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
{
DASSERT(q >= 0);
DASSERT(q < MVNETA_RX_QNUM_MAX);
mtx_unlock(&sc->rx_ring[q].ring_mtx);
}
STATIC __inline int __unused
mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
{
DASSERT(q >= 0);
DASSERT(q < MVNETA_TX_QNUM_MAX);
return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
}
STATIC __inline void
mvneta_tx_lockq(struct mvneta_softc *sc, int q)
{
DASSERT(q >= 0);
DASSERT(q < MVNETA_TX_QNUM_MAX);
mtx_lock(&sc->tx_ring[q].ring_mtx);
}
STATIC __inline void
mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
{
DASSERT(q >= 0);
DASSERT(q < MVNETA_TX_QNUM_MAX);
mtx_unlock(&sc->tx_ring[q].ring_mtx);
}
/*
* Interrupt Handlers
*/
STATIC void
mvneta_disable_intr(struct mvneta_softc *sc)
{
MVNETA_WRITE(sc, MVNETA_EUIM, 0);
MVNETA_WRITE(sc, MVNETA_EUIC, 0);
MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
MVNETA_WRITE(sc, MVNETA_PMIM, 0);
MVNETA_WRITE(sc, MVNETA_PMIC, 0);
MVNETA_WRITE(sc, MVNETA_PIE, 0);
}
STATIC void
mvneta_enable_intr(struct mvneta_softc *sc)
{
uint32_t reg;
/* Enable Summary Bit to check all interrupt cause. */
reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
if (sc->use_inband_status) {
/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
}
/* Enable All Queue Interrupt */
reg = MVNETA_READ(sc, MVNETA_PIE);
reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
MVNETA_WRITE(sc, MVNETA_PIE, reg);
}
STATIC void
mvneta_rxtxth_intr(void *arg)
{
struct mvneta_softc *sc;
struct ifnet *ifp;
uint32_t ic, queues;
sc = arg;
ifp = sc->ifp;
#ifdef MVNETA_KTR
CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", ifp->if_xname);
#endif
ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
if (ic == 0)
return;
MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
/* Ack maintance interrupt first */
if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
sc->use_inband_status)) {
mvneta_sc_lock(sc);
mvneta_misc_intr(sc);
mvneta_sc_unlock(sc);
}
if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
return;
/* RxTxTH interrupt */
queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
if (__predict_true(queues)) {
#ifdef MVNETA_KTR
CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", ifp->if_xname);
#endif
/* At the moment the driver support only one RX queue. */
DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
mvneta_rx(sc, 0, 0);
}
}
STATIC int
mvneta_misc_intr(struct mvneta_softc *sc)
{
uint32_t ic;
int claimed = 0;
#ifdef MVNETA_KTR
CTR1(KTR_SPARE2, "%s got MISC_INTR", sc->ifp->if_xname);
#endif
KASSERT_SC_MTX(sc);
for (;;) {
ic = MVNETA_READ(sc, MVNETA_PMIC);
ic &= MVNETA_READ(sc, MVNETA_PMIM);
if (ic == 0)
break;
MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
claimed = 1;
if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
mvneta_link_isr(sc);
}
return (claimed);
}
STATIC void
mvneta_tick(void *arg)
{
struct mvneta_softc *sc;
struct mvneta_tx_ring *tx;
struct mvneta_rx_ring *rx;
int q;
uint32_t fc_prev, fc_curr;
sc = arg;
/*
* This is done before mib update to get the right stats
* for this tick.
*/
mvneta_tx_drain(sc);
/* Extract previous flow-control frame received counter. */
fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
/* Read mib registers (clear by read). */
mvneta_update_mib(sc);
/* Extract current flow-control frame received counter. */
fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
if (sc->phy_attached && sc->ifp->if_flags & IFF_UP) {
mvneta_sc_lock(sc);
mii_tick(sc->mii);
/* Adjust MAC settings */
mvneta_adjust_link(sc);
mvneta_sc_unlock(sc);
}
/*
* We were unable to refill the rx queue and left the rx func, leaving
* the ring without mbuf and no way to call the refill func.
*/
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
rx = MVNETA_RX_RING(sc, q);
if (rx->needs_refill == TRUE) {
mvneta_rx_lockq(sc, q);
mvneta_rx_queue_refill(sc, q);
mvneta_rx_unlockq(sc, q);
}
}
/*
* Watchdog:
* - check if queue is mark as hung.
* - ignore hung status if we received some pause frame
* as hardware may have paused packet transmit.
*/
for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
/*
* We should take queue lock, but as we only read
* queue status we can do it without lock, we may
* only missdetect queue status for one tick.
