freebsd-skq/sys/cam/scsi/scsi_all.h
ken 7eeed3c838 Add support for managing Shingled Magnetic Recording (SMR) drives.
This change includes support for SCSI SMR drives (which conform to the
Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to
the Zoned ATA Command Set or ZAC spec) behind SAS expanders.

This includes full management support through the GEOM BIO interface, and
through a new userland utility, zonectl(8), and through camcontrol(8).

This is now ready for filesystems to use to detect and manage zoned drives.
(There is no work in progress that I know of to use this for ZFS or UFS, if
anyone is interested, let me know and I may have some suggestions.)

Also, improve ATA command passthrough and dispatch support, both via ATA
and ATA passthrough over SCSI.

Also, add support to camcontrol(8) for the ATA Extended Power Conditions
feature set.  You can now manage ATA device power states, and set various
idle time thresholds for a drive to enter lower power states.

Note that this change cannot be MFCed in full, because it depends on
changes to the struct bio API that break compatilibity.  In order to
avoid breaking the stable API, only changes that don't touch or depend on
the struct bio changes can be merged.  For example, the camcontrol(8)
changes don't depend on the new bio API, but zonectl(8) and the probe
changes to the da(4) and ada(4) drivers do depend on it.

Also note that the SMR changes have not yet been tested with an actual
SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports
ZBC to ZAC translation.  I have not yet gotten a suitable drive or SAT
layer, so any testing help would be appreciated.  These changes have been
tested with Seagate Host Aware SATA drives attached to both SAS and SATA
controllers.  Also, I do not have any SATA Host Managed devices, and I
suspect that it may take additional (hopefully minor) changes to support
them.

Thanks to Seagate for supplying the test hardware and answering questions.

sbin/camcontrol/Makefile:
	Add epc.c and zone.c.

sbin/camcontrol/camcontrol.8:
	Document the zone and epc subcommands.

sbin/camcontrol/camcontrol.c:
	Add the zone and epc subcommands.

	Add auxiliary register support to build_ata_cmd().  Make sure to
	set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA
	flags as appropriate for ATA commands.

	Add a new get_ata_status() function to parse ATA result from SCSI
	sense descriptors (for ATA passthrough over SCSI) and ATA I/O
	requests.

sbin/camcontrol/camcontrol.h:
	Update the build_ata_cmd() prototype

	Add get_ata_status(), zone(), and epc().

sbin/camcontrol/epc.c:
	Support for ATA Extended Power Conditions features.  This includes
	support for all features documented in the ACS-4 Revision 12
	specification from t13.org (dated February 18, 2016).

	The EPC feature set allows putting a drive into a power power mode
	immediately, or setting timeouts so that the drive will
	automatically enter progressively lower power states after various
	idle times.

sbin/camcontrol/fwdownload.c:
	Update the firmware download code for the new build_ata_cmd()
	arguments.

sbin/camcontrol/zone.c:
	Implement support for Shingled Magnetic Recording (SMR) drives
	via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA
	Command Set (ZAC).

	These specs were developed in concert, and are functionally
	identical.  The primary differences are due to SCSI and ATA
	differences.  (SCSI is big endian, ATA is little endian, for
	example.)

	This includes support for all commands defined in the ZBC and
	ZAC specs.

sys/cam/ata/ata_all.c:
	Decode a number of additional ATA command names in ata_op_string().

	Add a new CCB building function, ata_read_log().

	Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building
	functions.  These support both DMA and NCQ encapsulation.

sys/cam/ata/ata_all.h:
	Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and
	ata_zac_mgmt_in().

sys/cam/ata/ata_da.c:
	Revamp the ada(4) driver to support zoned devices.

	Add four new probe states to gather information needed for zone
	support.

	Add a new adasetflags() function to avoid duplication of large
	blocks of flag setting between the async handler and register
	functions.

	Add new sysctl variables that describe zone support and paramters.

	Add support for the new BIO_ZONE bio, and all of its subcommands:
	DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP,
	DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS.

sys/cam/scsi/scsi_all.c:
	Add command descriptions for the ZBC IN/OUT commands.

	Add descriptions for ZBC Host Managed devices.

	Add a new function, scsi_ata_pass() to do ATA passthrough over
	SCSI.  This will eventually replace scsi_ata_pass_16() -- it
	can create the 12, 16, and 32-byte variants of the ATA
	PASS-THROUGH command, and supports setting all of the
	registers defined as of SAT-4, Revision 5 (March 11, 2016).

	Change scsi_ata_identify() to use scsi_ata_pass() instead of
	scsi_ata_pass_16().

	Add a new scsi_ata_read_log() function to facilitate reading
	ATA logs via SCSI.

sys/cam/scsi/scsi_all.h:
	Add the new ATA PASS-THROUGH(32) command CDB.  Add extended and
	variable CDB opcodes.

	Add Zoned Block Device Characteristics VPD page.

	Add ATA Return SCSI sense descriptor.

	Add prototypes for scsi_ata_read_log() and scsi_ata_pass().

sys/cam/scsi/scsi_da.c:
	Revamp the da(4) driver to support zoned devices.

	Add five new probe states, four of which are needed for ATA
	devices.

	Add five new sysctl variables that describe zone support and
	parameters.

	The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC
	devices when they are attached via a SCSI to ATA Translation (SAT)
	layer.  Since ZBC -> ZAC translation is a new feature in the T10
	SAT-4 spec, most SATA drives will be supported via ATA commands
	sent via the SCSI ATA PASS-THROUGH command.  The da(4) driver will
	prefer the ZBC interface, if it is available, for performance
	reasons, but will use the ATA PASS-THROUGH interface to the ZAC
	command set if the SAT layer doesn't support translation yet.
	As I mentioned above, ZBC command support is untested.

	Add support for the new BIO_ZONE bio, and all of its subcommands:
	DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP,
	DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS.

	Add scsi_zbc_in() and scsi_zbc_out() CCB building functions.

	Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB
	building functions.  Note that these have return values, unlike
	almost all other CCB building functions in CAM.  The reason is
	that they can fail, depending upon the particular combination
	of input parameters.  The primary failure case is if the user
	wants NCQ, but fails to specify additional CDB storage.  NCQ
	requires using the 32-byte version of the SCSI ATA PASS-THROUGH
	command, and the current CAM CDB size is 16 bytes.

sys/cam/scsi/scsi_da.h:
	Add ZBC IN and ZBC OUT CDBs and opcodes.

	Add SCSI Report Zones data structures.

	Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and
	scsi_ata_zac_mgmt_in() prototypes.

sys/dev/ahci/ahci.c:
	Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver.

	ahci_setup_fis() previously set the top bits of the sector count
	register in the FIS to 0 for FPDMA commands.  This is okay for
	read and write, because the PRIO field is in the only thing in
	those bits, and we don't implement that further up the stack.

	But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that
	byte, so it needs to be transmitted to the drive.

	In ahci_setup_fis(), always set the the top 8 bits of the
	sector count register.  We need it in both the standard
	and NCQ / FPDMA cases.

sys/geom/eli/g_eli.c:
	Pass BIO_ZONE commands through the GELI class.

sys/geom/geom.h:
	Add g_io_zonecmd() prototype.

sys/geom/geom_dev.c:
	Add new DIOCZONECMD ioctl, which allows sending zone commands to
	disks.

sys/geom/geom_disk.c:
	Add support for BIO_ZONE commands.

sys/geom/geom_disk.h:
	Add a new flag, DISKFLAG_CANZONE, that indicates that a given
	GEOM disk client can handle BIO_ZONE commands.

sys/geom/geom_io.c:
	Add a new function, g_io_zonecmd(), that handles execution of
	BIO_ZONE commands.

	Add permissions check for BIO_ZONE commands.

	Add command decoding for BIO_ZONE commands.

sys/geom/geom_subr.c:
	Add DDB command decoding for BIO_ZONE commands.

sys/kern/subr_devstat.c:
	Record statistics for REPORT ZONES commands.  Note that the
	number of bytes transferred for REPORT ZONES won't quite match
	what is received from the harware.  This is because we're
	necessarily counting bytes coming from the da(4) / ada(4) drivers,
	which are using the disk_zone.h interface to communicate up
	the stack.  The structure sizes it uses are slightly different
	than the SCSI and ATA structure sizes.

sys/sys/ata.h:
	Add many bit and structure definitions for ZAC, NCQ, and EPC
	command support.

sys/sys/bio.h:
	Convert the bio_cmd field to a straight enumeration.  This will
	yield more space for additional commands in the future.  After
	change r297955 and other related changes, this is now possible.
	Converting to an enumeration will also prevent use as a bitmask
	in the future.

sys/sys/disk.h:
	Define the DIOCZONECMD ioctl.

sys/sys/disk_zone.h:
	Add a new API for managing zoned disks.  This is very close to
	the SCSI ZBC and ATA ZAC standards, but uses integers in native
	byte order instead of big endian (SCSI) or little endian (ATA)
	byte arrays.

	This is intended to offer to the complete feature set of the ZBC
	and ZAC disk management without requiring the application developer
	to include SCSI or ATA headers.  We also use one set of headers
	for ioctl consumers and kernel bio-level consumers.

sys/sys/param.h:
	Bump __FreeBSD_version for sys/bio.h command changes, and inclusion
	of SMR support.

usr.sbin/Makefile:
	Add the zonectl utility.

usr.sbin/diskinfo/diskinfo.c
	Add disk zoning capability to the 'diskinfo -v' output.

usr.sbin/zonectl/Makefile:
	Add zonectl makefile.

usr.sbin/zonectl/zonectl.8
	zonectl(8) man page.

usr.sbin/zonectl/zonectl.c
	The zonectl(8) utility.  This allows managing SCSI or ATA zoned
	disks via the disk_zone.h API.  You can report zones, reset write
	pointers, get parameters, etc.

