freebsd-skq/sys/powerpc/powernv/xive.c
Conrad Meyer e2e050c8ef Extract eventfilter declarations to sys/_eventfilter.h
This allows replacing "sys/eventfilter.h" includes with "sys/_eventfilter.h"
in other header files (e.g., sys/{bus,conf,cpu}.h) and reduces header
pollution substantially.

EVENTHANDLER_DECLARE and EVENTHANDLER_LIST_DECLAREs were moved out of .c
files into appropriate headers (e.g., sys/proc.h, powernv/opal.h).

As a side effect of reduced header pollution, many .c files and headers no
longer contain needed definitions.  The remainder of the patch addresses
adding appropriate includes to fix those files.

LOCK_DEBUG and LOCK_FILE_LINE_ARG are moved to sys/_lock.h, as required by
sys/mutex.h since r326106 (but silently protected by header pollution prior
to this change).

No functional change (intended).  Of course, any out of tree modules that
relied on header pollution for sys/eventhandler.h, sys/lock.h, or
sys/mutex.h inclusion need to be fixed.  __FreeBSD_version has been bumped.
2019-05-20 00:38:23 +00:00

767 lines
19 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright 2019 Justin Hibbits
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#ifdef POWERNV
#include <powerpc/powernv/opal.h>
#endif
#include "pic_if.h"
#define XIVE_PRIORITY 7 /* Random non-zero number */
#define MAX_XIVE_IRQS (1<<24) /* 24-bit XIRR field */
/* Registers */
#define XIVE_TM_QW1_OS 0x010 /* Guest OS registers */
#define XIVE_TM_QW2_HV_POOL 0x020 /* Hypervisor pool registers */
#define XIVE_TM_QW3_HV 0x030 /* Hypervisor registers */
#define XIVE_TM_NSR 0x00
#define XIVE_TM_CPPR 0x01
#define XIVE_TM_IPB 0x02
#define XIVE_TM_LSMFB 0x03
#define XIVE_TM_ACK_CNT 0x04
#define XIVE_TM_INC 0x05
#define XIVE_TM_AGE 0x06
#define XIVE_TM_PIPR 0x07
#define TM_WORD0 0x0
#define TM_WORD2 0x8
#define TM_QW2W2_VP 0x80000000
#define XIVE_TM_SPC_ACK 0x800
#define TM_QW3NSR_HE_SHIFT 14
#define TM_QW3_NSR_HE_NONE 0
#define TM_QW3_NSR_HE_POOL 1
#define TM_QW3_NSR_HE_PHYS 2
#define TM_QW3_NSR_HE_LSI 3
#define XIVE_TM_SPC_PULL_POOL_CTX 0x828
#define XIVE_IRQ_LOAD_EOI 0x000
#define XIVE_IRQ_STORE_EOI 0x400
#define XIVE_IRQ_PQ_00 0xc00
#define XIVE_IRQ_PQ_01 0xd00
#define XIVE_IRQ_VAL_P 0x02
#define XIVE_IRQ_VAL_Q 0x01
struct xive_softc;
struct xive_irq;
extern void (*powernv_smp_ap_extra_init)(void);
/* Private support */
static void xive_setup_cpu(void);
static void xive_smp_cpu_startup(void);
static void xive_init_irq(struct xive_irq *irqd, u_int irq);
static struct xive_irq *xive_configure_irq(u_int irq);
static int xive_provision_page(struct xive_softc *sc);
/* Interfaces */
static int xive_probe(device_t);
static int xive_attach(device_t);
static int xics_probe(device_t);
static int xics_attach(device_t);
static void xive_bind(device_t, u_int, cpuset_t, void **);
static void xive_dispatch(device_t, struct trapframe *);
static void xive_enable(device_t, u_int, u_int, void **);
static void xive_eoi(device_t, u_int, void *);
static void xive_ipi(device_t, u_int);
static void xive_mask(device_t, u_int, void *);
static void xive_unmask(device_t, u_int, void *);
static void xive_translate_code(device_t dev, u_int irq, int code,
enum intr_trigger *trig, enum intr_polarity *pol);
static device_method_t xive_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, xive_probe),