*/
tx = MVNETA_TX_RING(sc, q);
if (tx->queue_hung && (fc_curr - fc_prev) == 0)
goto timeout;
}
callout_schedule(&sc->tick_ch, hz);
return;
timeout:
if_printf(sc->ifp, "watchdog timeout\n");
mvneta_sc_lock(sc);
sc->counter_watchdog++;
sc->counter_watchdog_mib++;
/* Trigger reinitialize sequence. */
mvneta_stop_locked(sc);
mvneta_init_locked(sc);
mvneta_sc_unlock(sc);
}
STATIC void
mvneta_qflush(struct ifnet *ifp)
{
#ifdef MVNETA_MULTIQUEUE
struct mvneta_softc *sc;
struct mvneta_tx_ring *tx;
struct mbuf *m;
size_t q;
sc = ifp->if_softc;
for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
tx = MVNETA_TX_RING(sc, q);
mvneta_tx_lockq(sc, q);
while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
m_freem(m);
mvneta_tx_unlockq(sc, q);
}
#endif
if_qflush(ifp);
}
STATIC void
mvneta_tx_task(void *arg, int pending)
{
struct mvneta_softc *sc;
struct mvneta_tx_ring *tx;
struct ifnet *ifp;
int error;
tx = arg;
ifp = tx->ifp;
sc = ifp->if_softc;
mvneta_tx_lockq(sc, tx->qidx);
error = mvneta_xmit_locked(sc, tx->qidx);
mvneta_tx_unlockq(sc, tx->qidx);
/* Try again */
if (__predict_false(error != 0 && error != ENETDOWN)) {
pause("mvneta_tx_task_sleep", 1);
taskqueue_enqueue(tx->taskq, &tx->task);
}
}
STATIC int
mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
{
struct mvneta_tx_ring *tx;
struct ifnet *ifp;
int error;
KASSERT_TX_MTX(sc, q);
tx = MVNETA_TX_RING(sc, q);
error = 0;
ifp = sc->ifp;
/* Dont enqueue packet if the queue is disabled. */
if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
m_freem(*m);
*m = NULL;
return (ENETDOWN);
}
/* Reclaim mbuf if above threshold. */
if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
mvneta_tx_queue_complete(sc, q);
/* Do not call transmit path if queue is already too full. */
if (__predict_false(tx->used >
MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
return (ENOBUFS);
error = mvneta_tx_queue(sc, m, q);
if (__predict_false(error != 0))
return (error);
/* Send a copy of the frame to the BPF listener */
ETHER_BPF_MTAP(ifp, *m);
/* Set watchdog on */
tx->watchdog_time = ticks;
tx->queue_status = MVNETA_QUEUE_WORKING;
return (error);
}
#ifdef MVNETA_MULTIQUEUE
STATIC int
mvneta_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct mvneta_softc *sc;
struct mvneta_tx_ring *tx;
int error;
int q;
sc = ifp->if_softc;
/* Use default queue if there is no flow id as thread can migrate. */
if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
else
q = 0;
tx = MVNETA_TX_RING(sc, q);
/* If buf_ring is full start transmit immediatly. */
if (buf_ring_full(tx->br)) {
mvneta_tx_lockq(sc, q);
mvneta_xmit_locked(sc, q);
mvneta_tx_unlockq(sc, q);
}
/*
* If the buf_ring is empty we will not reorder packets.
* If the lock is available transmit without using buf_ring.
*/
if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
error = mvneta_xmitfast_locked(sc, q, &m);
mvneta_tx_unlockq(sc, q);
if (__predict_true(error == 0))
return (0);
/* Transmit can fail in fastpath. */
if (__predict_false(m == NULL))
return (error);
}
/* Enqueue then schedule taskqueue. */
error = drbr_enqueue(ifp, tx->br, m);
if (__predict_false(error != 0))
return (error);
taskqueue_enqueue(tx->taskq, &tx->task);
return (0);
}
STATIC int
mvneta_xmit_locked(struct mvneta_softc *sc, int q)
{
struct ifnet *ifp;
struct mvneta_tx_ring *tx;
struct mbuf *m;
int error;
KASSERT_TX_MTX(sc, q);
ifp = sc->ifp;
tx = MVNETA_TX_RING(sc, q);
error = 0;
while ((m = drbr_peek(ifp, tx->br)) != NULL) {
error = mvneta_xmitfast_locked(sc, q, &m);
if (__predict_false(error != 0)) {
if (m != NULL)
drbr_putback(ifp, tx->br, m);
else
drbr_advance(ifp, tx->br);
break;
}
drbr_advance(ifp, tx->br);
}
return (error);
}
#else /* !MVNETA_MULTIQUEUE */
STATIC void
mvneta_start(struct ifnet *ifp)
{
struct mvneta_softc *sc;
struct mvneta_tx_ring *tx;
int error;
sc = ifp->if_softc;
tx = MVNETA_TX_RING(sc, 0);
mvneta_tx_lockq(sc, 0);
error = mvneta_xmit_locked(sc, 0);
mvneta_tx_unlockq(sc, 0);
/* Handle retransmit in the background taskq. */
if (__predict_false(error != 0 && error != ENETDOWN))
taskqueue_enqueue(tx->taskq, &tx->task);
}
STATIC int
mvneta_xmit_locked(struct mvneta_softc *sc, int q)
{
struct ifnet *ifp;
struct mvneta_tx_ring *tx;
struct mbuf *m;
int error;
KASSERT_TX_MTX(sc, q);
ifp = sc->ifp;
tx = MVNETA_TX_RING(sc, 0);
error = 0;
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
error = mvneta_xmitfast_locked(sc, q, &m);
if (__predict_false(error != 0)) {
if (m != NULL)
IFQ_DRV_PREPEND(&ifp->if_snd, m);
break;
}
}
return (error);
}
#endif
STATIC int
mvneta_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct mvneta_softc *sc;
struct mvneta_rx_ring *rx;
struct ifreq *ifr;
int error, mask;
uint32_t flags;
int q;
error = 0;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
switch (cmd) {
case SIOCSIFFLAGS:
mvneta_sc_lock(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
flags = ifp->if_flags ^ sc->mvneta_if_flags;
if (flags != 0)
sc->mvneta_if_flags = ifp->if_flags;
if ((flags & IFF_PROMISC) != 0)
mvneta_filter_setup(sc);
} else {
mvneta_init_locked(sc);
sc->mvneta_if_flags = ifp->if_flags;
if (sc->phy_attached)
mii_mediachg(sc->mii);
mvneta_sc_unlock(sc);
break;
}
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
mvneta_stop_locked(sc);
sc->mvneta_if_flags = ifp->if_flags;
mvneta_sc_unlock(sc);
break;
case SIOCSIFCAP:
if (ifp->if_mtu > sc->tx_csum_limit &&
ifr->ifr_reqcap & IFCAP_TXCSUM)
ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
if (mask & IFCAP_HWCSUM) {
ifp->if_capenable &= ~IFCAP_HWCSUM;
ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist = CSUM_IP | CSUM_TCP |
CSUM_UDP;
else
ifp->if_hwassist = 0;
}
if (mask & IFCAP_LRO) {
mvneta_sc_lock(sc);
ifp->if_capenable ^= IFCAP_LRO;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
rx = MVNETA_RX_RING(sc, q);
rx->lro_enabled = !rx->lro_enabled;
}
}
mvneta_sc_unlock(sc);
}
VLAN_CAPABILITIES(ifp);
break;
case SIOCSIFMEDIA:
if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
(ifr->ifr_media & IFM_FDX) == 0) {
device_printf(sc->dev,
"%s half-duplex unsupported\n",
IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
"1000Base-T" :
"2500Base-T");
error = EINVAL;
break;
}
case SIOCGIFMEDIA: /* FALLTHROUGH */
case SIOCGIFXMEDIA:
if (!sc->phy_attached)
error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
cmd);
else
error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
cmd);
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
MVNETA_ETHER_SIZE) {
error = EINVAL;
} else {
ifp->if_mtu = ifr->ifr_mtu;
mvneta_sc_lock(sc);
if (ifp->if_mtu + MVNETA_ETHER_SIZE <= MCLBYTES) {
sc->rx_frame_size = MCLBYTES;
} else {
sc->rx_frame_size = MJUM9BYTES;
}
if (ifp->if_mtu > sc->tx_csum_limit) {
ifp->if_capenable &= ~IFCAP_TXCSUM;
ifp->if_hwassist = 0;
} else {
ifp->if_capenable |= IFCAP_TXCSUM;
ifp->if_hwassist = CSUM_IP | CSUM_TCP |
CSUM_UDP;
}
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Stop hardware */
mvneta_stop_locked(sc);
/*
* Reinitialize RX queues.