Sponsored by:	Spectra Logic
Differential Revision:	https://reviews.freebsd.org/D6147
Reviewed by:	wblock (documentation)
2016-05-19 14:08:36 +00:00

4285 lines
106 KiB
C

/*-
* Largely written by Julian Elischer (julian@tfs.com)
* for TRW Financial Systems.
*
* TRW Financial Systems, in accordance with their agreement with Carnegie
* Mellon University, makes this software available to CMU to distribute
* or use in any manner that they see fit as long as this message is kept with
* the software. For this reason TFS also grants any other persons or
* organisations permission to use or modify this software.
*
* TFS supplies this software to be publicly redistributed
* on the understanding that TFS is not responsible for the correct
* functioning of this software in any circumstances.
*
* Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992
*
* $FreeBSD$
*/
/*
* SCSI general interface description
*/
#ifndef _SCSI_SCSI_ALL_H
#define _SCSI_SCSI_ALL_H 1
#include <sys/cdefs.h>
#include <machine/stdarg.h>
#ifdef _KERNEL
/*
* This is the number of seconds we wait for devices to settle after a SCSI
* bus reset.
*/
extern int scsi_delay;
#endif /* _KERNEL */
/*
* SCSI command format
*/
/*
* Define dome bits that are in ALL (or a lot of) scsi commands
*/
#define SCSI_CTL_LINK 0x01
#define SCSI_CTL_FLAG 0x02
#define SCSI_CTL_VENDOR 0xC0
#define SCSI_CMD_LUN 0xA0 /* these two should not be needed */
#define SCSI_CMD_LUN_SHIFT 5 /* LUN in the cmd is no longer SCSI */
#define SCSI_MAX_CDBLEN 16 /*
* 16 byte commands are in the
* SCSI-3 spec
*/
#if defined(CAM_MAX_CDBLEN) && (CAM_MAX_CDBLEN < SCSI_MAX_CDBLEN)
#error "CAM_MAX_CDBLEN cannot be less than SCSI_MAX_CDBLEN"
#endif
/* 6byte CDBs special case 0 length to be 256 */
#define SCSI_CDB6_LEN(len) ((len) == 0 ? 256 : len)
/*
* This type defines actions to be taken when a particular sense code is
* received. Right now, these flags are only defined to take up 16 bits,
* but can be expanded in the future if necessary.
*/
typedef enum {
SS_NOP = 0x000000, /* Do nothing */
SS_RETRY = 0x010000, /* Retry the command */
SS_FAIL = 0x020000, /* Bail out */
SS_START = 0x030000, /* Send a Start Unit command to the device,
* then retry the original command.
*/
SS_TUR = 0x040000, /* Send a Test Unit Ready command to the
* device, then retry the original command.
*/
SS_MASK = 0xff0000
} scsi_sense_action;
typedef enum {
SSQ_NONE = 0x0000,
SSQ_DECREMENT_COUNT = 0x0100, /* Decrement the retry count */
SSQ_MANY = 0x0200, /* send lots of recovery commands */
SSQ_RANGE = 0x0400, /*
* This table entry represents the
* end of a range of ASCQs that
* have identical error actions
* and text.
*/
SSQ_PRINT_SENSE = 0x0800,
SSQ_UA = 0x1000, /* Broadcast UA. */
SSQ_RESCAN = 0x2000, /* Rescan target for LUNs. */
SSQ_LOST = 0x4000, /* Destroy the LUNs. */
SSQ_MASK = 0xff00
} scsi_sense_action_qualifier;
/* Mask for error status values */
#define SS_ERRMASK 0xff
/* The default, retyable, error action */
#define SS_RDEF SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE|EIO
/* The retyable, error action, with table specified error code */
#define SS_RET SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE
/* Wait for transient error status to change */
#define SS_WAIT SS_TUR|SSQ_MANY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE
/* Fatal error action, with table specified error code */
#define SS_FATAL SS_FAIL|SSQ_PRINT_SENSE
struct scsi_generic
{
u_int8_t opcode;
u_int8_t bytes[11];
};
struct scsi_request_sense
{
u_int8_t opcode;
u_int8_t byte2;
#define SRS_DESC 0x01
u_int8_t unused[2];
u_int8_t length;
u_int8_t control;
};
struct scsi_test_unit_ready
{
u_int8_t opcode;
u_int8_t byte2;
u_int8_t unused[3];
u_int8_t control;
};
struct scsi_receive_diag {
uint8_t opcode;
uint8_t byte2;
#define SRD_PCV 0x01
uint8_t page_code;
uint8_t length[2];
uint8_t control;
};
struct scsi_send_diag {
uint8_t opcode;
uint8_t byte2;
#define SSD_UNITOFFL 0x01
#define SSD_DEVOFFL 0x02
#define SSD_SELFTEST 0x04
#define SSD_PF 0x10
#define SSD_SELF_TEST_CODE_MASK 0xE0
#define SSD_SELF_TEST_CODE_SHIFT 5
#define SSD_SELF_TEST_CODE_NONE 0x00
#define SSD_SELF_TEST_CODE_BG_SHORT 0x01
#define SSD_SELF_TEST_CODE_BG_EXTENDED 0x02
#define SSD_SELF_TEST_CODE_BG_ABORT 0x04
#define SSD_SELF_TEST_CODE_FG_SHORT 0x05
#define SSD_SELF_TEST_CODE_FG_EXTENDED 0x06
uint8_t reserved;
uint8_t length[2];
uint8_t control;
};
struct scsi_sense
{
u_int8_t opcode;
u_int8_t byte2;
u_int8_t unused[2];
u_int8_t length;
u_int8_t control;
};
struct scsi_inquiry
{
u_int8_t opcode;
u_int8_t byte2;
#define SI_EVPD 0x01
#define SI_CMDDT 0x02
u_int8_t page_code;
u_int8_t length[2];
u_int8_t control;
};
struct scsi_mode_sense_6
{
u_int8_t opcode;
u_int8_t byte2;
#define SMS_DBD 0x08
u_int8_t page;
#define SMS_PAGE_CODE 0x3F
#define SMS_VENDOR_SPECIFIC_PAGE 0x00
#define SMS_DISCONNECT_RECONNECT_PAGE 0x02
#define SMS_FORMAT_DEVICE_PAGE 0x03
#define SMS_GEOMETRY_PAGE 0x04
#define SMS_CACHE_PAGE 0x08
#define SMS_PERIPHERAL_DEVICE_PAGE 0x09
#define SMS_CONTROL_MODE_PAGE 0x0A
#define SMS_PROTO_SPECIFIC_PAGE 0x19
#define SMS_INFO_EXCEPTIONS_PAGE 0x1C
#define SMS_ALL_PAGES_PAGE 0x3F
#define SMS_PAGE_CTRL_MASK 0xC0
#define SMS_PAGE_CTRL_CURRENT 0x00
#define SMS_PAGE_CTRL_CHANGEABLE 0x40
#define SMS_PAGE_CTRL_DEFAULT 0x80
#define SMS_PAGE_CTRL_SAVED 0xC0
u_int8_t subpage;
#define SMS_SUBPAGE_PAGE_0 0x00
#define SMS_SUBPAGE_ALL 0xff
u_int8_t length;
u_int8_t control;
};
struct scsi_mode_sense_10
{
u_int8_t opcode;
u_int8_t byte2; /* same bits as small version */
#define SMS10_LLBAA 0x10
u_int8_t page; /* same bits as small version */
u_int8_t subpage;
u_int8_t unused[3];
u_int8_t length[2];
u_int8_t control;
};
struct scsi_mode_select_6
{
u_int8_t opcode;
u_int8_t byte2;
#define SMS_SP 0x01
#define SMS_PF 0x10
u_int8_t unused[2];
u_int8_t length;
u_int8_t control;
};
struct scsi_mode_select_10
{
u_int8_t opcode;
u_int8_t byte2; /* same bits as small version */
u_int8_t unused[5];
u_int8_t length[2];
u_int8_t control;
};
/*
* When sending a mode select to a tape drive, the medium type must be 0.
*/
struct scsi_mode_hdr_6
{
u_int8_t datalen;
u_int8_t medium_type;
u_int8_t dev_specific;
u_int8_t block_descr_len;
};
struct scsi_mode_hdr_10
{
u_int8_t datalen[2];
u_int8_t medium_type;
u_int8_t dev_specific;
u_int8_t reserved[2];
u_int8_t block_descr_len[2];
};
struct scsi_mode_block_descr
{
u_int8_t density_code;
u_int8_t num_blocks[3];
u_int8_t reserved;
u_int8_t block_len[3];
};
struct scsi_per_res_in
{
u_int8_t opcode;
u_int8_t action;
#define SPRI_RK 0x00
#define SPRI_RR 0x01
#define SPRI_RC 0x02
#define SPRI_RS 0x03
u_int8_t reserved[5];
u_int8_t length[2];
#define SPRI_MAX_LEN 0xffff
u_int8_t control;
};
struct scsi_per_res_in_header
{
u_int8_t generation[4];
u_int8_t length[4];
};
struct scsi_per_res_key
{
u_int8_t key[8];
};
struct scsi_per_res_in_keys
