freebsd-skq/sys/dev/sdhci/fsl_sdhci.c
Marius Strobl ab00a509ee o Don't allocate resources for SDMA in sdhci(4) if the controller or the
front-end doesn't support SDMA or the latter implements a platform-
  specific transfer method instead. While at it, factor out allocation
  and freeing of SDMA resources to sdhci_dma_{alloc,free}() in order to
  keep the code more readable when adding support for ADMA variants.

o Base the size of the SDMA bounce buffer on MAXPHYS up to the maximum
  of 512 KiB instead of using a fixed 4-KiB-buffer. With the default
  MAXPHYS of 128 KiB and depending on the controller and medium, this
  reduces the number of SDHCI interrupts by a factor of ~16 to ~32 on
  sequential reads while an increase of throughput of up to ~84 % was
  seen.

  Front-ends for broken controllers that only support an SDMA buffer
  boundary of a specific size may set SDHCI_QUIRK_BROKEN_SDMA_BOUNDARY
  and supply a size via struct sdhci_slot. According to Linux, only
  Qualcomm MSM-type SDHCI controllers are affected by this, though.

  Requested by: Shreyank Amartya (unconditional bump to 512 KiB)

o Introduce a SDHCI_DEPEND macro for specifying the dependency of the
  front-end modules on the sdhci(4) one and bump the module version
  of sdhci(4) to 2 via an also newly introduced SDHCI_VERSION in order
  to ensure that all components are in sync WRT struct sdhci_slot.

o In sdhci(4):
  - Make pointers const were applicable,
  - replace a few device_printf(9) calls with slot_printf() for
    consistency, and
  - sync some local functions with their prototypes WRT static.
2018-12-30 23:08:06 +00:00

1013 lines
30 KiB
C

/*-
* Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* SDHCI driver glue for Freescale i.MX SoC and QorIQ families.
*
* This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
*/
#include "opt_mmccam.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/libkern.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/time.h>
#include <machine/bus.h>
#include <machine/resource.h>
#ifdef __arm__
#include <machine/intr.h>
#include <arm/freescale/imx/imx_ccmvar.h>
#endif
#ifdef __powerpc__
#include <powerpc/mpc85xx/mpc85xx.h>
#endif
#include <dev/gpio/gpiobusvar.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mmc/bridge.h>
#include <dev/sdhci/sdhci.h>
#include <dev/sdhci/sdhci_fdt_gpio.h>
#include "mmcbr_if.h"
#include "sdhci_if.h"
struct fsl_sdhci_softc {
device_t dev;
struct resource * mem_res;
struct resource * irq_res;
void * intr_cookie;
struct sdhci_slot slot;
struct callout r1bfix_callout;
sbintime_t r1bfix_timeout_at;
struct sdhci_fdt_gpio * gpio;
uint32_t baseclk_hz;
uint32_t cmd_and_mode;
uint32_t r1bfix_intmask;
uint16_t sdclockreg_freq_bits;
uint8_t r1bfix_type;
uint8_t hwtype;
bool slot_init_done;
};
#define R1BFIX_NONE 0 /* No fix needed at next interrupt. */
#define R1BFIX_NODATA 1 /* Synthesize DATA_END for R1B w/o data. */
#define R1BFIX_AC12 2 /* Wait for busy after auto command 12. */
#define HWTYPE_NONE 0 /* Hardware not recognized/supported. */
#define HWTYPE_ESDHC 1 /* fsl5x and earlier. */
#define HWTYPE_USDHC 2 /* fsl6. */
/*
* Freescale-specific registers, or in some cases the layout of bits within the
* sdhci-defined register is different on Freescale. These names all begin with
* SDHC_ (not SDHCI_).