DEVMETHOD(device_attach, xive_attach),
/* PIC interface */
DEVMETHOD(pic_bind, xive_bind),
DEVMETHOD(pic_dispatch, xive_dispatch),
DEVMETHOD(pic_enable, xive_enable),
DEVMETHOD(pic_eoi, xive_eoi),
DEVMETHOD(pic_ipi, xive_ipi),
DEVMETHOD(pic_mask, xive_mask),
DEVMETHOD(pic_unmask, xive_unmask),
DEVMETHOD(pic_translate_code, xive_translate_code),
DEVMETHOD_END
};
static device_method_t xics_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, xics_probe),
DEVMETHOD(device_attach, xics_attach),
DEVMETHOD_END
};
struct xive_softc {
struct mtx sc_mtx;
struct resource *sc_mem;
vm_size_t sc_prov_page_size;
uint32_t sc_offset;
};
struct xive_queue {
uint32_t *q_page;
uint32_t *q_eoi_page;
uint32_t q_toggle;
uint32_t q_size;
uint32_t q_index;
uint32_t q_mask;
};
struct xive_irq {
uint32_t girq;
uint32_t lirq;
uint64_t vp;
uint64_t flags;
#define OPAL_XIVE_IRQ_EOI_VIA_FW 0x00000020
#define OPAL_XIVE_IRQ_MASK_VIA_FW 0x00000010
#define OPAL_XIVE_IRQ_SHIFT_BUG 0x00000008
#define OPAL_XIVE_IRQ_LSI 0x00000004
#define OPAL_XIVE_IRQ_STORE_EOI 0x00000002
#define OPAL_XIVE_IRQ_TRIGGER_PAGE 0x00000001
uint8_t prio;
vm_offset_t eoi_page;
vm_offset_t trig_page;
vm_size_t esb_size;
int chip;
};
struct xive_cpu {
uint64_t vp;
uint64_t flags;
struct xive_irq ipi_data;
struct xive_queue queue; /* We only use a single queue for now. */
uint64_t cam;
uint32_t chip;
};
static driver_t xive_driver = {
"xive",
xive_methods,
sizeof(struct xive_softc)
};
static driver_t xics_driver = {
"xivevc",
xics_methods,
0
};
static devclass_t xive_devclass;
static devclass_t xics_devclass;
EARLY_DRIVER_MODULE(xive, ofwbus, xive_driver, xive_devclass, 0, 0,
BUS_PASS_INTERRUPT-1);
EARLY_DRIVER_MODULE(xivevc, ofwbus, xics_driver, xics_devclass, 0, 0,
BUS_PASS_INTERRUPT);
MALLOC_DEFINE(M_XIVE, "xive", "XIVE Memory");
DPCPU_DEFINE_STATIC(struct xive_cpu, xive_cpu_data);
static int xive_ipi_vector = -1;
/*
* XIVE Exploitation mode driver.
*
* The XIVE, present in the POWER9 CPU, can run in two modes: XICS emulation
* mode, and "Exploitation mode". XICS emulation mode is compatible with the
* POWER8 and earlier XICS interrupt controller, using OPAL calls to emulate
* hypervisor calls and memory accesses. Exploitation mode gives us raw access
* to the XIVE MMIO, improving performance significantly.
*
* The XIVE controller is a very bizarre interrupt controller. It uses queues
* in memory to pass interrupts around, and maps itself into 512GB of physical
* device address space, giving each interrupt in the system one or more pages
* of address space. An IRQ is tied to a virtual processor, which could be a
* physical CPU thread, or a guest CPU thread (LPAR running on a physical
* thread). Thus, the controller can route interrupts directly to guest OSes
* bypassing processing by the hypervisor, thereby improving performance of the
* guest OS.
*
* An IRQ, in addition to being tied to a virtual processor, has one or two
* page mappings: an EOI page, and an optional trigger page. The trigger page
* could be the same as the EOI page. Level-sensitive interrupts (LSIs) don't
* have a trigger page, as they're external interrupts controlled by physical
* lines. MSIs and IPIs have trigger pages. An IPI is really just another IRQ
* in the XIVE, which is triggered by software.