* We need to update RX descriptor size.
*/
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
mvneta_rx_lockq(sc, q);
if (mvneta_rx_queue_init(ifp, q) != 0) {
device_printf(sc->dev,
"initialization failed:"
" cannot initialize queue\n");
mvneta_rx_unlockq(sc, q);
error = ENOBUFS;
break;
}
mvneta_rx_unlockq(sc, q);
}
/* Trigger reinitialization */
mvneta_init_locked(sc);
}
mvneta_sc_unlock(sc);
}
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
STATIC void
mvneta_init_locked(void *arg)
{
struct mvneta_softc *sc;
struct ifnet *ifp;
uint32_t reg;
int q, cpu;
sc = arg;
ifp = sc->ifp;
if (!device_is_attached(sc->dev) ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
mvneta_disable_intr(sc);
callout_stop(&sc->tick_ch);
/* Get the latest mac address */
bcopy(IF_LLADDR(ifp), sc->enaddr, ETHER_ADDR_LEN);
mvneta_set_mac_address(sc, sc->enaddr);
mvneta_filter_setup(sc);
/* Start DMA Engine */
MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
/* Enable port */
reg = MVNETA_READ(sc, MVNETA_PMACC0);
reg |= MVNETA_PMACC0_PORTEN;
reg &= ~MVNETA_PMACC0_FRAMESIZELIMIT_MASK;
reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
/* Allow access to each TXQ/RXQ from both CPU's */
for (cpu = 0; cpu < mp_ncpus; ++cpu)
MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
mvneta_rx_lockq(sc, q);
mvneta_rx_queue_refill(sc, q);
mvneta_rx_unlockq(sc, q);
}
if (!sc->phy_attached)
mvneta_linkup(sc);
/* Enable interrupt */
mvneta_enable_intr(sc);
/* Set Counter */
callout_schedule(&sc->tick_ch, hz);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
}
STATIC void
mvneta_init(void *arg)
{
struct mvneta_softc *sc;
sc = arg;
mvneta_sc_lock(sc);
mvneta_init_locked(sc);
if (sc->phy_attached)
mii_mediachg(sc->mii);
mvneta_sc_unlock(sc);
}
/* ARGSUSED */
STATIC void
mvneta_stop_locked(struct mvneta_softc *sc)
{
struct ifnet *ifp;
struct mvneta_rx_ring *rx;
struct mvneta_tx_ring *tx;
uint32_t reg;
int q;
ifp = sc->ifp;
if (ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
mvneta_disable_intr(sc);
callout_stop(&sc->tick_ch);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
/* Link down */
if (sc->linkup == TRUE)
mvneta_linkdown(sc);
/* Reset the MAC Port Enable bit */
reg = MVNETA_READ(sc, MVNETA_PMACC0);
reg &= ~MVNETA_PMACC0_PORTEN;
MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
/* Disable each of queue */
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
rx = MVNETA_RX_RING(sc, q);
mvneta_rx_lockq(sc, q);
mvneta_ring_flush_rx_queue(sc, q);
mvneta_rx_unlockq(sc, q);
}
/*
* Hold Reset state of DMA Engine
* (must write 0x0 to restart it)
*/
MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
tx = MVNETA_TX_RING(sc, q);
mvneta_tx_lockq(sc, q);
mvneta_ring_flush_tx_queue(sc, q);
mvneta_tx_unlockq(sc, q);
}
}
STATIC void
mvneta_stop(struct mvneta_softc *sc)
{
mvneta_sc_lock(sc);
mvneta_stop_locked(sc);
mvneta_sc_unlock(sc);
}
STATIC int
mvneta_mediachange(struct ifnet *ifp)
{
struct mvneta_softc *sc;
sc = ifp->if_softc;
if (!sc->phy_attached && !sc->use_inband_status) {
/* We shouldn't be here */
if_printf(ifp, "Cannot change media in fixed-link mode!\n");
return (0);
}
if (sc->use_inband_status) {
mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
return (0);
}
mvneta_sc_lock(sc);
/* Update PHY */
mii_mediachg(sc->mii);
mvneta_sc_unlock(sc);
return (0);
}
STATIC void
mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
{
uint32_t psr;
psr = MVNETA_READ(sc, MVNETA_PSR);
/* Speed */
if (psr & MVNETA_PSR_GMIISPEED)
ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
else if (psr & MVNETA_PSR_MIISPEED)
ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
else if (psr & MVNETA_PSR_LINKUP)
ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
/* Duplex */
if (psr & MVNETA_PSR_FULLDX)
ifmr->ifm_active |= IFM_FDX;
/* Link */
ifmr->ifm_status = IFM_AVALID;
if (psr & MVNETA_PSR_LINKUP)
ifmr->ifm_status |= IFM_ACTIVE;
}
STATIC void
mvneta_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct mvneta_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
if (!sc->phy_attached && !sc->use_inband_status) {
ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
return;
}
mvneta_sc_lock(sc);
if (sc->use_inband_status) {
mvneta_get_media(sc, ifmr);
mvneta_sc_unlock(sc);
return;
}
mii = sc->mii;
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
mvneta_sc_unlock(sc);
}
/*
* Link State Notify
*/
STATIC void
mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
{
int reg;
if (enable) {
reg = MVNETA_READ(sc, MVNETA_PANC);
reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
MVNETA_PANC_ANFCEN);
reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
MVNETA_PANC_INBANDANEN;
MVNETA_WRITE(sc, MVNETA_PANC, reg);