*/
#define SDHC_WTMK_LVL 0x44 /* Watermark Level register. */
#define USDHC_MIX_CONTROL 0x48 /* Mix(ed) Control register. */
#define SDHC_VEND_SPEC 0xC0 /* Vendor-specific register. */
#define SDHC_VEND_FRC_SDCLK_ON (1 << 8)
#define SDHC_VEND_IPGEN (1 << 11)
#define SDHC_VEND_HCKEN (1 << 12)
#define SDHC_VEND_PEREN (1 << 13)
#define SDHC_PRES_STATE 0x24
#define SDHC_PRES_CIHB (1 << 0)
#define SDHC_PRES_CDIHB (1 << 1)
#define SDHC_PRES_DLA (1 << 2)
#define SDHC_PRES_SDSTB (1 << 3)
#define SDHC_PRES_IPGOFF (1 << 4)
#define SDHC_PRES_HCKOFF (1 << 5)
#define SDHC_PRES_PEROFF (1 << 6)
#define SDHC_PRES_SDOFF (1 << 7)
#define SDHC_PRES_WTA (1 << 8)
#define SDHC_PRES_RTA (1 << 9)
#define SDHC_PRES_BWEN (1 << 10)
#define SDHC_PRES_BREN (1 << 11)
#define SDHC_PRES_RTR (1 << 12)
#define SDHC_PRES_CINST (1 << 16)
#define SDHC_PRES_CDPL (1 << 18)
#define SDHC_PRES_WPSPL (1 << 19)
#define SDHC_PRES_CLSL (1 << 23)
#define SDHC_PRES_DLSL_SHIFT 24
#define SDHC_PRES_DLSL_MASK (0xffU << SDHC_PRES_DLSL_SHIFT)
#define SDHC_PROT_CTRL 0x28
#define SDHC_PROT_LED (1 << 0)
#define SDHC_PROT_WIDTH_1BIT (0 << 1)
#define SDHC_PROT_WIDTH_4BIT (1 << 1)
#define SDHC_PROT_WIDTH_8BIT (2 << 1)
#define SDHC_PROT_WIDTH_MASK (3 << 1)
#define SDHC_PROT_D3CD (1 << 3)
#define SDHC_PROT_EMODE_BIG (0 << 4)
#define SDHC_PROT_EMODE_HALF (1 << 4)
#define SDHC_PROT_EMODE_LITTLE (2 << 4)
#define SDHC_PROT_EMODE_MASK (3 << 4)
#define SDHC_PROT_SDMA (0 << 8)
#define SDHC_PROT_ADMA1 (1 << 8)
#define SDHC_PROT_ADMA2 (2 << 8)
#define SDHC_PROT_ADMA264 (3 << 8)
#define SDHC_PROT_DMA_MASK (3 << 8)
#define SDHC_PROT_CDTL (1 << 6)
#define SDHC_PROT_CDSS (1 << 7)
#define SDHC_SYS_CTRL 0x2c
/*
* The clock enable bits exist in different registers for ESDHC vs USDHC, but
* they are the same bits in both cases. The divisor values go into the
* standard sdhci clock register, but in different bit positions and meanings
than the sdhci spec values.
*/
#define SDHC_CLK_IPGEN (1 << 0)
#define SDHC_CLK_HCKEN (1 << 1)
#define SDHC_CLK_PEREN (1 << 2)
#define SDHC_CLK_SDCLKEN (1 << 3)
#define SDHC_CLK_ENABLE_MASK 0x0000000f
#define SDHC_CLK_DIVISOR_MASK 0x000000f0
#define SDHC_CLK_DIVISOR_SHIFT 4
#define SDHC_CLK_PRESCALE_MASK 0x0000ff00
#define SDHC_CLK_PRESCALE_SHIFT 8
static struct ofw_compat_data compat_data[] = {
{"fsl,imx6q-usdhc", HWTYPE_USDHC},
{"fsl,imx6sl-usdhc", HWTYPE_USDHC},
{"fsl,imx53-esdhc", HWTYPE_ESDHC},
{"fsl,imx51-esdhc", HWTYPE_ESDHC},
{"fsl,esdhc", HWTYPE_ESDHC},
{NULL, HWTYPE_NONE},
};
static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc);
static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val);
static void fsl_sdhci_r1bfix_func(void *arg);
static inline uint32_t
RD4(struct fsl_sdhci_softc *sc, bus_size_t off)
{
return (bus_read_4(sc->mem_res, off));
}
static inline void
WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->mem_res, off, val);
}
static uint8_t
fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct fsl_sdhci_softc *sc = device_get_softc(dev);
uint32_t val32, wrk32;
/*
* Most of the things in the standard host control register are in the
* hardware's wider protocol control register, but some of the bits are
* moved around.