*
* An interesting behavior of the XIVE controller is that oftentimes the
* contents of an address location don't actually matter, but the direction of
* the action is the signifier (read vs write), and the address is significant.
* Hence, masking and unmasking an interrupt is done by reading different
* addresses in the EOI page, and triggering an interrupt consists of writing to
* the trigger page.
*
* Additionally, the MMIO region mapped is CPU-sensitive, just like the
* per-processor register space (private access) in OpenPIC. In order for a CPU
* to receive interrupts it must itself configure its CPPR (Current Processor
* Priority Register), it cannot be set by any other processor. This
* necessitates the xive_smp_cpu_startup() function.
*
* Queues are pages of memory, sized powers-of-two, that are shared with the
* XIVE. The XIVE writes into the queue with an alternating polarity bit, which
* flips when the queue wraps.
*/
/*
* Offset-based read/write interfaces.
*/
static uint16_t
xive_read_2(struct xive_softc *sc, bus_size_t offset)
{
return (bus_read_2(sc->sc_mem, sc->sc_offset + offset));
}
static void
xive_write_1(struct xive_softc *sc, bus_size_t offset, uint8_t val)
{
bus_write_1(sc->sc_mem, sc->sc_offset + offset, val);
}
/* EOI and Trigger page access interfaces. */
static uint64_t
xive_read_mmap8(vm_offset_t addr)
{
return (*(volatile uint64_t *)addr);
}
static void
xive_write_mmap8(vm_offset_t addr, uint64_t val)
{
*(uint64_t *)(addr) = val;
}
/* Device interfaces. */
static int
xive_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "ibm,opal-xive-pe"))
return (ENXIO);
device_set_desc(dev, "External Interrupt Virtualization Engine");
/* Make sure we always win against the xicp driver. */
return (BUS_PROBE_DEFAULT);
}
static int
xics_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "ibm,opal-xive-vc"))
return (ENXIO);
device_set_desc(dev, "External Interrupt Virtualization Engine Root");
return (BUS_PROBE_DEFAULT);
}
static int
xive_attach(device_t dev)
{
struct xive_softc *sc = device_get_softc(dev);
struct xive_cpu *xive_cpud;
phandle_t phandle = ofw_bus_get_node(dev);
int64_t vp_block;
int error;
int rid;
int i, order;
uint64_t vp_id;
int64_t ipi_irq;
opal_call(OPAL_XIVE_RESET, OPAL_XIVE_XICS_MODE_EXP);
error = OF_getencprop(phandle, "ibm,xive-provision-page-size",
(pcell_t *)&sc->sc_prov_page_size, sizeof(sc->sc_prov_page_size));
rid = 1; /* Get the Hypervisor-level register set. */
sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
sc->sc_offset = XIVE_TM_QW3_HV;
mtx_init(&sc->sc_mtx, "XIVE", NULL, MTX_DEF);
order = fls(mp_maxid + (mp_maxid - 1)) - 1;
do {
vp_block = opal_call(OPAL_XIVE_ALLOCATE_VP_BLOCK, order);
if (vp_block == OPAL_BUSY)
DELAY(10);
else if (vp_block == OPAL_XIVE_PROVISIONING)
xive_provision_page(sc);
else
break;
} while (1);
if (vp_block < 0) {
device_printf(dev,
"Unable to allocate VP block. Opal error %d\n",
(int)vp_block);
bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->sc_mem);
return (ENXIO);
}
/*
* Set up the VPs. Try to do as much as we can in attach, to lessen
* what's needed at AP spawn time.