reg = MVNETA_READ(sc, MVNETA_PMACC2);
reg |= MVNETA_PMACC2_INBANDANMODE;
MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
reg |= MVNETA_PSOMSCD_ENABLE;
MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
} else {
reg = MVNETA_READ(sc, MVNETA_PANC);
reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
MVNETA_PANC_INBANDANEN);
MVNETA_WRITE(sc, MVNETA_PANC, reg);
reg = MVNETA_READ(sc, MVNETA_PMACC2);
reg &= ~MVNETA_PMACC2_INBANDANMODE;
MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
reg &= ~MVNETA_PSOMSCD_ENABLE;
MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
}
}
STATIC int
mvneta_update_media(struct mvneta_softc *sc, int media)
{
int reg, err;
boolean_t running;
err = 0;
mvneta_sc_lock(sc);
mvneta_linkreset(sc);
running = (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
if (running)
mvneta_stop_locked(sc);
sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
if (sc->use_inband_status)
mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
mvneta_update_eee(sc);
mvneta_update_fc(sc);
if (IFM_SUBTYPE(media) != IFM_AUTO) {
reg = MVNETA_READ(sc, MVNETA_PANC);
reg &= ~(MVNETA_PANC_SETGMIISPEED |
MVNETA_PANC_SETMIISPEED |
MVNETA_PANC_SETFULLDX);
if (IFM_SUBTYPE(media) == IFM_1000_T ||
IFM_SUBTYPE(media) == IFM_2500_T) {
if ((media & IFM_FDX) == 0) {
device_printf(sc->dev,
"%s half-duplex unsupported\n",
IFM_SUBTYPE(media) == IFM_1000_T ?
"1000Base-T" :
"2500Base-T");
err = EINVAL;
goto out;
}
reg |= MVNETA_PANC_SETGMIISPEED;
} else if (IFM_SUBTYPE(media) == IFM_100_TX)
reg |= MVNETA_PANC_SETMIISPEED;
if (media & IFM_FDX)
reg |= MVNETA_PANC_SETFULLDX;
MVNETA_WRITE(sc, MVNETA_PANC, reg);
}
out:
if (running)
mvneta_init_locked(sc);
mvneta_sc_unlock(sc);
return (err);
}
STATIC void
mvneta_adjust_link(struct mvneta_softc *sc)
{
boolean_t phy_linkup;
int reg;
/* Update eee/fc */
mvneta_update_eee(sc);
mvneta_update_fc(sc);
/* Check for link change */
phy_linkup = (sc->mii->mii_media_status &
(IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
if (sc->linkup != phy_linkup)
mvneta_linkupdate(sc, phy_linkup);
/* Don't update media on disabled link */
if (!phy_linkup)
return;
/* Check for media type change */
if (sc->mvneta_media != sc->mii->mii_media_active) {
sc->mvneta_media = sc->mii->mii_media_active;
reg = MVNETA_READ(sc, MVNETA_PANC);
reg &= ~(MVNETA_PANC_SETGMIISPEED |
MVNETA_PANC_SETMIISPEED |
MVNETA_PANC_SETFULLDX);
if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
reg |= MVNETA_PANC_SETGMIISPEED;
} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
reg |= MVNETA_PANC_SETMIISPEED;
if (sc->mvneta_media & IFM_FDX)
reg |= MVNETA_PANC_SETFULLDX;
MVNETA_WRITE(sc, MVNETA_PANC, reg);
}
}
STATIC void
mvneta_link_isr(struct mvneta_softc *sc)
{
int linkup;
KASSERT_SC_MTX(sc);
linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
if (sc->linkup == linkup)
return;
if (linkup == TRUE)
mvneta_linkup(sc);
else
mvneta_linkdown(sc);
#ifdef DEBUG
log(LOG_DEBUG,
"%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
#endif
}
STATIC void
mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
{
KASSERT_SC_MTX(sc);
if (linkup == TRUE)
mvneta_linkup(sc);
else
mvneta_linkdown(sc);
#ifdef DEBUG
log(LOG_DEBUG,
"%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
#endif
}
STATIC void
mvneta_update_eee(struct mvneta_softc *sc)
{
uint32_t reg;
KASSERT_SC_MTX(sc);
/* set EEE parameters */
reg = MVNETA_READ(sc, MVNETA_LPIC1);
if (sc->cf_lpi)
reg |= MVNETA_LPIC1_LPIRE;
else
reg &= ~MVNETA_LPIC1_LPIRE;
MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
}
STATIC void
mvneta_update_fc(struct mvneta_softc *sc)
{
uint32_t reg;
KASSERT_SC_MTX(sc);
reg = MVNETA_READ(sc, MVNETA_PANC);
if (sc->cf_fc) {
/* Flow control negotiation */
reg |= MVNETA_PANC_PAUSEADV;
reg |= MVNETA_PANC_ANFCEN;
} else {
/* Disable flow control negotiation */
reg &= ~MVNETA_PANC_PAUSEADV;
reg &= ~MVNETA_PANC_ANFCEN;
}
MVNETA_WRITE(sc, MVNETA_PANC, reg);
}
STATIC void
mvneta_linkup(struct mvneta_softc *sc)
{
uint32_t reg;
KASSERT_SC_MTX(sc);
if (!sc->use_inband_status) {
reg = MVNETA_READ(sc, MVNETA_PANC);
reg |= MVNETA_PANC_FORCELINKPASS;
reg &= ~MVNETA_PANC_FORCELINKFAIL;
MVNETA_WRITE(sc, MVNETA_PANC, reg);
}
mvneta_qflush(sc->ifp);
mvneta_portup(sc);
sc->linkup = TRUE;
if_link_state_change(sc->ifp, LINK_STATE_UP);
}
STATIC void
mvneta_linkdown(struct mvneta_softc *sc)
{
uint32_t reg;
KASSERT_SC_MTX(sc);
if (!sc->use_inband_status) {
reg = MVNETA_READ(sc, MVNETA_PANC);
reg &= ~MVNETA_PANC_FORCELINKPASS;
reg |= MVNETA_PANC_FORCELINKFAIL;
MVNETA_WRITE(sc, MVNETA_PANC, reg);
}
mvneta_portdown(sc);
mvneta_qflush(sc->ifp);
sc->linkup = FALSE;
if_link_state_change(sc->ifp, LINK_STATE_DOWN);
}
STATIC void