*/
if (off == SDHCI_HOST_CONTROL) {
wrk32 = RD4(sc, SDHC_PROT_CTRL);
val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
SDHCI_CTRL_FORCE_CARD);
switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
case SDHC_PROT_WIDTH_1BIT:
/* Value is already 0. */
break;
case SDHC_PROT_WIDTH_4BIT:
val32 |= SDHCI_CTRL_4BITBUS;
break;
case SDHC_PROT_WIDTH_8BIT:
val32 |= SDHCI_CTRL_8BITBUS;
break;
}
switch (wrk32 & SDHC_PROT_DMA_MASK) {
case SDHC_PROT_SDMA:
/* Value is already 0. */
break;
case SDHC_PROT_ADMA1:
/* This value is deprecated, should never appear. */
break;
case SDHC_PROT_ADMA2:
val32 |= SDHCI_CTRL_ADMA2;
break;
case SDHC_PROT_ADMA264:
val32 |= SDHCI_CTRL_ADMA264;
break;
}
return val32;
}
/*
* XXX can't find the bus power on/off knob. For now we have to say the
* power is always on and always set to the same voltage.
*/
if (off == SDHCI_POWER_CONTROL) {
return (SDHCI_POWER_ON | SDHCI_POWER_300);
}
return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
}
static uint16_t
fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct fsl_sdhci_softc *sc = device_get_softc(dev);
uint32_t val32;
if (sc->hwtype == HWTYPE_USDHC) {
/*
* The USDHC hardware has nothing in the version register, but
* it's v3 compatible with all our translation code.
*/
if (off == SDHCI_HOST_VERSION) {
return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
}
/*
* The USDHC hardware moved the transfer mode bits to the mixed
* control register, fetch them from there.
*/
if (off == SDHCI_TRANSFER_MODE)
return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
} else if (sc->hwtype == HWTYPE_ESDHC) {
/*
* The ESDHC hardware has the typical 32-bit combined "command
* and mode" register that we have to cache so that command
* isn't written until after mode. On a read, just retrieve the
* cached values last written.
*/
if (off == SDHCI_TRANSFER_MODE) {
return (sc->cmd_and_mode & 0x0000ffff);
} else if (off == SDHCI_COMMAND_FLAGS) {
return (sc->cmd_and_mode >> 16);
}
}
/*
* This hardware only manages one slot. Synthesize a slot interrupt
* status register... if there are any enabled interrupts active they
* must be coming from our one and only slot.
*/
if (off == SDHCI_SLOT_INT_STATUS) {
val32 = RD4(sc, SDHCI_INT_STATUS);
val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
return (val32 ? 1 : 0);
}
/*
* Clock bits are scattered into various registers which differ by
* hardware type, complex enough to have their own function.
*/
if (off == SDHCI_CLOCK_CONTROL) {
return (fsl_sdhc_get_clock(sc));
}
return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
}
static uint32_t
fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct fsl_sdhci_softc *sc = device_get_softc(dev);
uint32_t val32, wrk32;
val32 = RD4(sc, off);
/*
* The hardware leaves the base clock frequency out of the capabilities
* register, but we filled it in by setting slot->max_clk at attach time
* rather than here, because we can't represent frequencies above 63MHz
* in an sdhci 2.0 capabliities register. The timeout clock is the same
* as the active output sdclock; we indicate that with a quirk setting
* so don't populate the timeout frequency bits.
*
* XXX Turn off (for now) features the hardware can do but this driver
* doesn't yet handle (1.8v, suspend/resume, etc).
*/
if (off == SDHCI_CAPABILITIES) {
val32 &= ~SDHCI_CAN_VDD_180;
val32 &= ~SDHCI_CAN_DO_SUSPEND;
val32 |= SDHCI_CAN_DO_8BITBUS;
return (val32);
}
/*
* The hardware moves bits around in the present state register to make
* room for all 8 data line state bits. To translate, mask out all the
* bits which are not in the same position in both registers (this also
* masks out some Freescale-specific bits in locations defined as
* reserved by sdhci), then shift the data line and retune request bits
* down to their standard locations.
*/
if (off == SDHCI_PRESENT_STATE) {
wrk32 = val32;
val32 &= 0x000F0F07;
val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
return (val32);
}
/*
* fsl_sdhci_intr() can synthesize a DATA_END interrupt following a
* command with an R1B response, mix it into the hardware status.
*/
if (off == SDHCI_INT_STATUS) {
return (val32 | sc->r1bfix_intmask);
}
return val32;
}
static void
fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t *data, bus_size_t count)
{
struct fsl_sdhci_softc *sc = device_get_softc(dev);
bus_read_multi_4(sc->mem_res, off, data, count);
}
static void
fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
{
struct fsl_sdhci_softc *sc = device_get_softc(dev);
uint32_t val32;
/*
* Most of the things in the standard host control register are in the
* hardware's wider protocol control register, but some of the bits are
* moved around.