{
struct scsi_per_res_in_header header;
struct scsi_per_res_key keys[0];
};
struct scsi_per_res_cap
{
uint8_t length[2];
uint8_t flags1;
#define SPRI_RLR_C 0x80
#define SPRI_CRH 0x10
#define SPRI_SIP_C 0x08
#define SPRI_ATP_C 0x04
#define SPRI_PTPL_C 0x01
uint8_t flags2;
#define SPRI_TMV 0x80
#define SPRI_ALLOW_CMD_MASK 0x70
#define SPRI_ALLOW_CMD_SHIFT 4
#define SPRI_ALLOW_NA 0x00
#define SPRI_ALLOW_1 0x10
#define SPRI_ALLOW_2 0x20
#define SPRI_ALLOW_3 0x30
#define SPRI_ALLOW_4 0x40
#define SPRI_ALLOW_5 0x50
#define SPRI_PTPL_A 0x01
uint8_t type_mask[2];
#define SPRI_TM_WR_EX_AR 0x8000
#define SPRI_TM_EX_AC_RO 0x4000
#define SPRI_TM_WR_EX_RO 0x2000
#define SPRI_TM_EX_AC 0x0800
#define SPRI_TM_WR_EX 0x0200
#define SPRI_TM_EX_AC_AR 0x0001
uint8_t reserved[2];
};
struct scsi_per_res_in_rsrv_data
{
uint8_t reservation[8];
uint8_t scope_addr[4];
uint8_t reserved;
uint8_t scopetype;
#define SPRT_WE 0x01
#define SPRT_EA 0x03
#define SPRT_WERO 0x05
#define SPRT_EARO 0x06
#define SPRT_WEAR 0x07
#define SPRT_EAAR 0x08
uint8_t extent_length[2];
};
struct scsi_per_res_in_rsrv
{
struct scsi_per_res_in_header header;
struct scsi_per_res_in_rsrv_data data;
};
struct scsi_per_res_in_full_desc
{
struct scsi_per_res_key res_key;
uint8_t reserved1[4];
uint8_t flags;
#define SPRI_FULL_ALL_TG_PT 0x02
#define SPRI_FULL_R_HOLDER 0x01
uint8_t scopetype;
uint8_t reserved2[4];
uint8_t rel_trgt_port_id[2];
uint8_t additional_length[4];
uint8_t transport_id[];
};
struct scsi_per_res_in_full
{
struct scsi_per_res_in_header header;
struct scsi_per_res_in_full_desc desc[];
};
struct scsi_per_res_out
{
u_int8_t opcode;
u_int8_t action;
#define SPRO_REGISTER 0x00
#define SPRO_RESERVE 0x01
#define SPRO_RELEASE 0x02
#define SPRO_CLEAR 0x03
#define SPRO_PREEMPT 0x04
#define SPRO_PRE_ABO 0x05
#define SPRO_REG_IGNO 0x06
#define SPRO_REG_MOVE 0x07
#define SPRO_REPL_LOST_RES 0x08
#define SPRO_ACTION_MASK 0x1f
u_int8_t scope_type;
#define SPR_SCOPE_MASK 0xf0
#define SPR_SCOPE_SHIFT 4
#define SPR_LU_SCOPE 0x00
#define SPR_EXTENT_SCOPE 0x10
#define SPR_ELEMENT_SCOPE 0x20
#define SPR_TYPE_MASK 0x0f
#define SPR_TYPE_RD_SHARED 0x00
#define SPR_TYPE_WR_EX 0x01
#define SPR_TYPE_RD_EX 0x02
#define SPR_TYPE_EX_AC 0x03
#define SPR_TYPE_SHARED 0x04
#define SPR_TYPE_WR_EX_RO 0x05
#define SPR_TYPE_EX_AC_RO 0x06
#define SPR_TYPE_WR_EX_AR 0x07
#define SPR_TYPE_EX_AC_AR 0x08
u_int8_t reserved[2];
u_int8_t length[4];
u_int8_t control;
};
struct scsi_per_res_out_parms
{
struct scsi_per_res_key res_key;
u_int8_t serv_act_res_key[8];
u_int8_t scope_spec_address[4];
u_int8_t flags;
#define SPR_SPEC_I_PT 0x08
#define SPR_ALL_TG_PT 0x04
#define SPR_APTPL 0x01
u_int8_t reserved1;
u_int8_t extent_length[2];
u_int8_t transport_id_list[];
};
struct scsi_per_res_out_trans_ids {
u_int8_t additional_length[4];
u_int8_t transport_ids[];
};
/*
* Used with REGISTER AND MOVE serivce action of the PERSISTENT RESERVE OUT
* command.
*/
struct scsi_per_res_reg_move
{
struct scsi_per_res_key res_key;
u_int8_t serv_act_res_key[8];
u_int8_t reserved;
u_int8_t flags;
#define SPR_REG_MOVE_UNREG 0x02
#define SPR_REG_MOVE_APTPL 0x01
u_int8_t rel_trgt_port_id[2];
u_int8_t transport_id_length[4];
u_int8_t transport_id[];
};
struct scsi_transportid_header
{
uint8_t format_protocol;
#define SCSI_TRN_FORMAT_MASK 0xc0
#define SCSI_TRN_FORMAT_SHIFT 6
#define SCSI_TRN_PROTO_MASK 0x0f
};
struct scsi_transportid_fcp
{
uint8_t format_protocol;
#define SCSI_TRN_FCP_FORMAT_DEFAULT 0x00
uint8_t reserved1[7];
uint8_t n_port_name[8];
uint8_t reserved2[8];
};
struct scsi_transportid_spi
{
uint8_t format_protocol;
#define SCSI_TRN_SPI_FORMAT_DEFAULT 0x00
uint8_t reserved1;
uint8_t scsi_addr[2];
uint8_t obsolete[2];
uint8_t rel_trgt_port_id[2];
uint8_t reserved2[16];
};
struct scsi_transportid_1394
{
uint8_t format_protocol;
#define SCSI_TRN_1394_FORMAT_DEFAULT 0x00
uint8_t reserved1[7];
uint8_t eui64[8];
uint8_t reserved2[8];
};
struct scsi_transportid_rdma
{
uint8_t format_protocol;
#define SCSI_TRN_RDMA_FORMAT_DEFAULT 0x00
uint8_t reserved[7];
#define SCSI_TRN_RDMA_PORT_LEN 16
uint8_t initiator_port_id[SCSI_TRN_RDMA_PORT_LEN];
};
struct scsi_transportid_iscsi_device
{
uint8_t format_protocol;
#define SCSI_TRN_ISCSI_FORMAT_DEVICE 0x00
uint8_t reserved;
uint8_t additional_length[2];
uint8_t iscsi_name[];
};
struct scsi_transportid_iscsi_port
{
uint8_t format_protocol;
#define SCSI_TRN_ISCSI_FORMAT_PORT 0x40
uint8_t reserved;
uint8_t additional_length[2];
uint8_t iscsi_name[];
/*
* Followed by a separator and iSCSI initiator session ID
*/
};
struct scsi_transportid_sas
{
uint8_t format_protocol;
#define SCSI_TRN_SAS_FORMAT_DEFAULT 0x00
uint8_t reserved1[3];
uint8_t sas_address[8];
uint8_t reserved2[12];
};
struct scsi_sop_routing_id_norm {
uint8_t bus;
uint8_t devfunc;
#define SCSI_TRN_SOP_BUS_MAX 0xff
#define SCSI_TRN_SOP_DEV_MAX 0x1f
#define SCSI_TRN_SOP_DEV_MASK 0xf8
#define SCSI_TRN_SOP_DEV_SHIFT 3
#define SCSI_TRN_SOP_FUNC_NORM_MASK 0x07
#define SCSI_TRN_SOP_FUNC_NORM_MAX 0x07
};
struct scsi_sop_routing_id_alt {
uint8_t bus;
uint8_t function;
#define SCSI_TRN_SOP_FUNC_ALT_MAX 0xff
};
struct scsi_transportid_sop
{
uint8_t format_protocol;
#define SCSI_TRN_SOP_FORMAT_DEFAULT 0x00
uint8_t reserved1;
uint8_t routing_id[2];
uint8_t reserved2[20];
};
struct scsi_log_sense
{
u_int8_t opcode;
u_int8_t byte2;
#define SLS_SP 0x01
#define SLS_PPC 0x02
u_int8_t page;
#define SLS_PAGE_CODE 0x3F
#define SLS_SUPPORTED_PAGES_PAGE 0x00
#define SLS_OVERRUN_PAGE 0x01
#define SLS_ERROR_WRITE_PAGE 0x02
#define SLS_ERROR_READ_PAGE 0x03
#define SLS_ERROR_READREVERSE_PAGE 0x04
#define SLS_ERROR_VERIFY_PAGE 0x05
#define SLS_ERROR_NONMEDIUM_PAGE 0x06
#define SLS_ERROR_LASTN_PAGE 0x07
#define SLS_LOGICAL_BLOCK_PROVISIONING 0x0c
#define SLS_SELF_TEST_PAGE 0x10
#define SLS_STAT_AND_PERF 0x19
#define SLS_IE_PAGE 0x2f
#define SLS_PAGE_CTRL_MASK 0xC0
#define SLS_PAGE_CTRL_THRESHOLD 0x00
#define SLS_PAGE_CTRL_CUMULATIVE 0x40
#define SLS_PAGE_CTRL_THRESH_DEFAULT 0x80
#define SLS_PAGE_CTRL_CUMUL_DEFAULT 0xC0
u_int8_t subpage;
#define SLS_SUPPORTED_SUBPAGES_SUBPAGE 0xff
u_int8_t reserved;
u_int8_t paramptr[2];
u_int8_t length[2];
u_int8_t control;
};
struct scsi_log_select
{
u_int8_t opcode;
u_int8_t byte2;
/* SLS_SP 0x01 */
#define SLS_PCR 0x02
u_int8_t page;
/* SLS_PAGE_CTRL_MASK 0xC0 */
/* SLS_PAGE_CTRL_THRESHOLD 0x00 */
/* SLS_PAGE_CTRL_CUMULATIVE 0x40 */
/* SLS_PAGE_CTRL_THRESH_DEFAULT 0x80 */
/* SLS_PAGE_CTRL_CUMUL_DEFAULT 0xC0 */
u_int8_t reserved[4];
u_int8_t length[2];
u_int8_t control;
};
struct scsi_log_header
{
u_int8_t page;
#define SL_PAGE_CODE 0x3F
#define SL_SPF 0x40
#define SL_DS 0x80
u_int8_t subpage;
u_int8_t datalen[2];
};
struct scsi_log_param_header {
u_int8_t param_code[2];
u_int8_t param_control;
#define SLP_LP 0x01
#define SLP_LBIN 0x02
#define SLP_TMC_MASK 0x0C
#define SLP_TMC_ALWAYS 0x00