mvneta_linkreset(struct mvneta_softc *sc)
{
struct mii_softc *mii;
if (sc->phy_attached) {
/* Force reset PHY */
mii = LIST_FIRST(&sc->mii->mii_phys);
if (mii)
mii_phy_reset(mii);
}
}
/*
* Tx Subroutines
*/
STATIC int
mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
{
struct ifnet *ifp;
bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
struct mbuf *mtmp, *mbuf;
struct mvneta_tx_ring *tx;
struct mvneta_buf *txbuf;
struct mvneta_tx_desc *t;
uint32_t ptxsu;
int start, used, error, i, txnsegs;
mbuf = *mbufp;
tx = MVNETA_TX_RING(sc, q);
DASSERT(tx->used >= 0);
DASSERT(tx->used <= MVNETA_TX_RING_CNT);
t = NULL;
ifp = sc->ifp;
if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
if (mbuf == NULL) {
tx->drv_error++;
*mbufp = NULL;
return (ENOBUFS);
}
mbuf->m_flags &= ~M_VLANTAG;
*mbufp = mbuf;
}
if (__predict_false(mbuf->m_next != NULL &&
(mbuf->m_pkthdr.csum_flags &
(CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
if (M_WRITABLE(mbuf) == 0) {
mtmp = m_dup(mbuf, M_NOWAIT);
m_freem(mbuf);
if (mtmp == NULL) {
tx->drv_error++;
*mbufp = NULL;
return (ENOBUFS);
}
*mbufp = mbuf = mtmp;
}
}
/* load mbuf using dmamap of 1st descriptor */
txbuf = &tx->txbuf[tx->cpu];
error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
txbuf->dmap, mbuf, txsegs, &txnsegs,
BUS_DMA_NOWAIT);
if (__predict_false(error != 0)) {
#ifdef MVNETA_KTR
CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", ifp->if_xname, q, error);
#endif
/* This is the only recoverable error (except EFBIG). */
if (error != ENOMEM) {
tx->drv_error++;
m_freem(mbuf);
*mbufp = NULL;
return (ENOBUFS);
}
return (error);
}
if (__predict_false(txnsegs <= 0
|| (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
/* we have no enough descriptors or mbuf is broken */
#ifdef MVNETA_KTR
CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
ifp->if_xname, q, txnsegs);
#endif
bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
return (ENOBUFS);
}
DASSERT(txbuf->m == NULL);
/* remember mbuf using 1st descriptor */
txbuf->m = mbuf;
bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* load to tx descriptors */
start = tx->cpu;
used = 0;
for (i = 0; i < txnsegs; i++) {
t = &tx->desc[tx->cpu];
t->command = 0;
t->l4ichk = 0;
t->flags = 0;
if (__predict_true(i == 0)) {
/* 1st descriptor */
t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
t->command |= MVNETA_TX_CMD_F;
mvneta_tx_set_csumflag(ifp, t, mbuf);
}
t->bufptr_pa = txsegs[i].ds_addr;
t->bytecnt = txsegs[i].ds_len;
tx->cpu = tx_counter_adv(tx->cpu, 1);
tx->used++;
used++;
}
/* t is last descriptor here */
DASSERT(t != NULL);
t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
while (__predict_false(used > 255)) {
ptxsu = MVNETA_PTXSU_NOWD(255);
MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
used -= 255;
}
if (__predict_true(used > 0)) {
ptxsu = MVNETA_PTXSU_NOWD(used);
MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
}
return (0);
}
STATIC void
mvneta_tx_set_csumflag(struct ifnet *ifp,
struct mvneta_tx_desc *t, struct mbuf *m)
{
struct ether_header *eh;
int csum_flags;
uint32_t iphl, ipoff;
struct ip *ip;
iphl = ipoff = 0;
csum_flags = ifp->if_hwassist & m->m_pkthdr.csum_flags;
eh = mtod(m, struct ether_header *);
if (csum_flags == 0)
return;
switch (ntohs(eh->ether_type)) {
case ETHERTYPE_IP:
ipoff = ETHER_HDR_LEN;
break;
case ETHERTYPE_IPV6:
return;
case ETHERTYPE_VLAN:
ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
break;
}
if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
ip = (struct ip *)(m->m_data + ipoff);
iphl = ip->ip_hl<<2;
t->command |= MVNETA_TX_CMD_L3_IP4;
} else {
t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
return;
}
/* L3 */
if (csum_flags & CSUM_IP) {
t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
}
/* L4 */
if (csum_flags & CSUM_IP_TCP) {
t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
t->command |= MVNETA_TX_CMD_L4_TCP;
} else if (csum_flags & CSUM_IP_UDP) {
t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
t->command |= MVNETA_TX_CMD_L4_UDP;
} else
t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
t->l4ichk = 0;
t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
}
STATIC void
mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
{
struct mvneta_tx_ring *tx;
struct mvneta_buf *txbuf;
struct mvneta_tx_desc *t;
uint32_t ptxs, ptxsu, ndesc;
int i;
KASSERT_TX_MTX(sc, q);
tx = MVNETA_TX_RING(sc, q);
if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
return;
ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
ndesc = MVNETA_PTXS_GET_TBC(ptxs);
if (__predict_false(ndesc == 0)) {
if (tx->used == 0)
tx->queue_status = MVNETA_QUEUE_IDLE;
else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