*/
if (off == SDHCI_HOST_CONTROL) {
val32 = RD4(sc, SDHC_PROT_CTRL);
val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
val32 |= (val & SDHCI_CTRL_LED);
if (val & SDHCI_CTRL_8BITBUS)
val32 |= SDHC_PROT_WIDTH_8BIT;
else
val32 |= (val & SDHCI_CTRL_4BITBUS);
val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
WR4(sc, SDHC_PROT_CTRL, val32);
return;
}
/* XXX I can't find the bus power on/off knob; do nothing. */
if (off == SDHCI_POWER_CONTROL) {
return;
}
#ifdef __powerpc__
/* XXX Reset doesn't seem to work as expected. Do nothing for now. */
if (off == SDHCI_SOFTWARE_RESET)
return;
#endif
val32 = RD4(sc, off & ~3);
val32 &= ~(0xff << (off & 3) * 8);
val32 |= (val << (off & 3) * 8);
WR4(sc, off & ~3, val32);
}
static void
fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
{
struct fsl_sdhci_softc *sc = device_get_softc(dev);
uint32_t val32;
/*
* The clock control stuff is complex enough to have its own function
* that can handle the ESDHC versus USDHC differences.
*/
if (off == SDHCI_CLOCK_CONTROL) {
fsl_sdhc_set_clock(sc, val);
return;
}
/*
* Figure out whether we need to check the DAT0 line for busy status at
* interrupt time. The controller should be doing this, but for some
* reason it doesn't. There are two cases:
* - R1B response with no data transfer should generate a DATA_END (aka
* TRANSFER_COMPLETE) interrupt after waiting for busy, but if
* there's no data transfer there's no DATA_END interrupt. This is
* documented; they seem to think it's a feature.
* - R1B response after Auto-CMD12 appears to not work, even though
* there's a control bit for it (bit 3) in the vendor register.
* When we're starting a command that needs a manual DAT0 line check at
* interrupt time, we leave ourselves a note in r1bfix_type so that we
* can do the extra work in fsl_sdhci_intr().
*/
if (off == SDHCI_COMMAND_FLAGS) {
if (val & SDHCI_CMD_DATA) {
const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
val32 = RD4(sc, USDHC_MIX_CONTROL);
if ((val32 & MBAUTOCMD) == MBAUTOCMD)
sc->r1bfix_type = R1BFIX_AC12;
} else {
if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
sc->r1bfix_type = R1BFIX_NODATA;
}
}
}
/*
* The USDHC hardware moved the transfer mode bits to mixed control; we
* just write them there and we're done. The ESDHC hardware has the
* typical combined cmd-and-mode register that allows only 32-bit
* access, so when writing the mode bits just save them, then later when
* writing the command bits, add in the saved mode bits.
*/
if (sc->hwtype == HWTYPE_USDHC) {
if (off == SDHCI_TRANSFER_MODE) {
val32 = RD4(sc, USDHC_MIX_CONTROL);
val32 &= ~0x3f;
val32 |= val & 0x37;
// XXX acmd23 not supported here (or by sdhci driver)
WR4(sc, USDHC_MIX_CONTROL, val32);
return;
}
} else if (sc->hwtype == HWTYPE_ESDHC) {
if (off == SDHCI_TRANSFER_MODE) {
sc->cmd_and_mode =
(sc->cmd_and_mode & 0xffff0000) | val;
return;
} else if (off == SDHCI_COMMAND_FLAGS) {
sc->cmd_and_mode =
(sc->cmd_and_mode & 0xffff) | (val << 16);
WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
return;
}
}
val32 = RD4(sc, off & ~3);
val32 &= ~(0xffff << (off & 3) * 8);
val32 |= ((val & 0xffff) << (off & 3) * 8);
WR4(sc, off & ~3, val32);
}
static void
fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
{
struct fsl_sdhci_softc *sc = device_get_softc(dev);
/* Clear synthesized interrupts, then pass the value to the hardware. */
if (off == SDHCI_INT_STATUS) {
sc->r1bfix_intmask &= ~val;
}
WR4(sc, off, val);
}
static void
fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t *data, bus_size_t count)
{
struct fsl_sdhci_softc *sc = device_get_softc(dev);
bus_write_multi_4(sc->mem_res, off, data, count);
}
static uint16_t
fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc)
{
uint16_t val;
/*
* Whenever the sdhci driver writes the clock register we save a
* snapshot of just the frequency bits, so that we can play them back
* here on a register read without recalculating the frequency from the
* prescalar and divisor bits in the real register. We'll start with
* those bits, and mix in the clock status and enable bits that come
* from different places depending on which hardware we've got.