#define SLP_TMC_EQUAL 0x04
#define SLP_TMC_NOTEQUAL 0x08
#define SLP_TMC_GREATER 0x0C
#define SLP_ETC 0x10
#define SLP_TSD 0x20
#define SLP_DS 0x40
#define SLP_DU 0x80
u_int8_t param_len;
};
struct scsi_log_stat_and_perf {
struct scsi_log_param_header hdr;
#define SLP_SAP 0x0001
uint8_t read_num[8];
uint8_t write_num[8];
uint8_t recvieved_lba[8];
uint8_t transmitted_lba[8];
uint8_t read_int[8];
uint8_t write_int[8];
uint8_t weighted_num[8];
uint8_t weighted_int[8];
};
struct scsi_log_idle_time {
struct scsi_log_param_header hdr;
#define SLP_IT 0x0002
uint8_t idle_int[8];
};
struct scsi_log_time_interval {
struct scsi_log_param_header hdr;
#define SLP_TI 0x0003
uint8_t exponent[4];
uint8_t integer[4];
};
struct scsi_log_fua_stat_and_perf {
struct scsi_log_param_header hdr;
#define SLP_FUA_SAP 0x0004
uint8_t fua_read_num[8];
uint8_t fua_write_num[8];
uint8_t fuanv_read_num[8];
uint8_t fuanv_write_num[8];
uint8_t fua_read_int[8];
uint8_t fua_write_int[8];
uint8_t fuanv_read_int[8];
uint8_t fuanv_write_int[8];
};
struct scsi_control_page {
u_int8_t page_code;
u_int8_t page_length;
u_int8_t rlec;
#define SCP_RLEC 0x01 /*Report Log Exception Cond*/
#define SCP_GLTSD 0x02 /*Global Logging target
save disable */
#define SCP_DSENSE 0x04 /*Descriptor Sense */
#define SCP_DPICZ 0x08 /*Disable Prot. Info Check
if Prot. Field is Zero */
#define SCP_TMF_ONLY 0x10 /*TM Functions Only*/
#define SCP_TST_MASK 0xE0 /*Task Set Type Mask*/
#define SCP_TST_ONE 0x00 /*One Task Set*/
#define SCP_TST_SEPARATE 0x20 /*Separate Task Sets*/
u_int8_t queue_flags;
#define SCP_QUEUE_ALG_MASK 0xF0
#define SCP_QUEUE_ALG_RESTRICTED 0x00
#define SCP_QUEUE_ALG_UNRESTRICTED 0x10
#define SCP_NUAR 0x08 /*No UA on release*/
#define SCP_QUEUE_ERR 0x02 /*Queued I/O aborted for CACs*/
#define SCP_QUEUE_DQUE 0x01 /*Queued I/O disabled*/
u_int8_t eca_and_aen;
#define SCP_EECA 0x80 /*Enable Extended CA*/
#define SCP_RAC 0x40 /*Report a check*/
#define SCP_SWP 0x08 /*Software Write Protect*/
#define SCP_RAENP 0x04 /*Ready AEN Permission*/
#define SCP_UAAENP 0x02 /*UA AEN Permission*/
#define SCP_EAENP 0x01 /*Error AEN Permission*/
u_int8_t flags4;
#define SCP_ATO 0x80 /*Application tag owner*/
#define SCP_TAS 0x40 /*Task aborted status*/
#define SCP_ATMPE 0x20 /*Application tag mode page*/
#define SCP_RWWP 0x10 /*Reject write without prot*/
u_int8_t aen_holdoff_period[2];
u_int8_t busy_timeout_period[2];
u_int8_t extended_selftest_completion_time[2];
};
struct scsi_control_ext_page {
uint8_t page_code;
uint8_t subpage_code;
uint8_t page_length[2];
uint8_t flags;
#define SCEP_TCMOS 0x04 /* Timestamp Changeable by */
#define SCEP_SCSIP 0x02 /* SCSI Precedence (clock) */
#define SCEP_IALUAE 0x01 /* Implicit ALUA Enabled */
uint8_t prio;
uint8_t max_sense;
uint8_t reserve[25];
};
struct scsi_cache_page {
u_int8_t page_code;
#define SCHP_PAGE_SAVABLE 0x80 /* Page is savable */
u_int8_t page_length;
u_int8_t cache_flags;
#define SCHP_FLAGS_WCE 0x04 /* Write Cache Enable */
#define SCHP_FLAGS_MF 0x02 /* Multiplication factor */
#define SCHP_FLAGS_RCD 0x01 /* Read Cache Disable */
u_int8_t rw_cache_policy;
u_int8_t dis_prefetch[2];
u_int8_t min_prefetch[2];
u_int8_t max_prefetch[2];
u_int8_t max_prefetch_ceil[2];
};
/*
* XXX KDM
* Updated version of the cache page, as of SBC. Update this to SBC-3 and
* rationalize the two.
*/
struct scsi_caching_page {
uint8_t page_code;
#define SMS_CACHING_PAGE 0x08
uint8_t page_length;
uint8_t flags1;
#define SCP_IC 0x80
#define SCP_ABPF 0x40
#define SCP_CAP 0x20
#define SCP_DISC 0x10
#define SCP_SIZE 0x08
#define SCP_WCE 0x04
#define SCP_MF 0x02
#define SCP_RCD 0x01
uint8_t ret_priority;
uint8_t disable_pf_transfer_len[2];
uint8_t min_prefetch[2];
uint8_t max_prefetch[2];
uint8_t max_pf_ceiling[2];
uint8_t flags2;
#define SCP_FSW 0x80
#define SCP_LBCSS 0x40
#define SCP_DRA 0x20
#define SCP_VS1 0x10
#define SCP_VS2 0x08
uint8_t cache_segments;
uint8_t cache_seg_size[2];
uint8_t reserved;
uint8_t non_cache_seg_size[3];
};
/*
* XXX KDM move this off to a vendor shim.
*/
struct copan_debugconf_subpage {
uint8_t page_code;
#define DBGCNF_PAGE_CODE 0x00
uint8_t subpage;
#define DBGCNF_SUBPAGE_CODE 0xF0
uint8_t page_length[2];
uint8_t page_version;
#define DBGCNF_VERSION 0x00
uint8_t ctl_time_io_secs[2];
};
struct scsi_info_exceptions_page {
u_int8_t page_code;
#define SIEP_PAGE_SAVABLE 0x80 /* Page is savable */
u_int8_t page_length;
u_int8_t info_flags;
#define SIEP_FLAGS_PERF 0x80
#define SIEP_FLAGS_EBF 0x20
#define SIEP_FLAGS_EWASC 0x10
#define SIEP_FLAGS_DEXCPT 0x08
#define SIEP_FLAGS_TEST 0x04
#define SIEP_FLAGS_EBACKERR 0x02
#define SIEP_FLAGS_LOGERR 0x01
u_int8_t mrie;
u_int8_t interval_timer[4];
u_int8_t report_count[4];
};
struct scsi_logical_block_provisioning_page_descr {
uint8_t flags;
#define SLBPPD_ENABLED 0x80
#define SLBPPD_TYPE_MASK 0x38
#define SLBPPD_ARMING_MASK 0x07
#define SLBPPD_ARMING_DEC 0x02
#define SLBPPD_ARMING_INC 0x01
uint8_t resource;
uint8_t reserved[2];
uint8_t count[4];
};
struct scsi_logical_block_provisioning_page {
uint8_t page_code;
uint8_t subpage_code;
uint8_t page_length[2];
uint8_t flags;
#define SLBPP_SITUA 0x01
uint8_t reserved[11];
struct scsi_logical_block_provisioning_page_descr descr[0];
};
/*
* SCSI protocol identifier values, current as of SPC4r36l.
*/
#define SCSI_PROTO_FC 0x00 /* Fibre Channel */
#define SCSI_PROTO_SPI 0x01 /* Parallel SCSI */
#define SCSI_PROTO_SSA 0x02 /* Serial Storage Arch. */
#define SCSI_PROTO_1394 0x03 /* IEEE 1394 (Firewire) */
#define SCSI_PROTO_RDMA 0x04 /* SCSI RDMA Protocol */
#define SCSI_PROTO_ISCSI 0x05 /* Internet SCSI */
#define SCSI_PROTO_iSCSI 0x05 /* Internet SCSI */
#define SCSI_PROTO_SAS 0x06 /* SAS Serial SCSI Protocol */
#define SCSI_PROTO_ADT 0x07 /* Automation/Drive Int. Trans. Prot.*/
#define SCSI_PROTO_ADITP 0x07 /* Automation/Drive Int. Trans. Prot.*/
#define SCSI_PROTO_ATA 0x08 /* AT Attachment Interface */
#define SCSI_PROTO_UAS 0x09 /* USB Atached SCSI */
#define SCSI_PROTO_SOP 0x0a /* SCSI over PCI Express */
#define SCSI_PROTO_NONE 0x0f /* No specific protocol */
struct scsi_proto_specific_page {
u_int8_t page_code;
#define SPSP_PAGE_SAVABLE 0x80 /* Page is savable */
u_int8_t page_length;
u_int8_t protocol;
#define SPSP_PROTO_FC SCSI_PROTO_FC
#define SPSP_PROTO_SPI SCSI_PROTO_SPI
#define SPSP_PROTO_SSA SCSI_PROTO_SSA
#define SPSP_PROTO_1394 SCSI_PROTO_1394
#define SPSP_PROTO_RDMA SCSI_PROTO_RDMA
#define SPSP_PROTO_ISCSI SCSI_PROTO_ISCSI
#define SPSP_PROTO_SAS SCSI_PROTO_SAS
#define SPSP_PROTO_ADT SCSI_PROTO_ADITP
#define SPSP_PROTO_ATA SCSI_PROTO_ATA
#define SPSP_PROTO_UAS SCSI_PROTO_UAS
#define SPSP_PROTO_SOP SCSI_PROTO_SOP
#define SPSP_PROTO_NONE SCSI_PROTO_NONE
};
struct scsi_reserve
{
u_int8_t opcode;
u_int8_t byte2;
#define SR_EXTENT 0x01
#define SR_ID_MASK 0x0e
#define SR_3RDPTY 0x10
#define SR_LUN_MASK 0xe0
u_int8_t resv_id;