*/
CPU_FOREACH(i) {
vp_id = pcpu_find(i)->pc_hwref;
xive_cpud = DPCPU_ID_PTR(i, xive_cpu_data);
xive_cpud->vp = vp_id + vp_block;
opal_call(OPAL_XIVE_GET_VP_INFO, xive_cpud->vp, NULL,
vtophys(&xive_cpud->cam), NULL, vtophys(&xive_cpud->chip));
/* Allocate the queue page and populate the queue state data. */
xive_cpud->queue.q_page = contigmalloc(PAGE_SIZE, M_XIVE,
M_ZERO | M_WAITOK, 0, BUS_SPACE_MAXADDR, PAGE_SIZE, 0);
xive_cpud->queue.q_size = 1 << PAGE_SHIFT;
xive_cpud->queue.q_mask =
((xive_cpud->queue.q_size / sizeof(int)) - 1);
xive_cpud->queue.q_toggle = 0;
xive_cpud->queue.q_index = 0;
do {
error = opal_call(OPAL_XIVE_SET_VP_INFO, xive_cpud->vp,
OPAL_XIVE_VP_ENABLED, 0);
} while (error == OPAL_BUSY);
error = opal_call(OPAL_XIVE_SET_QUEUE_INFO, vp_id,
XIVE_PRIORITY, vtophys(xive_cpud->queue.q_page), PAGE_SHIFT,
OPAL_XIVE_EQ_ALWAYS_NOTIFY | OPAL_XIVE_EQ_ENABLED);
do {
ipi_irq = opal_call(OPAL_XIVE_ALLOCATE_IRQ,
xive_cpud->chip);
} while (ipi_irq == OPAL_BUSY);
if (ipi_irq < 0)
device_printf(root_pic,
"Failed allocating IPI. OPAL error %d\n",
(int)ipi_irq);
else {
xive_init_irq(&xive_cpud->ipi_data, ipi_irq);
xive_cpud->ipi_data.vp = vp_id;
xive_cpud->ipi_data.lirq = MAX_XIVE_IRQS;
opal_call(OPAL_XIVE_SET_IRQ_CONFIG, ipi_irq,
xive_cpud->ipi_data.vp, XIVE_PRIORITY,
MAX_XIVE_IRQS);
}
}
powerpc_register_pic(dev, OF_xref_from_node(phandle), MAX_XIVE_IRQS,
1 /* Number of IPIs */, FALSE);
root_pic = dev;
xive_setup_cpu();
powernv_smp_ap_extra_init = xive_smp_cpu_startup;
return (0);
}
static int
xics_attach(device_t dev)
{
phandle_t phandle = ofw_bus_get_node(dev);
/* The XIVE (root PIC) will handle all our interrupts */
powerpc_register_pic(root_pic, OF_xref_from_node(phandle),
MAX_XIVE_IRQS, 1 /* Number of IPIs */, FALSE);
return (0);
}
/*
* PIC I/F methods.
*/
static void
xive_bind(device_t dev, u_int irq, cpuset_t cpumask, void **priv)
{
struct xive_irq *irqd;
int cpu;
int ncpus, i, error;
if (*priv == NULL)
*priv = xive_configure_irq(irq);
irqd = *priv;
/*
* This doesn't appear to actually support affinity groups, so pick a
* random CPU.
*/
ncpus = 0;
CPU_FOREACH(cpu)
if (CPU_ISSET(cpu, &cpumask)) ncpus++;
i = mftb() % ncpus;
ncpus = 0;
CPU_FOREACH(cpu) {
if (!CPU_ISSET(cpu, &cpumask))
continue;
if (ncpus == i)
break;
ncpus++;
}
opal_call(OPAL_XIVE_SYNC);
irqd->vp = pcpu_find(cpu)->pc_hwref;
error = opal_call(OPAL_XIVE_SET_IRQ_CONFIG, irq, irqd->vp,
XIVE_PRIORITY, irqd->lirq);
if (error < 0)
panic("Cannot bind interrupt %d to CPU %d", irq, cpu);
xive_eoi(dev, irq, irqd);
}
/* Read the next entry in the queue page and update the index. */
static int
xive_read_eq(struct xive_queue *q)
{
uint32_t i = be32toh(q->q_page[q->q_index]);
/* Check validity, using current queue polarity. */
if ((i >> 31) == q->q_toggle)
return (0);
q->q_index = (q->q_index + 1) & q->q_mask;
if (q->q_index == 0)
q->q_toggle ^= 1;
return (i & 0x7fffffff);
}
static void
xive_dispatch(device_t dev, struct trapframe *tf)
{
struct xive_softc *sc;
struct xive_cpu *xive_cpud;
uint32_t vector;
uint16_t ack;
uint8_t cppr, he;
sc = device_get_softc(dev);