tx->queue_hung = TRUE;
return;
}
#ifdef MVNETA_KTR
CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
sc->ifp->if_xname, q, ndesc);
#endif
bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
for (i = 0; i < ndesc; i++) {
t = &tx->desc[tx->dma];
#ifdef MVNETA_KTR
if (t->flags & MVNETA_TX_F_ES)
CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
sc->ifp->if_xname, q, tx->dma);
#endif
txbuf = &tx->txbuf[tx->dma];
if (__predict_true(txbuf->m != NULL)) {
DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
m_freem(txbuf->m);
txbuf->m = NULL;
}
else
DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
tx->dma = tx_counter_adv(tx->dma, 1);
tx->used--;
}
DASSERT(tx->used >= 0);
DASSERT(tx->used <= MVNETA_TX_RING_CNT);
while (__predict_false(ndesc > 255)) {
ptxsu = MVNETA_PTXSU_NORB(255);
MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
ndesc -= 255;
}
if (__predict_true(ndesc > 0)) {
ptxsu = MVNETA_PTXSU_NORB(ndesc);
MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
}
#ifdef MVNETA_KTR
CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
sc->ifp->if_xname, q, tx->cpu, tx->dma, tx->used);
#endif
tx->watchdog_time = ticks;
if (tx->used == 0)
tx->queue_status = MVNETA_QUEUE_IDLE;
}
/*
* Do a final TX complete when TX is idle.
*/
STATIC void
mvneta_tx_drain(struct mvneta_softc *sc)
{
struct mvneta_tx_ring *tx;
int q;
/*
* Handle trailing mbuf on TX queue.
* Check is done lockess to avoid TX path contention.
*/
for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
tx = MVNETA_TX_RING(sc, q);
if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
tx->used > 0) {
mvneta_tx_lockq(sc, q);
mvneta_tx_queue_complete(sc, q);
mvneta_tx_unlockq(sc, q);
}
}
}
/*
* Rx Subroutines
*/
STATIC int
mvneta_rx(struct mvneta_softc *sc, int q, int count)
{
uint32_t prxs, npkt;
int more;
more = 0;
mvneta_rx_lockq(sc, q);
prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
npkt = MVNETA_PRXS_GET_ODC(prxs);
if (__predict_false(npkt == 0))
goto out;
if (count > 0 && npkt > count) {
more = 1;
npkt = count;
}
mvneta_rx_queue(sc, q, npkt);
out:
mvneta_rx_unlockq(sc, q);
return more;
}
/*
* Helper routine for updating PRXSU register of a given queue.
* Handles number of processed descriptors bigger than maximum acceptable value.
*/
STATIC __inline void
mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
{
uint32_t prxsu;
while (__predict_false(processed > 255)) {
prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
processed -= 255;
}
prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
}
static __inline void
mvneta_prefetch(void *p)
{
__builtin_prefetch(p);
}
STATIC void
mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
{
struct ifnet *ifp;
struct mvneta_rx_ring *rx;
struct mvneta_rx_desc *r;
struct mvneta_buf *rxbuf;
struct mbuf *m;
struct lro_ctrl *lro;
struct lro_entry *queued;
void *pktbuf;
int i, pktlen, processed, ndma;
KASSERT_RX_MTX(sc, q);
ifp = sc->ifp;
rx = MVNETA_RX_RING(sc, q);
processed = 0;
if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
return;
bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
for (i = 0; i < npkt; i++) {
/* Prefetch next desc, rxbuf. */
ndma = rx_counter_adv(rx->dma, 1);
mvneta_prefetch(&rx->desc[ndma]);
mvneta_prefetch(&rx->rxbuf[ndma]);
/* get descriptor and packet */
r = &rx->desc[rx->dma];
rxbuf = &rx->rxbuf[rx->dma];
m = rxbuf->m;
rxbuf->m = NULL;
DASSERT(m != NULL);
bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
/* Prefetch mbuf header. */
mvneta_prefetch(m);
processed++;
/* Drop desc with error status or not in a single buffer. */
DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
(MVNETA_RX_F|MVNETA_RX_L));
if (__predict_false((r->status & MVNETA_RX_ES) ||
(r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
(MVNETA_RX_F|MVNETA_RX_L)))
goto rx_error;
/*
* [ OFF | MH | PKT | CRC ]
* bytecnt cover MH, PKT, CRC
*/
pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
MVNETA_HWHEADER_SIZE;
/* Prefetch mbuf data. */
mvneta_prefetch(pktbuf);
/* Write value to mbuf (avoid read). */
m->m_data = pktbuf;
m->m_len = m->m_pkthdr.len = pktlen;
m->m_pkthdr.rcvif = ifp;
mvneta_rx_set_csumflag(ifp, r, m);
/* Increase rx_dma before releasing the lock. */
rx->dma = ndma;
if (__predict_false(rx->lro_enabled &&
((r->status & MVNETA_RX_L3_IP) != 0) &&
((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
(m->m_pkthdr.csum_flags &
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
if (rx->lro.lro_cnt != 0) {
if (tcp_lro_rx(&rx->lro, m, 0) == 0)
goto rx_done;
}
}
mvneta_rx_unlockq(sc, q);
(*ifp->if_input)(ifp, m);
mvneta_rx_lockq(sc, q);
/*
* Check whether this queue has been disabled in the
* meantime. If yes, then clear LRO and exit.