u_int8_t length[2];
u_int8_t control;
};
struct scsi_reserve_10 {
uint8_t opcode;
uint8_t byte2;
#define SR10_3RDPTY 0x10
#define SR10_LONGID 0x02
#define SR10_EXTENT 0x01
uint8_t resv_id;
uint8_t thirdparty_id;
uint8_t reserved[3];
uint8_t length[2];
uint8_t control;
};
struct scsi_release
{
u_int8_t opcode;
u_int8_t byte2;
u_int8_t resv_id;
u_int8_t unused[1];
u_int8_t length;
u_int8_t control;
};
struct scsi_release_10 {
uint8_t opcode;
uint8_t byte2;
uint8_t resv_id;
uint8_t thirdparty_id;
uint8_t reserved[3];
uint8_t length[2];
uint8_t control;
};
struct scsi_prevent
{
u_int8_t opcode;
u_int8_t byte2;
u_int8_t unused[2];
u_int8_t how;
u_int8_t control;
};
#define PR_PREVENT 0x01
#define PR_ALLOW 0x00
struct scsi_sync_cache
{
u_int8_t opcode;
u_int8_t byte2;
#define SSC_IMMED 0x02
#define SSC_RELADR 0x01
u_int8_t begin_lba[4];
u_int8_t reserved;
u_int8_t lb_count[2];
u_int8_t control;
};
struct scsi_sync_cache_16
{
uint8_t opcode;
uint8_t byte2;
uint8_t begin_lba[8];
uint8_t lb_count[4];
uint8_t reserved;
uint8_t control;
};
struct scsi_format {
uint8_t opcode;
uint8_t byte2;
#define SF_LONGLIST 0x20
#define SF_FMTDATA 0x10
#define SF_CMPLIST 0x08
#define SF_FORMAT_MASK 0x07
#define SF_FORMAT_BLOCK 0x00
#define SF_FORMAT_LONG_BLOCK 0x03
#define SF_FORMAT_BFI 0x04
#define SF_FORMAT_PHYS 0x05
uint8_t vendor;
uint8_t interleave[2];
uint8_t control;
};
struct scsi_format_header_short {
uint8_t reserved;
#define SF_DATA_FOV 0x80
#define SF_DATA_DPRY 0x40
#define SF_DATA_DCRT 0x20
#define SF_DATA_STPF 0x10
#define SF_DATA_IP 0x08
#define SF_DATA_DSP 0x04
#define SF_DATA_IMMED 0x02
#define SF_DATA_VS 0x01
uint8_t byte2;
uint8_t defect_list_len[2];
};
struct scsi_format_header_long {
uint8_t reserved;
uint8_t byte2;
uint8_t reserved2[2];
uint8_t defect_list_len[4];
};
struct scsi_changedef
{
u_int8_t opcode;
u_int8_t byte2;
u_int8_t unused1;
u_int8_t how;
u_int8_t unused[4];
u_int8_t datalen;
u_int8_t control;
};
struct scsi_read_buffer
{
u_int8_t opcode;
u_int8_t byte2;
#define RWB_MODE 0x1F
#define RWB_MODE_HDR_DATA 0x00
#define RWB_MODE_VENDOR 0x01
#define RWB_MODE_DATA 0x02
#define RWB_MODE_DESCR 0x03
#define RWB_MODE_DOWNLOAD 0x04
#define RWB_MODE_DOWNLOAD_SAVE 0x05
#define RWB_MODE_ECHO 0x0A
#define RWB_MODE_ECHO_DESCR 0x0B
#define RWB_MODE_ERROR_HISTORY 0x1C
u_int8_t buffer_id;
u_int8_t offset[3];
u_int8_t length[3];
u_int8_t control;
};
struct scsi_read_buffer_16
{
uint8_t opcode;
uint8_t byte2;
uint8_t offset[8];
uint8_t length[4];
uint8_t buffer_id;
uint8_t control;
};
struct scsi_write_buffer
{
u_int8_t opcode;
u_int8_t byte2;
u_int8_t buffer_id;
u_int8_t offset[3];
u_int8_t length[3];
u_int8_t control;
};
struct scsi_read_attribute
{
u_int8_t opcode;
u_int8_t service_action;
#define SRA_SA_ATTR_VALUES 0x00
#define SRA_SA_ATTR_LIST 0x01
#define SRA_SA_LOG_VOL_LIST 0x02
#define SRA_SA_PART_LIST 0x03
#define SRA_SA_RESTRICTED 0x04
#define SRA_SA_SUPPORTED_ATTRS 0x05
#define SRA_SA_MASK 0x1f
u_int8_t element[2];
u_int8_t elem_type;
u_int8_t logical_volume;
u_int8_t reserved1;
u_int8_t partition;
u_int8_t first_attribute[2];
u_int8_t length[4];
u_int8_t cache;
#define SRA_CACHE 0x01
u_int8_t control;
};
struct scsi_write_attribute
{
u_int8_t opcode;
u_int8_t byte2;
#define SWA_WTC 0x01
u_int8_t element[3];
u_int8_t logical_volume;
u_int8_t reserved1;
u_int8_t partition;
u_int8_t reserved2[2];
u_int8_t length[4];
u_int8_t reserved3;
u_int8_t control;
};
struct scsi_read_attribute_values
{
u_int8_t length[4];
u_int8_t attribute_0[0];
};
struct scsi_mam_attribute_header
{
u_int8_t id[2];
/*
* Attributes obtained from SPC-4r36g (section 7.4.2.2) and
* SSC-4r03 (section 4.2.21).
*/
#define SMA_ATTR_ID_DEVICE_MIN 0x0000
#define SMA_ATTR_REM_CAP_PARTITION 0x0000
#define SMA_ATTR_MAX_CAP_PARTITION 0x0001
#define SMA_ATTR_TAPEALERT_FLAGS 0x0002
#define SMA_ATTR_LOAD_COUNT 0x0003
#define SMA_ATTR_MAM_SPACE_REMAINING 0x0004
#define SMA_ATTR_DEV_ASSIGNING_ORG 0x0005
#define SMA_ATTR_FORMAT_DENSITY_CODE 0x0006
#define SMA_ATTR_INITIALIZATION_COUNT 0x0007
#define SMA_ATTR_VOLUME_ID 0x0008
#define SMA_ATTR_VOLUME_CHANGE_REF 0x0009
#define SMA_ATTR_DEV_SERIAL_LAST_LOAD 0x020a
#define SMA_ATTR_DEV_SERIAL_LAST_LOAD_1 0x020b
#define SMA_ATTR_DEV_SERIAL_LAST_LOAD_2 0x020c
#define SMA_ATTR_DEV_SERIAL_LAST_LOAD_3 0x020d
#define SMA_ATTR_TOTAL_MB_WRITTEN_LT 0x0220
#define SMA_ATTR_TOTAL_MB_READ_LT 0x0221
#define SMA_ATTR_TOTAL_MB_WRITTEN_CUR 0x0222
#define SMA_ATTR_TOTAL_MB_READ_CUR 0x0223
#define SMA_ATTR_FIRST_ENC_BLOCK 0x0224
#define SMA_ATTR_NEXT_UNENC_BLOCK 0x0225
#define SMA_ATTR_MEDIUM_USAGE_HIST 0x0340
#define SMA_ATTR_PART_USAGE_HIST 0x0341
#define SMA_ATTR_ID_DEVICE_MAX 0x03ff
#define SMA_ATTR_ID_MEDIUM_MIN 0x0400
#define SMA_ATTR_MED_MANUF 0x0400
#define SMA_ATTR_MED_SERIAL 0x0401
#define SMA_ATTR_MED_LENGTH 0x0402
#define SMA_ATTR_MED_WIDTH 0x0403
#define SMA_ATTR_MED_ASSIGNING_ORG 0x0404
#define SMA_ATTR_MED_DENSITY_CODE 0x0405
#define SMA_ATTR_MED_MANUF_DATE 0x0406
#define SMA_ATTR_MAM_CAPACITY 0x0407
#define SMA_ATTR_MED_TYPE 0x0408
#define SMA_ATTR_MED_TYPE_INFO 0x0409
#define SMA_ATTR_MED_SERIAL_NUM 0x040a
#define SMA_ATTR_ID_MEDIUM_MAX 0x07ff
#define SMA_ATTR_ID_HOST_MIN 0x0800
#define SMA_ATTR_APP_VENDOR 0x0800
#define SMA_ATTR_APP_NAME 0x0801
#define SMA_ATTR_APP_VERSION 0x0802
#define SMA_ATTR_USER_MED_TEXT_LABEL 0x0803
#define SMA_ATTR_LAST_WRITTEN_TIME 0x0804
#define SMA_ATTR_TEXT_LOCAL_ID 0x0805
#define SMA_ATTR_BARCODE 0x0806
#define SMA_ATTR_HOST_OWNER_NAME 0x0807
#define SMA_ATTR_MEDIA_POOL 0x0808
#define SMA_ATTR_PART_USER_LABEL 0x0809
#define SMA_ATTR_LOAD_UNLOAD_AT_PART 0x080a
#define SMA_ATTR_APP_FORMAT_VERSION 0x080b
#define SMA_ATTR_VOL_COHERENCY_INFO 0x080c
#define SMA_ATTR_ID_HOST_MAX 0x0bff
#define SMA_ATTR_VENDOR_DEVICE_MIN 0x0c00
#define SMA_ATTR_VENDOR_DEVICE_MAX 0x0fff
#define SMA_ATTR_VENDOR_MEDIUM_MIN 0x1000
#define SMA_ATTR_VENDOR_MEDIUM_MAX 0x13ff
#define SMA_ATTR_VENDOR_HOST_MIN 0x1400
#define SMA_ATTR_VENDOR_HOST_MAX 0x17ff
u_int8_t byte2;
#define SMA_FORMAT_BINARY 0x00
#define SMA_FORMAT_ASCII 0x01
#define SMA_FORMAT_TEXT 0x02
#define SMA_FORMAT_MASK 0x03
#define SMA_READ_ONLY 0x80
u_int8_t length[2];
u_int8_t attribute[0];
};
struct scsi_attrib_list_header {
u_int8_t length[4];
u_int8_t first_attr_0[0];
};
struct scsi_attrib_lv_list {
u_int8_t length[2];
u_int8_t first_lv_number;
u_int8_t num_logical_volumes;
};
struct scsi_attrib_vendser {
uint8_t vendor[8];
uint8_t serial_num[32];
};
/*
* These values are used to decode the Volume Coherency Information
* Attribute (0x080c) for LTFS-format coherency information.
* Although the Application Client Specific lengths are different for
* Version 0 and Version 1, the data is in fact the same. The length
* difference was due to a code bug.
*/
#define SCSI_LTFS_VER0_LEN 42
#define SCSI_LTFS_VER1_LEN 43
#define SCSI_LTFS_UUID_LEN 36