for (;;) {
ack = xive_read_2(sc, XIVE_TM_SPC_ACK);
cppr = (ack & 0xff);
he = ack >> TM_QW3NSR_HE_SHIFT;
if (he == TM_QW3_NSR_HE_NONE)
break;
switch (he) {
case TM_QW3_NSR_HE_NONE:
goto end;
case TM_QW3_NSR_HE_POOL:
case TM_QW3_NSR_HE_LSI:
device_printf(dev,
"Unexpected interrupt he type: %d\n", he);
goto end;
case TM_QW3_NSR_HE_PHYS:
break;
}
xive_cpud = DPCPU_PTR(xive_cpu_data);
xive_write_1(sc, XIVE_TM_CPPR, cppr);
for (;;) {
vector = xive_read_eq(&xive_cpud->queue);
if (vector == 0)
break;
if (vector == MAX_XIVE_IRQS)
vector = xive_ipi_vector;
powerpc_dispatch_intr(vector, tf);
}
}
end:
xive_write_1(sc, XIVE_TM_CPPR, 0xff);
}
static void
xive_enable(device_t dev, u_int irq, u_int vector, void **priv)
{
struct xive_irq *irqd;
cell_t status, cpu;
if (irq == MAX_XIVE_IRQS) {
if (xive_ipi_vector == -1)
xive_ipi_vector = vector;
return;
}
if (*priv == NULL)
*priv = xive_configure_irq(irq);
irqd = *priv;
/* Bind to this CPU to start */
cpu = PCPU_GET(hwref);
irqd->lirq = vector;
for (;;) {
status = opal_call(OPAL_XIVE_SET_IRQ_CONFIG, irq, cpu,
XIVE_PRIORITY, vector);
if (status != OPAL_BUSY)
break;
DELAY(10);
}
if (status != 0)
panic("OPAL_SET_XIVE IRQ %d -> cpu %d failed: %d", irq,
cpu, status);
xive_unmask(dev, irq, *priv);
}
static void
xive_eoi(device_t dev, u_int irq, void *priv)
{
struct xive_irq *rirq;
struct xive_cpu *cpud;
uint8_t eoi_val;
if (irq == MAX_XIVE_IRQS) {
cpud = DPCPU_PTR(xive_cpu_data);
rirq = &cpud->ipi_data;
} else
rirq = priv;
if (rirq->flags & OPAL_XIVE_IRQ_EOI_VIA_FW)
opal_call(OPAL_INT_EOI, irq);
else if (rirq->flags & OPAL_XIVE_IRQ_STORE_EOI)
xive_write_mmap8(rirq->eoi_page + XIVE_IRQ_STORE_EOI, 0);
else if (rirq->flags & OPAL_XIVE_IRQ_LSI)
xive_read_mmap8(rirq->eoi_page + XIVE_IRQ_LOAD_EOI);
else {
eoi_val = xive_read_mmap8(rirq->eoi_page + XIVE_IRQ_PQ_00);
if ((eoi_val & XIVE_IRQ_VAL_Q) && rirq->trig_page != 0)
xive_write_mmap8(rirq->trig_page, 0);
}
}
static void
xive_ipi(device_t dev, u_int cpu)
{
struct xive_cpu *xive_cpud;
xive_cpud = DPCPU_ID_PTR(cpu, xive_cpu_data);
if (xive_cpud->ipi_data.trig_page == 0)
return;
xive_write_mmap8(xive_cpud->ipi_data.trig_page, 0);
}
static void
xive_mask(device_t dev, u_int irq, void *priv)
{
struct xive_irq *rirq;
/* Never mask IPIs */
if (irq == MAX_XIVE_IRQS)
return;
rirq = priv;
if (!(rirq->flags & OPAL_XIVE_IRQ_LSI))
return;
xive_read_mmap8(rirq->eoi_page + XIVE_IRQ_PQ_01);
}
static void
xive_unmask(device_t dev, u_int irq, void *priv)
{
struct xive_irq *rirq;
rirq = priv;
xive_read_mmap8(rirq->eoi_page + XIVE_IRQ_PQ_00);
}
static void
xive_translate_code(device_t dev, u_int irq, int code,
enum intr_trigger *trig, enum intr_polarity *pol)
{
switch (code) {
case 0:
/* L to H edge */
*trig = INTR_TRIGGER_EDGE;
*pol = INTR_POLARITY_HIGH;
break;
case 1:
/* Active L level */
*trig = INTR_TRIGGER_LEVEL;
*pol = INTR_POLARITY_LOW;
break;
default:
*trig = INTR_TRIGGER_CONFORM;
*pol = INTR_POLARITY_CONFORM;
}
}
/* Private functions. */
/*
* Setup the current CPU. Called by the BSP at driver attachment, and by each
* AP at wakeup (via xive_smp_cpu_startup()).