*/
val = sc->sdclockreg_freq_bits;
/*
* The internal clock is always enabled (actually, the hardware manages
* it). Whether the internal clock is stable yet after a frequency
* change comes from the present-state register on both hardware types.
*/
val |= SDHCI_CLOCK_INT_EN;
if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB)
val |= SDHCI_CLOCK_INT_STABLE;
/*
* On i.MX ESDHC hardware the card bus clock enable is in the usual
* sdhci register but it's a different bit, so transcribe it (note the
* difference between standard SDHCI_ and Freescale SDHC_ prefixes
* here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but
* no force-off for the card bus clock (the hardware runs the clock when
* transfers are active no matter what), so we always say the clock is
* on.
* XXX Maybe we should say it's in whatever state the sdhci driver last
* set it to.
*/
if (sc->hwtype == HWTYPE_ESDHC) {
#ifdef __arm__
if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN)
#endif
val |= SDHCI_CLOCK_CARD_EN;
} else {
val |= SDHCI_CLOCK_CARD_EN;
}
return (val);
}
static void
fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val)
{
uint32_t divisor, freq, prescale, val32;
val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
/*
* Save the frequency-setting bits in SDHCI format so that we can play
* them back in get_clock without complex decoding of hardware regs,
* then deal with the freqency part of the value based on hardware type.
*/
sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK;
if (sc->hwtype == HWTYPE_ESDHC) {
/*
* The i.MX5 ESDHC hardware requires the driver to manually
* start and stop the sd bus clock. If the enable bit is not
* set, turn off the clock in hardware and we're done, otherwise
* decode the requested frequency. ESDHC hardware is sdhci 2.0;
* the sdhci driver will use the original 8-bit divisor field
* and the "base / 2^N" divisor scheme.
*/
if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
#ifdef __arm__
/* On QorIQ, this is a reserved bit. */
WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN);
#endif
return;
}
divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
freq = sc->baseclk_hz >> ffs(divisor);
} else {
/*
* The USDHC hardware provides only "force always on" control
* over the sd bus clock, but no way to turn it off. (If a cmd
* or data transfer is in progress the clock is on, otherwise it
* is off.) If the clock is being disabled, we can just return
* now, otherwise we decode the requested frequency. USDHC
* hardware is sdhci 3.0; the sdhci driver will use a 10-bit
* divisor using the "base / 2*N" divisor scheme.
*/
if ((val & SDHCI_CLOCK_CARD_EN) == 0)
return;
divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
SDHCI_DIVIDER_MASK_LEN;
if (divisor == 0)
freq = sc->baseclk_hz;
else
freq = sc->baseclk_hz / (2 * divisor);
}
/*
* Get a prescaler and final divisor to achieve the desired frequency.
*/
for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
prescale <<= 1;
for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
++divisor;
#ifdef DEBUG
device_printf(sc->dev,
"desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
prescale, divisor);
#endif
/*
* Adjust to zero-based values, and store them to the hardware.
*/
prescale >>= 1;
divisor -= 1;
val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK);
val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
val32 |= SDHC_CLK_IPGEN;
WR4(sc, SDHCI_CLOCK_CONTROL, val32);
}
static boolean_t
fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc)
{
uint32_t inhibit;
mtx_assert(&sc->slot.mtx, MA_OWNED);
/*
* Check the DAT0 line status using both the DLA (data line active) and
* CDIHB (data inhibit) bits in the present state register. In theory
* just DLA should do the trick, but in practice it takes both. If the
* DAT0 line is still being held and we're not yet beyond the timeout
* point, just schedule another callout to check again later.
*/
inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
fsl_sdhci_r1bfix_func, sc, 0);
return (false);
}
/*
* If we reach this point with the inhibit bits still set, we've got a
* timeout, synthesize a DATA_TIMEOUT interrupt. Otherwise the DAT0
* line has been released, and we synthesize a DATA_END, and if the type
* of fix needed was on a command-without-data we also now add in the
* original INT_RESPONSE that we suppressed earlier.