#define SCSI_LTFS_STR_NAME "LTFS"
#define SCSI_LTFS_STR_LEN 4
typedef enum {
SCSI_ATTR_FLAG_NONE = 0x00,
SCSI_ATTR_FLAG_HEX = 0x01,
SCSI_ATTR_FLAG_FP = 0x02,
SCSI_ATTR_FLAG_DIV_10 = 0x04,
SCSI_ATTR_FLAG_FP_1DIGIT = 0x08
} scsi_attrib_flags;
typedef enum {
SCSI_ATTR_OUTPUT_NONE = 0x00,
SCSI_ATTR_OUTPUT_TEXT_MASK = 0x03,
SCSI_ATTR_OUTPUT_TEXT_RAW = 0x00,
SCSI_ATTR_OUTPUT_TEXT_ESC = 0x01,
SCSI_ATTR_OUTPUT_TEXT_RSV1 = 0x02,
SCSI_ATTR_OUTPUT_TEXT_RSV2 = 0x03,
SCSI_ATTR_OUTPUT_NONASCII_MASK = 0x0c,
SCSI_ATTR_OUTPUT_NONASCII_TRIM = 0x00,
SCSI_ATTR_OUTPUT_NONASCII_ESC = 0x04,
SCSI_ATTR_OUTPUT_NONASCII_RAW = 0x08,
SCSI_ATTR_OUTPUT_NONASCII_RSV1 = 0x0c,
SCSI_ATTR_OUTPUT_FIELD_MASK = 0xf0,
SCSI_ATTR_OUTPUT_FIELD_ALL = 0xf0,
SCSI_ATTR_OUTPUT_FIELD_NONE = 0x00,
SCSI_ATTR_OUTPUT_FIELD_DESC = 0x10,
SCSI_ATTR_OUTPUT_FIELD_NUM = 0x20,
SCSI_ATTR_OUTPUT_FIELD_SIZE = 0x40,
SCSI_ATTR_OUTPUT_FIELD_RW = 0x80
} scsi_attrib_output_flags;
struct sbuf;
struct scsi_attrib_table_entry
{
u_int32_t id;
u_int32_t flags;
const char *desc;
const char *suffix;
int (*to_str)(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len);
int (*parse_str)(char *str, struct scsi_mam_attribute_header *hdr,
uint32_t alloc_len, uint32_t flags, char *error_str,
int error_str_len);
};
struct scsi_rw_6
{
u_int8_t opcode;
u_int8_t addr[3];
/* only 5 bits are valid in the MSB address byte */
#define SRW_TOPADDR 0x1F
u_int8_t length;
u_int8_t control;
};
struct scsi_rw_10
{
u_int8_t opcode;
#define SRW10_RELADDR 0x01
/* EBP defined for WRITE(10) only */
#define SRW10_EBP 0x04
#define SRW10_FUA 0x08
#define SRW10_DPO 0x10
u_int8_t byte2;
u_int8_t addr[4];
u_int8_t reserved;
u_int8_t length[2];
u_int8_t control;
};
struct scsi_rw_12
{
u_int8_t opcode;
#define SRW12_RELADDR 0x01
#define SRW12_FUA 0x08
#define SRW12_DPO 0x10
u_int8_t byte2;
u_int8_t addr[4];
u_int8_t length[4];
u_int8_t reserved;
u_int8_t control;
};
struct scsi_rw_16
{
u_int8_t opcode;
#define SRW16_RELADDR 0x01
#define SRW16_FUA 0x08
#define SRW16_DPO 0x10
u_int8_t byte2;
u_int8_t addr[8];
u_int8_t length[4];
u_int8_t reserved;
u_int8_t control;
};
struct scsi_write_atomic_16
{
uint8_t opcode;
uint8_t byte2;
uint8_t addr[8];
uint8_t boundary[2];
uint8_t length[2];
uint8_t group;
uint8_t control;
};
struct scsi_write_same_10
{
uint8_t opcode;
uint8_t byte2;
#define SWS_LBDATA 0x02
#define SWS_PBDATA 0x04
#define SWS_UNMAP 0x08
#define SWS_ANCHOR 0x10
uint8_t addr[4];
uint8_t group;
uint8_t length[2];
uint8_t control;
};
struct scsi_write_same_16
{
uint8_t opcode;
uint8_t byte2;
#define SWS_NDOB 0x01
uint8_t addr[8];
uint8_t length[4];
uint8_t group;
uint8_t control;
};
struct scsi_unmap
{
uint8_t opcode;
uint8_t byte2;
#define SU_ANCHOR 0x01
uint8_t reserved[4];
uint8_t group;
uint8_t length[2];
uint8_t control;
};
struct scsi_unmap_header
{
uint8_t length[2];
uint8_t desc_length[2];
uint8_t reserved[4];
};
struct scsi_unmap_desc
{
uint8_t lba[8];
uint8_t length[4];
uint8_t reserved[4];
};
struct scsi_write_verify_10
{
uint8_t opcode;
uint8_t byte2;
#define SWV_BYTCHK 0x02
#define SWV_DPO 0x10
#define SWV_WRPROECT_MASK 0xe0
uint8_t addr[4];
uint8_t group;
uint8_t length[2];
uint8_t control;
};
struct scsi_write_verify_12
{
uint8_t opcode;
uint8_t byte2;
uint8_t addr[4];
uint8_t length[4];
uint8_t group;
uint8_t control;
};
struct scsi_write_verify_16
{
uint8_t opcode;
uint8_t byte2;
uint8_t addr[8];
uint8_t length[4];
uint8_t group;
uint8_t control;
};
struct scsi_start_stop_unit
{
u_int8_t opcode;
u_int8_t byte2;
#define SSS_IMMED 0x01
u_int8_t reserved[2];
u_int8_t how;
#define SSS_START 0x01
#define SSS_LOEJ 0x02
#define SSS_PC_MASK 0xf0
#define SSS_PC_START_VALID 0x00
#define SSS_PC_ACTIVE 0x10
#define SSS_PC_IDLE 0x20
#define SSS_PC_STANDBY 0x30
#define SSS_PC_LU_CONTROL 0x70
#define SSS_PC_FORCE_IDLE_0 0xa0
#define SSS_PC_FORCE_STANDBY_0 0xb0
u_int8_t control;
};
struct ata_pass_12 {
u_int8_t opcode;
u_int8_t protocol;
#define AP_PROTO_HARD_RESET (0x00 << 1)
#define AP_PROTO_SRST (0x01 << 1)
#define AP_PROTO_NON_DATA (0x03 << 1)
#define AP_PROTO_PIO_IN (0x04 << 1)
#define AP_PROTO_PIO_OUT (0x05 << 1)
#define AP_PROTO_DMA (0x06 << 1)
#define AP_PROTO_DMA_QUEUED (0x07 << 1)
#define AP_PROTO_DEVICE_DIAG (0x08 << 1)
#define AP_PROTO_DEVICE_RESET (0x09 << 1)
#define AP_PROTO_UDMA_IN (0x0a << 1)
#define AP_PROTO_UDMA_OUT (0x0b << 1)
#define AP_PROTO_FPDMA (0x0c << 1)
#define AP_PROTO_RESP_INFO (0x0f << 1)
#define AP_PROTO_MASK 0x1e
#define AP_MULTI 0xe0
u_int8_t flags;
#define AP_T_LEN 0x03
#define AP_BB 0x04
#define AP_T_DIR 0x08
#define AP_CK_COND 0x20
#define AP_OFFLINE 0x60
u_int8_t features;
u_int8_t sector_count;
u_int8_t lba_low;
u_int8_t lba_mid;
u_int8_t lba_high;
u_int8_t device;
u_int8_t command;
u_int8_t reserved;
u_int8_t control;
};
struct scsi_maintenance_in
{
uint8_t opcode;
uint8_t byte2;
#define SERVICE_ACTION_MASK 0x1f
#define SA_RPRT_TRGT_GRP 0x0a
uint8_t reserved[4];
uint8_t length[4];
uint8_t reserved1;
uint8_t control;
};
struct scsi_report_supported_opcodes
{
uint8_t opcode;
uint8_t service_action;
uint8_t options;
#define RSO_RCTD 0x80
#define RSO_OPTIONS_MASK 0x07
#define RSO_OPTIONS_ALL 0x00
#define RSO_OPTIONS_OC 0x01
#define RSO_OPTIONS_OC_SA 0x02
uint8_t requested_opcode;
uint8_t requested_service_action[2];
uint8_t length[4];
uint8_t reserved1;
uint8_t control;
};
struct scsi_report_supported_opcodes_timeout
{
uint8_t length[2];
uint8_t reserved;
uint8_t cmd_specific;
uint8_t nominal_time[4];
uint8_t recommended_time[4];
};
struct scsi_report_supported_opcodes_descr
{
uint8_t opcode;
uint8_t reserved;
uint8_t service_action[2];
uint8_t reserved2;
uint8_t flags;
#define RSO_SERVACTV 0x01
#define RSO_CTDP 0x02
uint8_t cdb_length[2];
struct scsi_report_supported_opcodes_timeout timeout[0];
};
struct scsi_report_supported_opcodes_all
{
uint8_t length[4];
struct scsi_report_supported_opcodes_descr descr[0];
};
struct scsi_report_supported_opcodes_one
{
uint8_t reserved;
uint8_t support;
#define RSO_ONE_CTDP 0x80
#define RSO_ONE_SUP_MASK 0x07
#define RSO_ONE_SUP_UNAVAIL 0x00
#define RSO_ONE_SUP_NOT_SUP 0x01
#define RSO_ONE_SUP_AVAIL 0x03
#define RSO_ONE_SUP_VENDOR 0x05
uint8_t cdb_length[2];
uint8_t cdb_usage[];
};
struct scsi_report_supported_tmf
{
uint8_t opcode;
uint8_t service_action;
uint8_t reserved[4];
uint8_t length[4];
uint8_t reserved1;
uint8_t control;
};
struct scsi_report_supported_tmf_data
{
uint8_t byte1;
#define RST_WAKES 0x01
#define RST_TRS 0x02
#define RST_QTS 0x04
#define RST_LURS 0x08
#define RST_CTSS 0x10
#define RST_CACAS 0x20
#define RST_ATSS 0x40
#define RST_ATS 0x80
uint8_t byte2;
#define RST_ITNRS 0x01
#define RST_QTSS 0x02
#define RST_QAES 0x04
uint8_t reserved[2];
};
struct scsi_report_timestamp
{
uint8_t opcode;
uint8_t service_action;
uint8_t reserved[4];
uint8_t length[4];
uint8_t reserved1;
uint8_t control;
};