*/
static void
xive_setup_cpu(void)
{
struct xive_softc *sc;
struct xive_cpu *cpup;
uint32_t val;
cpup = DPCPU_PTR(xive_cpu_data);
sc = device_get_softc(root_pic);
val = bus_read_4(sc->sc_mem, XIVE_TM_QW2_HV_POOL + TM_WORD2);
if (val & TM_QW2W2_VP)
bus_read_8(sc->sc_mem, XIVE_TM_SPC_PULL_POOL_CTX);
bus_write_4(sc->sc_mem, XIVE_TM_QW2_HV_POOL + TM_WORD0, 0xff);
bus_write_4(sc->sc_mem, XIVE_TM_QW2_HV_POOL + TM_WORD2,
TM_QW2W2_VP | cpup->cam);
xive_unmask(root_pic, cpup->ipi_data.girq, &cpup->ipi_data);
xive_write_1(sc, XIVE_TM_CPPR, 0xff);
}
/* Populate an IRQ structure, mapping the EOI and trigger pages. */
static void
xive_init_irq(struct xive_irq *irqd, u_int irq)
{
uint64_t eoi_phys, trig_phys;
uint32_t esb_shift;
opal_call(OPAL_XIVE_GET_IRQ_INFO, irq,
vtophys(&irqd->flags), vtophys(&eoi_phys),
vtophys(&trig_phys), vtophys(&esb_shift),
vtophys(&irqd->chip));
irqd->girq = irq;
irqd->esb_size = 1 << esb_shift;
irqd->eoi_page = (vm_offset_t)pmap_mapdev(eoi_phys, irqd->esb_size);
if (eoi_phys == trig_phys)
irqd->trig_page = irqd->eoi_page;
else if (trig_phys != 0)
irqd->trig_page = (vm_offset_t)pmap_mapdev(trig_phys,
irqd->esb_size);
else
irqd->trig_page = 0;
opal_call(OPAL_XIVE_GET_IRQ_CONFIG, irq, vtophys(&irqd->vp),
vtophys(&irqd->prio), vtophys(&irqd->lirq));
}
/* Allocate an IRQ struct before populating it. */
static struct xive_irq *
xive_configure_irq(u_int irq)
{
struct xive_irq *irqd;
irqd = malloc(sizeof(struct xive_irq), M_XIVE, M_WAITOK);
xive_init_irq(irqd, irq);
return (irqd);
}
/*
* Part of the OPAL API. OPAL_XIVE_ALLOCATE_VP_BLOCK might require more pages,
* provisioned through this call.
*/
static int
xive_provision_page(struct xive_softc *sc)
{
void *prov_page;
int error;
do {
prov_page = contigmalloc(sc->sc_prov_page_size, M_XIVE, 0,
0, BUS_SPACE_MAXADDR,
sc->sc_prov_page_size, sc->sc_prov_page_size);
error = opal_call(OPAL_XIVE_DONATE_PAGE, -1,
vtophys(prov_page));
} while (error == OPAL_XIVE_PROVISIONING);
return (0);
}
/* The XIVE_TM_CPPR register must be set by each thread */
static void
xive_smp_cpu_startup(void)
{
xive_setup_cpu();
}