*/
if (inhibit)
sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
else {
sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
if (sc->r1bfix_type == R1BFIX_NODATA)
sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
}
sc->r1bfix_type = R1BFIX_NONE;
return (true);
}
static void
fsl_sdhci_r1bfix_func(void * arg)
{
struct fsl_sdhci_softc *sc = arg;
boolean_t r1bwait_done;
mtx_lock(&sc->slot.mtx);
r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc);
mtx_unlock(&sc->slot.mtx);
if (r1bwait_done)
sdhci_generic_intr(&sc->slot);
}
static void
fsl_sdhci_intr(void *arg)
{
struct fsl_sdhci_softc *sc = arg;
uint32_t intmask;
mtx_lock(&sc->slot.mtx);
/*
* Manually check the DAT0 line for R1B response types that the
* controller fails to handle properly. The controller asserts the done
* interrupt while the card is still asserting busy with the DAT0 line.
*
* We check DAT0 immediately because most of the time, especially on a
* read, the card will actually be done by time we get here. If it's
* not, then the wait_done routine will schedule a callout to re-check
* periodically until it is done. In that case we clear the interrupt
* out of the hardware now so that we can present it later when the DAT0
* line is released.
*
* If we need to wait for the DAT0 line to be released, we set up a
* timeout point 250ms in the future. This number comes from the SD
* spec, which allows a command to take that long. In the real world,
* cards tend to take 10-20ms for a long-running command such as a write
* or erase that spans two pages.
*/
switch (sc->r1bfix_type) {
case R1BFIX_NODATA:
intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE;
break;
case R1BFIX_AC12:
intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END;
break;
default:
intmask = 0;
break;
}
if (intmask) {
sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
if (!fsl_sdhci_r1bfix_is_wait_done(sc)) {
WR4(sc, SDHCI_INT_STATUS, intmask);
bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4,
BUS_SPACE_BARRIER_WRITE);
}
}
mtx_unlock(&sc->slot.mtx);
sdhci_generic_intr(&sc->slot);
}
static int
fsl_sdhci_get_ro(device_t bus, device_t child)
{
struct fsl_sdhci_softc *sc = device_get_softc(bus);
return (sdhci_fdt_gpio_get_readonly(sc->gpio));
}
static bool
fsl_sdhci_get_card_present(device_t dev, struct sdhci_slot *slot)
{
struct fsl_sdhci_softc *sc = device_get_softc(dev);
return (sdhci_fdt_gpio_get_present(sc->gpio));
}
#ifdef __powerpc__
static uint32_t
fsl_sdhci_get_platform_clock(device_t dev)
{
phandle_t node;
uint32_t clock;
node = ofw_bus_get_node(dev);
/* Get sdhci node properties */
if((OF_getprop(node, "clock-frequency", (void *)&clock,
sizeof(clock)) <= 0) || (clock == 0)) {
clock = mpc85xx_get_system_clock();
if (clock == 0) {
device_printf(dev,"Cannot acquire correct sdhci "
"frequency from DTS.\n");
return (0);
}
}
if (bootverbose)
device_printf(dev, "Acquired clock: %d from DTS\n", clock);
return (clock);
}
#endif
static int
fsl_sdhci_detach(device_t dev)
{
struct fsl_sdhci_softc *sc = device_get_softc(dev);
if (sc->gpio != NULL)
sdhci_fdt_gpio_teardown(sc->gpio);
callout_drain(&sc->r1bfix_callout);
if (sc->slot_init_done)
sdhci_cleanup_slot(&sc->slot);
if (sc->intr_cookie != NULL)
bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
if (sc->irq_res != NULL)
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->irq_res), sc->irq_res);
if (sc->mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(sc->mem_res), sc->mem_res);
}
return (0);
}
static int
fsl_sdhci_attach(device_t dev)
{
struct fsl_sdhci_softc *sc = device_get_softc(dev);
int rid, err;
#ifdef __powerpc__
phandle_t node;
uint32_t protctl;
#endif
sc->dev = dev;
callout_init(&sc->r1bfix_callout, 1);
sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
if (sc->hwtype == HWTYPE_NONE)
panic("Impossible: not compatible in fsl_sdhci_attach()");
rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (!sc->mem_res) {
device_printf(dev, "cannot allocate memory window\n");
err = ENXIO;
goto fail;
}
rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (!sc->irq_res) {
device_printf(dev, "cannot allocate interrupt\n");
err = ENXIO;
goto fail;
}
if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) {
device_printf(dev, "cannot setup interrupt handler\n");
err = ENXIO;
goto fail;
}
sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
/*
* DMA is not really broken, I just haven't implemented it yet.