struct scsi_report_timestamp_data
{
uint8_t length[2];
uint8_t origin;
#define RTS_ORIG_MASK 0x00
#define RTS_ORIG_ZERO 0x00
#define RTS_ORIG_SET 0x02
#define RTS_ORIG_OUTSIDE 0x03
uint8_t reserved;
uint8_t timestamp[6];
uint8_t reserve2[2];
};
struct scsi_receive_copy_status_lid1
{
uint8_t opcode;
uint8_t service_action;
#define RCS_RCS_LID1 0x00
uint8_t list_identifier;
uint8_t reserved[7];
uint8_t length[4];
uint8_t reserved1;
uint8_t control;
};
struct scsi_receive_copy_status_lid1_data
{
uint8_t available_data[4];
uint8_t copy_command_status;
#define RCS_CCS_INPROG 0x00
#define RCS_CCS_COMPLETED 0x01
#define RCS_CCS_ERROR 0x02
uint8_t segments_processed[2];
uint8_t transfer_count_units;
#define RCS_TC_BYTES 0x00
#define RCS_TC_KBYTES 0x01
#define RCS_TC_MBYTES 0x02
#define RCS_TC_GBYTES 0x03
#define RCS_TC_TBYTES 0x04
#define RCS_TC_PBYTES 0x05
#define RCS_TC_EBYTES 0x06
#define RCS_TC_LBAS 0xf1
uint8_t transfer_count[4];
};
struct scsi_receive_copy_failure_details
{
uint8_t opcode;
uint8_t service_action;
#define RCS_RCFD 0x04
uint8_t list_identifier;
uint8_t reserved[7];
uint8_t length[4];
uint8_t reserved1;
uint8_t control;
};
struct scsi_receive_copy_failure_details_data
{
uint8_t available_data[4];
uint8_t reserved[52];
uint8_t copy_command_status;
uint8_t reserved2;
uint8_t sense_data_length[2];
uint8_t sense_data[];
};
struct scsi_receive_copy_status_lid4
{
uint8_t opcode;
uint8_t service_action;
#define RCS_RCS_LID4 0x05
uint8_t list_identifier[4];
uint8_t reserved[4];
uint8_t length[4];
uint8_t reserved1;
uint8_t control;
};
struct scsi_receive_copy_status_lid4_data
{
uint8_t available_data[4];
uint8_t response_to_service_action;
uint8_t copy_command_status;
#define RCS_CCS_COMPLETED_PROD 0x03
#define RCS_CCS_COMPLETED_RESID 0x04
#define RCS_CCS_INPROG_FGBG 0x10
#define RCS_CCS_INPROG_FG 0x11
#define RCS_CCS_INPROG_BG 0x12
#define RCS_CCS_ABORTED 0x60
uint8_t operation_counter[2];
uint8_t estimated_status_update_delay[4];
uint8_t extended_copy_completion_status;
uint8_t length_of_the_sense_data_field;
uint8_t sense_data_length;
uint8_t transfer_count_units;
uint8_t transfer_count[8];
uint8_t segments_processed[2];
uint8_t reserved[6];
uint8_t sense_data[];
};
struct scsi_receive_copy_operating_parameters
{
uint8_t opcode;
uint8_t service_action;
#define RCS_RCOP 0x03
uint8_t reserved[8];
uint8_t length[4];
uint8_t reserved1;
uint8_t control;
};
struct scsi_receive_copy_operating_parameters_data
{
uint8_t length[4];
uint8_t snlid;
#define RCOP_SNLID 0x01
uint8_t reserved[3];
uint8_t maximum_cscd_descriptor_count[2];
uint8_t maximum_segment_descriptor_count[2];
uint8_t maximum_descriptor_list_length[4];
uint8_t maximum_segment_length[4];
uint8_t maximum_inline_data_length[4];
uint8_t held_data_limit[4];
uint8_t maximum_stream_device_transfer_size[4];
uint8_t reserved2[2];
uint8_t total_concurrent_copies[2];
uint8_t maximum_concurrent_copies;
uint8_t data_segment_granularity;
uint8_t inline_data_granularity;
uint8_t held_data_granularity;
uint8_t reserved3[3];
uint8_t implemented_descriptor_list_length;
uint8_t list_of_implemented_descriptor_type_codes[0];
};
struct scsi_extended_copy
{
uint8_t opcode;
uint8_t service_action;
#define EC_EC_LID1 0x00
#define EC_EC_LID4 0x01
uint8_t reserved[8];
uint8_t length[4];
uint8_t reserved1;
uint8_t control;
};
struct scsi_ec_cscd_dtsp
{
uint8_t flags;
#define EC_CSCD_FIXED 0x01
#define EC_CSCD_PAD 0x04
uint8_t block_length[3];
};
struct scsi_ec_cscd
{
uint8_t type_code;
#define EC_CSCD_EXT 0xff
uint8_t luidt_pdt;
#define EC_NUL 0x20
#define EC_LUIDT_MASK 0xc0
#define EC_LUIDT_LUN 0x00
#define EC_LUIDT_PROXY_TOKEN 0x40
uint8_t relative_initiator_port[2];
uint8_t cscd_params[24];
struct scsi_ec_cscd_dtsp dtsp;
};
struct scsi_ec_cscd_id
{
uint8_t type_code;
#define EC_CSCD_ID 0xe4
uint8_t luidt_pdt;
uint8_t relative_initiator_port[2];
uint8_t codeset;
uint8_t id_type;
uint8_t reserved;
uint8_t length;
uint8_t designator[20];
struct scsi_ec_cscd_dtsp dtsp;
};
struct scsi_ec_segment
{
uint8_t type_code;
uint8_t flags;
#define EC_SEG_DC 0x02
#define EC_SEG_CAT 0x01
uint8_t descr_length[2];
uint8_t params[];
};
struct scsi_ec_segment_b2b
{
uint8_t type_code;
#define EC_SEG_B2B 0x02
uint8_t flags;
uint8_t descr_length[2];
uint8_t src_cscd[2];
uint8_t dst_cscd[2];
uint8_t reserved[2];
uint8_t number_of_blocks[2];
uint8_t src_lba[8];
uint8_t dst_lba[8];
};
struct scsi_ec_segment_verify
{
uint8_t type_code;
#define EC_SEG_VERIFY 0x07
uint8_t reserved;
uint8_t descr_length[2];
uint8_t src_cscd[2];
uint8_t reserved2[2];
uint8_t tur;
uint8_t reserved3[3];
};
struct scsi_ec_segment_register_key
{
uint8_t type_code;
#define EC_SEG_REGISTER_KEY 0x14
uint8_t reserved;
uint8_t descr_length[2];
uint8_t reserved2[2];
uint8_t dst_cscd[2];
uint8_t res_key[8];
uint8_t sa_res_key[8];
uint8_t reserved3[4];
};
struct scsi_extended_copy_lid1_data
{
uint8_t list_identifier;
uint8_t flags;
#define EC_PRIORITY 0x07
#define EC_LIST_ID_USAGE_MASK 0x18
#define EC_LIST_ID_USAGE_FULL 0x08
#define EC_LIST_ID_USAGE_NOHOLD 0x10
#define EC_LIST_ID_USAGE_NONE 0x18
#define EC_STR 0x20
uint8_t cscd_list_length[2];
uint8_t reserved[4];
uint8_t segment_list_length[4];
uint8_t inline_data_length[4];
uint8_t data[];
};
struct scsi_extended_copy_lid4_data
{
uint8_t list_format;
#define EC_LIST_FORMAT 0x01
uint8_t flags;
uint8_t header_cscd_list_length[2];
uint8_t reserved[11];
uint8_t flags2;
#define EC_IMMED 0x01
#define EC_G_SENSE 0x02
uint8_t header_cscd_type_code;
uint8_t reserved2[3];
uint8_t list_identifier[4];
uint8_t reserved3[18];
uint8_t cscd_list_length[2];
uint8_t segment_list_length[2];
uint8_t inline_data_length[2];
uint8_t data[];
};
struct scsi_copy_operation_abort
{
uint8_t opcode;
uint8_t service_action;
#define EC_COA 0x1c
uint8_t list_identifier[4];
uint8_t reserved[9];
uint8_t control;
};
struct scsi_populate_token
{
uint8_t opcode;
uint8_t service_action;
#define EC_PT 0x10
uint8_t reserved[4];
uint8_t list_identifier[4];
uint8_t length[4];
uint8_t group_number;
uint8_t control;
};
struct scsi_range_desc
{
uint8_t lba[8];
uint8_t length[4];
uint8_t reserved[4];
};
struct scsi_populate_token_data
{
uint8_t length[2];
uint8_t flags;
#define EC_PT_IMMED 0x01
#define EC_PT_RTV 0x02
uint8_t reserved;
uint8_t inactivity_timeout[4];
uint8_t rod_type[4];
uint8_t reserved2[2];
uint8_t range_descriptor_length[2];
struct scsi_range_desc desc[];
};
struct scsi_write_using_token
{
uint8_t opcode;
uint8_t service_action;
#define EC_WUT 0x11
uint8_t reserved[4];
uint8_t list_identifier[4];
uint8_t length[4];
uint8_t group_number;
uint8_t control;
};
struct scsi_write_using_token_data
{
uint8_t length[2];
uint8_t flags;
#define EC_WUT_IMMED 0x01
#define EC_WUT_DEL_TKN 0x02
uint8_t reserved[5];
uint8_t offset_into_rod[8];
uint8_t rod_token[512];
uint8_t reserved2[6];
uint8_t range_descriptor_length[2];