*/
if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
goto rx_lro;
rx_done:
/* Refresh receive ring to avoid stall and minimize jitter. */
if (processed >= MVNETA_RX_REFILL_COUNT) {
mvneta_prxsu_update(sc, q, processed);
mvneta_rx_queue_refill(sc, q);
processed = 0;
}
continue;
rx_error:
m_freem(m);
rx->dma = ndma;
/* Refresh receive ring to avoid stall and minimize jitter. */
if (processed >= MVNETA_RX_REFILL_COUNT) {
mvneta_prxsu_update(sc, q, processed);
mvneta_rx_queue_refill(sc, q);
processed = 0;
}
}
#ifdef MVNETA_KTR
CTR3(KTR_SPARE2, "%s:%u %u packets received", ifp->if_xname, q, npkt);
#endif
/* DMA status update */
mvneta_prxsu_update(sc, q, processed);
/* Refill the rest of buffers if there are any to refill */
mvneta_rx_queue_refill(sc, q);
rx_lro:
/*
* Flush any outstanding LRO work
*/
lro = &rx->lro;
while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
tcp_lro_flush(lro, queued);
}
}
STATIC void
mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
{
bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
/* This will remove all data at once */
m_freem(rxbuf->m);
}
STATIC void
mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
{
struct mvneta_rx_ring *rx;
struct mvneta_rx_desc *r;
struct mvneta_buf *rxbuf;
bus_dma_segment_t segs;
struct mbuf *m;
uint32_t prxs, prxsu, ndesc;
int npkt, refill, nsegs, error;
KASSERT_RX_MTX(sc, q);
rx = MVNETA_RX_RING(sc, q);
prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
refill = MVNETA_RX_RING_CNT - ndesc;
#ifdef MVNETA_KTR
CTR3(KTR_SPARE2, "%s:%u refill %u packets", sc->ifp->if_xname, q,
refill);
#endif
if (__predict_false(refill <= 0))
return;
for (npkt = 0; npkt < refill; npkt++) {
rxbuf = &rx->rxbuf[rx->cpu];
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->rx_frame_size);
if (__predict_false(m == NULL)) {
error = ENOBUFS;
break;
}
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
m, &segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(error != 0 || nsegs != 1)) {
KASSERT(1, ("Failed to load Rx mbuf DMA map"));
m_freem(m);
break;
}
/* Add the packet to the ring */
rxbuf->m = m;
r = &rx->desc[rx->cpu];
r->bufptr_pa = segs.ds_addr;
rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
rx->cpu = rx_counter_adv(rx->cpu, 1);
}
if (npkt == 0) {
if (refill == MVNETA_RX_RING_CNT)
rx->needs_refill = TRUE;
return;
}
rx->needs_refill = FALSE;
bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
while (__predict_false(npkt > 255)) {
prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
npkt -= 255;
}
if (__predict_true(npkt > 0)) {
prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
}
}
STATIC __inline void
mvneta_rx_set_csumflag(struct ifnet *ifp,
struct mvneta_rx_desc *r, struct mbuf *m)
{
uint32_t csum_flags;
csum_flags = 0;
if (__predict_false((r->status &
(MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
return; /* not a IP packet */
/* L3 */
if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
MVNETA_RX_IP_HEADER_OK))
csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
(MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
/* L4 */
switch (r->status & MVNETA_RX_L4_MASK) {
case MVNETA_RX_L4_TCP:
case MVNETA_RX_L4_UDP:
csum_flags |= CSUM_L4_CALC;
if (__predict_true((r->status &
MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
csum_flags |= CSUM_L4_VALID;
m->m_pkthdr.csum_data = htons(0xffff);
}
break;
case MVNETA_RX_L4_OTH:
default:
break;
}
}
m->m_pkthdr.csum_flags = csum_flags;
}
/*
* MAC address filter
*/
STATIC void
mvneta_filter_setup(struct mvneta_softc *sc)
{
struct ifnet *ifp;
uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
uint32_t pxc;
int i;
KASSERT_SC_MTX(sc);
memset(dfut, 0, sizeof(dfut));
memset(dfsmt, 0, sizeof(dfsmt));
memset(dfomt, 0, sizeof(dfomt));
ifp = sc->ifp;
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
for (i = 0; i < MVNETA_NDFSMT; i++) {
dfsmt[i] = dfomt[i] =
MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
}
}
pxc = MVNETA_READ(sc, MVNETA_PXC);
pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
if (ifp->if_flags & IFF_BROADCAST) {
pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
}
if (ifp->if_flags & IFF_PROMISC) {
pxc |= MVNETA_PXC_UPM;
}
MVNETA_WRITE(sc, MVNETA_PXC, pxc);
/* Set Destination Address Filter Unicast Table */
if (ifp->if_flags & IFF_PROMISC) {
/* pass all unicast addresses */
for (i = 0; i < MVNETA_NDFUT; i++) {
dfut[i] =
MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
}
} else {
i = sc->enaddr[5] & 0xf; /* last nibble */
dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
}
MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
/* Set Destination Address Filter Multicast Tables */
MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
}
/*
* sysctl(9)
*/
STATIC int
sysctl_read_mib(SYSCTL_HANDLER_ARGS)
{
struct mvneta_sysctl_mib *arg;
struct mvneta_softc *sc;
uint64_t val;
arg = (struct mvneta_sysctl_mib *)arg1;
if (arg == NULL)
return (EINVAL);
sc = arg->sc;
if (sc == NULL)
return (EINVAL);
if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
return (EINVAL);
mvneta_sc_lock(sc);
val = arg->counter;
mvneta_sc_unlock(sc);
return sysctl_handle_64(oidp, &val, 0, req);
}
STATIC int
sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
{
struct mvneta_softc *sc;
int err, val;
val = 0;
sc = (struct mvneta_softc *)arg1;
if (sc == NULL)
return (EINVAL);
err = sysctl_handle_int(oidp, &val, 0, req);
if (err != 0)
return (err);
if (val < 0 || val > 1)
return (EINVAL);
if (val == 1) {
mvneta_sc_lock(sc);
mvneta_clear_mib(sc);
mvneta_sc_unlock(sc);
}
return (0);
}
STATIC int
sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
{
struct mvneta_sysctl_queue *arg;
struct mvneta_rx_ring *rx;
struct mvneta_softc *sc;