*/
sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
/*
* Set the buffer watermark level to 128 words (512 bytes) for both read
* and write. The hardware has a restriction that when the read or
* write ready status is asserted, that means you can read exactly the
* number of words set in the watermark register before you have to
* re-check the status and potentially wait for more data. The main
* sdhci driver provides no hook for doing status checking on less than
* a full block boundary, so we set the watermark level to be a full
* block. Reads and writes where the block size is less than the
* watermark size will work correctly too, no need to change the
* watermark for different size blocks. However, 128 is the maximum
* allowed for the watermark, so PIO is limitted to 512 byte blocks
* (which works fine for SD cards, may be a problem for SDIO some day).
*
* XXX need named constants for this stuff.
*/
/* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */
if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc"))
WR4(sc, SDHC_WTMK_LVL, 0x10801080);
else
WR4(sc, SDHC_WTMK_LVL, 0x08800880);
/*
* We read in native byte order in the main driver, but the register
* defaults to little endian.
*/
#ifdef __powerpc__
sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev);
#else
sc->baseclk_hz = imx_ccm_sdhci_hz();
#endif
sc->slot.max_clk = sc->baseclk_hz;
/*
* Set up any gpio pin handling described in the FDT data. This cannot
* fail; see comments in sdhci_fdt_gpio.h for details.
*/
sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);
#ifdef __powerpc__
node = ofw_bus_get_node(dev);
/* Default to big-endian on powerpc */
protctl = RD4(sc, SDHC_PROT_CTRL);
protctl &= ~SDHC_PROT_EMODE_MASK;
if (OF_hasprop(node, "little-endian"))
protctl |= SDHC_PROT_EMODE_LITTLE;
else
protctl |= SDHC_PROT_EMODE_BIG;
WR4(sc, SDHC_PROT_CTRL, protctl);
#endif
sdhci_init_slot(dev, &sc->slot, 0);
sc->slot_init_done = true;
bus_generic_probe(dev);
bus_generic_attach(dev);
sdhci_start_slot(&sc->slot);
return (0);
fail:
fsl_sdhci_detach(dev);
return (err);
}
static int
fsl_sdhci_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
case HWTYPE_ESDHC:
device_set_desc(dev, "Freescale eSDHC controller");
return (BUS_PROBE_DEFAULT);
case HWTYPE_USDHC:
device_set_desc(dev, "Freescale uSDHC controller");
return (BUS_PROBE_DEFAULT);
default:
break;
}
return (ENXIO);
}
static device_method_t fsl_sdhci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fsl_sdhci_probe),
DEVMETHOD(device_attach, fsl_sdhci_attach),
DEVMETHOD(device_detach, fsl_sdhci_detach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar),
DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar),
/* MMC bridge interface */
DEVMETHOD(mmcbr_update_ios, sdhci_generic_update_ios),
DEVMETHOD(mmcbr_request, sdhci_generic_request),
DEVMETHOD(mmcbr_get_ro, fsl_sdhci_get_ro),
DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host),
DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host),
/* SDHCI accessors */
DEVMETHOD(sdhci_read_1, fsl_sdhci_read_1),
DEVMETHOD(sdhci_read_2, fsl_sdhci_read_2),
DEVMETHOD(sdhci_read_4, fsl_sdhci_read_4),
DEVMETHOD(sdhci_read_multi_4, fsl_sdhci_read_multi_4),
DEVMETHOD(sdhci_write_1, fsl_sdhci_write_1),
DEVMETHOD(sdhci_write_2, fsl_sdhci_write_2),
DEVMETHOD(sdhci_write_4, fsl_sdhci_write_4),
DEVMETHOD(sdhci_write_multi_4, fsl_sdhci_write_multi_4),
DEVMETHOD(sdhci_get_card_present,fsl_sdhci_get_card_present),
DEVMETHOD_END
};
static devclass_t fsl_sdhci_devclass;
static driver_t fsl_sdhci_driver = {
"sdhci_fsl",
fsl_sdhci_methods,
sizeof(struct fsl_sdhci_softc),
};
DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, fsl_sdhci_devclass,
NULL, NULL);
SDHCI_DEPEND(sdhci_fsl);
#ifndef MMCCAM
MMC_DECLARE_BRIDGE(sdhci_fsl);
#endif