uint32_t reg, time_mvtclk;
int err, time_us;
rx = NULL;
arg = (struct mvneta_sysctl_queue *)arg1;
if (arg == NULL)
return (EINVAL);
if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
return (EINVAL);
if (arg->rxtx != MVNETA_SYSCTL_RX)
return (EINVAL);
sc = arg->sc;
if (sc == NULL)
return (EINVAL);
/* read queue length */
mvneta_sc_lock(sc);
mvneta_rx_lockq(sc, arg->queue);
rx = MVNETA_RX_RING(sc, arg->queue);
time_mvtclk = rx->queue_th_time;
time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvneta_get_clk();
mvneta_rx_unlockq(sc, arg->queue);
mvneta_sc_unlock(sc);
err = sysctl_handle_int(oidp, &time_us, 0, req);
if (err != 0)
return (err);
mvneta_sc_lock(sc);
mvneta_rx_lockq(sc, arg->queue);
/* update queue length (0[sec] - 1[sec]) */
if (time_us < 0 || time_us > (1000 * 1000)) {
mvneta_rx_unlockq(sc, arg->queue);
mvneta_sc_unlock(sc);
return (EINVAL);
}
time_mvtclk =
(uint64_t)mvneta_get_clk() * (uint64_t)time_us / (1000ULL * 1000ULL);
rx->queue_th_time = time_mvtclk;
reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
mvneta_rx_unlockq(sc, arg->queue);
mvneta_sc_unlock(sc);
return (0);
}
STATIC void
sysctl_mvneta_init(struct mvneta_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
struct sysctl_oid_list *rxchildren;
struct sysctl_oid_list *qchildren, *mchildren;
struct sysctl_oid *tree;
int i, q;
struct mvneta_sysctl_queue *rxarg;
#define MVNETA_SYSCTL_NAME(num) "queue" # num
static const char *sysctl_queue_names[] = {
MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
};
#undef MVNETA_SYSCTL_NAME
#ifndef NO_SYSCTL_DESCR
#define MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
static const char *sysctl_queue_descrs[] = {
MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
};
#undef MVNETA_SYSCTL_DESCR
#endif
ctx = device_get_sysctl_ctx(sc->dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA RX");
rxchildren = SYSCTL_CHILDREN(tree);
tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA MIB");
mchildren = SYSCTL_CHILDREN(tree);
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
/*
* MIB access
*/
/* dev.mvneta.[unit].mib.<mibs> */
for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
mib_arg->sc = sc;
mib_arg->index = i;
SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO,
mvneta_mib_list[i].sysctl_name,
CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
(void *)mib_arg, 0, sysctl_read_mib, "I",
mvneta_mib_list[i].desc);
}
SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
(void *)sc, 0, sysctl_clear_mib, "I", "Reset MIB counters");
for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
rxarg = &sc->sysctl_rx_queue[q];
rxarg->sc = sc;
rxarg->queue = q;
rxarg->rxtx = MVNETA_SYSCTL_RX;
/* hw.mvneta.mvneta[unit].rx.[queue] */
tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
sysctl_queue_names[q], CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
sysctl_queue_descrs[q]);
qchildren = SYSCTL_CHILDREN(tree);
/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, rxarg, 0,
sysctl_set_queue_rxthtime, "I",
"interrupt coalescing threshold timer [us]");
}
}
/*
* MIB
*/
STATIC void
mvneta_clear_mib(struct mvneta_softc *sc)
{
int i;
KASSERT_SC_MTX(sc);
for (i = 0; i < nitems(mvneta_mib_list); i++) {
if (mvneta_mib_list[i].reg64)
MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
else
MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
sc->sysctl_mib[i].counter = 0;
}
MVNETA_READ(sc, MVNETA_PDFC);
sc->counter_pdfc = 0;
MVNETA_READ(sc, MVNETA_POFC);
sc->counter_pofc = 0;
sc->counter_watchdog = 0;
}
STATIC void
mvneta_update_mib(struct mvneta_softc *sc)
{
struct mvneta_tx_ring *tx;
int i;
uint64_t val;
uint32_t reg;
for (i = 0; i < nitems(mvneta_mib_list); i++) {
if (mvneta_mib_list[i].reg64)
val = MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
else
val = MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
if (val == 0)
continue;
sc->sysctl_mib[i].counter += val;
switch (mvneta_mib_list[i].regnum) {
case MVNETA_MIB_RX_GOOD_OCT:
if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
break;
case MVNETA_MIB_RX_BAD_FRAME:
if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
break;
case MVNETA_MIB_RX_GOOD_FRAME:
if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
break;
case MVNETA_MIB_RX_MCAST_FRAME:
if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
break;
case MVNETA_MIB_TX_GOOD_OCT:
if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
break;
case MVNETA_MIB_TX_GOOD_FRAME:
if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
break;
case MVNETA_MIB_TX_MCAST_FRAME:
if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
break;
case MVNETA_MIB_MAC_COL:
if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
break;
case MVNETA_MIB_TX_MAC_TRNS_ERR:
case MVNETA_MIB_TX_EXCES_COL:
case MVNETA_MIB_MAC_LATE_COL:
if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
break;
}
}
reg = MVNETA_READ(sc, MVNETA_PDFC);
sc->counter_pdfc += reg;
if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
reg = MVNETA_READ(sc, MVNETA_POFC);
sc->counter_pofc += reg;
if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
/* TX watchdog. */
if (sc->counter_watchdog_mib > 0) {
if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
sc->counter_watchdog_mib = 0;
}
/*
* TX driver errors:
* We do not take queue locks to not disrupt TX path.
* We may only miss one drv error which will be fixed at
* next mib update. We may also clear counter when TX path
* is incrementing it but we only do it if counter was not zero
* thus we may only loose one error.
*/
for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
tx = MVNETA_TX_RING(sc, i);
if (tx->drv_error > 0) {
if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
tx->drv_error = 0;
}
}
}