struct scsi_range_desc desc[];
};
struct scsi_receive_rod_token_information
{
uint8_t opcode;
uint8_t service_action;
#define RCS_RRTI 0x07
uint8_t list_identifier[4];
uint8_t reserved[4];
uint8_t length[4];
uint8_t reserved2;
uint8_t control;
};
struct scsi_token
{
uint8_t type[4];
#define ROD_TYPE_INTERNAL 0x00000000
#define ROD_TYPE_AUR 0x00010000
#define ROD_TYPE_PIT_DEF 0x00800000
#define ROD_TYPE_PIT_VULN 0x00800001
#define ROD_TYPE_PIT_PERS 0x00800002
#define ROD_TYPE_PIT_ANY 0x0080FFFF
#define ROD_TYPE_BLOCK_ZERO 0xFFFF0001
uint8_t reserved[2];
uint8_t length[2];
uint8_t body[0];
};
struct scsi_report_all_rod_tokens
{
uint8_t opcode;
uint8_t service_action;
#define RCS_RART 0x08
uint8_t reserved[8];
uint8_t length[4];
uint8_t reserved2;
uint8_t control;
};
struct scsi_report_all_rod_tokens_data
{
uint8_t available_data[4];
uint8_t reserved[4];
uint8_t rod_management_token_list[];
};
struct ata_pass_16 {
u_int8_t opcode;
u_int8_t protocol;
#define AP_EXTEND 0x01
u_int8_t flags;
#define AP_FLAG_TLEN_NO_DATA (0 << 0)
#define AP_FLAG_TLEN_FEAT (1 << 0)
#define AP_FLAG_TLEN_SECT_CNT (2 << 0)
#define AP_FLAG_TLEN_STPSIU (3 << 0)
#define AP_FLAG_BYT_BLOK_BYTES (0 << 2)
#define AP_FLAG_BYT_BLOK_BLOCKS (1 << 2)
#define AP_FLAG_TDIR_TO_DEV (0 << 3)
#define AP_FLAG_TDIR_FROM_DEV (1 << 3)
#define AP_FLAG_CHK_COND (1 << 5)
u_int8_t features_ext;
u_int8_t features;
u_int8_t sector_count_ext;
u_int8_t sector_count;
u_int8_t lba_low_ext;
u_int8_t lba_low;
u_int8_t lba_mid_ext;
u_int8_t lba_mid;
u_int8_t lba_high_ext;
u_int8_t lba_high;
u_int8_t device;
u_int8_t command;
u_int8_t control;
};
struct ata_pass_32 {
uint8_t opcode;
uint8_t control;
uint8_t reserved1[5];
uint8_t length;
uint8_t service_action[2];
#define ATA_PASS_32_SA 0x1ff0
uint8_t protocol;
uint8_t flags;
uint8_t reserved2[2];
uint8_t lba[6];
uint8_t features[2];
uint8_t count[2];
uint8_t device;
uint8_t command;
uint8_t reserved3;
uint8_t icc;
uint8_t auxiliary[4];
};
#define SC_SCSI_1 0x01
#define SC_SCSI_2 0x03
/*
* Opcodes
*/
#define TEST_UNIT_READY 0x00
#define REQUEST_SENSE 0x03
#define READ_6 0x08
#define WRITE_6 0x0A
#define INQUIRY 0x12
#define MODE_SELECT_6 0x15
#define MODE_SENSE_6 0x1A
#define START_STOP_UNIT 0x1B
#define START_STOP 0x1B
#define RESERVE 0x16
#define RELEASE 0x17
#define RECEIVE_DIAGNOSTIC 0x1C
#define SEND_DIAGNOSTIC 0x1D
#define PREVENT_ALLOW 0x1E
#define READ_CAPACITY 0x25
#define READ_10 0x28
#define WRITE_10 0x2A
#define POSITION_TO_ELEMENT 0x2B
#define WRITE_VERIFY_10 0x2E
#define VERIFY_10 0x2F
#define SYNCHRONIZE_CACHE 0x35
#define READ_DEFECT_DATA_10 0x37
#define WRITE_BUFFER 0x3B
#define READ_BUFFER 0x3C
#define CHANGE_DEFINITION 0x40
#define WRITE_SAME_10 0x41
#define UNMAP 0x42
#define LOG_SELECT 0x4C
#define LOG_SENSE 0x4D
#define MODE_SELECT_10 0x55
#define RESERVE_10 0x56
#define RELEASE_10 0x57
#define MODE_SENSE_10 0x5A
#define PERSISTENT_RES_IN 0x5E
#define PERSISTENT_RES_OUT 0x5F
#define EXTENDED_CDB 0x7E
#define VARIABLE_LEN_CDB 0x7F
#define EXTENDED_COPY 0x83
#define RECEIVE_COPY_STATUS 0x84
#define ATA_PASS_16 0x85
#define READ_16 0x88
#define COMPARE_AND_WRITE 0x89
#define WRITE_16 0x8A
#define READ_ATTRIBUTE 0x8C
#define WRITE_ATTRIBUTE 0x8D
#define WRITE_VERIFY_16 0x8E
#define VERIFY_16 0x8F
#define SYNCHRONIZE_CACHE_16 0x91
#define WRITE_SAME_16 0x93
#define READ_BUFFER_16 0x9B
#define WRITE_ATOMIC_16 0x9C
#define SERVICE_ACTION_IN 0x9E
#define REPORT_LUNS 0xA0
#define ATA_PASS_12 0xA1
#define SECURITY_PROTOCOL_IN 0xA2
#define MAINTENANCE_IN 0xA3
#define MAINTENANCE_OUT 0xA4
#define MOVE_MEDIUM 0xA5
#define READ_12 0xA8
#define WRITE_12 0xAA
#define WRITE_VERIFY_12 0xAE
#define VERIFY_12 0xAF
#define SECURITY_PROTOCOL_OUT 0xB5
#define READ_ELEMENT_STATUS 0xB8
#define READ_CD 0xBE
/* Maintenance In Service Action Codes */
#define REPORT_IDENTIFYING_INFRMATION 0x05
#define REPORT_TARGET_PORT_GROUPS 0x0A
#define REPORT_ALIASES 0x0B
#define REPORT_SUPPORTED_OPERATION_CODES 0x0C
#define REPORT_SUPPORTED_TASK_MANAGEMENT_FUNCTIONS 0x0D
#define REPORT_PRIORITY 0x0E
#define REPORT_TIMESTAMP 0x0F
#define MANAGEMENT_PROTOCOL_IN 0x10
/* Maintenance Out Service Action Codes */
#define SET_IDENTIFY_INFORMATION 0x06
#define SET_TARGET_PORT_GROUPS 0x0A
#define CHANGE_ALIASES 0x0B
#define SET_PRIORITY 0x0E
#define SET_TIMESTAMP 0x0F
#define MANGAEMENT_PROTOCOL_OUT 0x10
/*
* Device Types
*/
#define T_DIRECT 0x00
#define T_SEQUENTIAL 0x01
#define T_PRINTER 0x02
#define T_PROCESSOR 0x03
#define T_WORM 0x04
#define T_CDROM 0x05
#define T_SCANNER 0x06
#define T_OPTICAL 0x07
#define T_CHANGER 0x08
#define T_COMM 0x09
#define T_ASC0 0x0a
#define T_ASC1 0x0b
#define T_STORARRAY 0x0c
#define T_ENCLOSURE 0x0d
#define T_RBC 0x0e
#define T_OCRW 0x0f
#define T_OSD 0x11
#define T_ADC 0x12
#define T_ZBC_HM 0x14
#define T_NODEVICE 0x1f
#define T_ANY 0xff /* Used in Quirk table matches */
#define T_REMOV 1
#define T_FIXED 0
/*
* This length is the initial inquiry length used by the probe code, as
* well as the length necessary for scsi_print_inquiry() to function
* correctly. If either use requires a different length in the future,
* the two values should be de-coupled.
*/
#define SHORT_INQUIRY_LENGTH 36
struct scsi_inquiry_data
{
u_int8_t device;
#define SID_TYPE(inq_data) ((inq_data)->device & 0x1f)
#define SID_QUAL(inq_data) (((inq_data)->device & 0xE0) >> 5)
#define SID_QUAL_LU_CONNECTED 0x00 /*
* The specified peripheral device
* type is currently connected to
* logical unit. If the target cannot
* determine whether or not a physical
* device is currently connected, it
* shall also use this peripheral
* qualifier when returning the INQUIRY
* data. This peripheral qualifier
* does not mean that the device is
* ready for access by the initiator.
*/
#define SID_QUAL_LU_OFFLINE 0x01 /*
* The target is capable of supporting
* the specified peripheral device type
* on this logical unit; however, the
* physical device is not currently
* connected to this logical unit.
*/
#define SID_QUAL_RSVD 0x02
#define SID_QUAL_BAD_LU 0x03 /*
* The target is not capable of
* supporting a physical device on
* this logical unit. For this
* peripheral qualifier the peripheral
* device type shall be set to 1Fh to
* provide compatibility with previous
* versions of SCSI. All other
* peripheral device type values are
* reserved for this peripheral
* qualifier.
*/
#define SID_QUAL_IS_VENDOR_UNIQUE(inq_data) ((SID_QUAL(inq_data) & 0x04) != 0)
u_int8_t dev_qual2;
#define SID_QUAL2 0x7F
#define SID_LU_CONG 0x40
#define SID_RMB 0x80
#define SID_IS_REMOVABLE(inq_data) (((inq_data)->dev_qual2 & SID_RMB) != 0)
u_int8_t version;
#define SID_ANSI_REV(inq_data) ((inq_data)->version & 0x07)
#define SCSI_REV_0 0
#define SCSI_REV_CCS 1
#define SCSI_REV_2 2
#define SCSI_REV_SPC 3
#define SCSI_REV_SPC2 4
#define SCSI_REV_SPC3 5
#define SCSI_REV_SPC4 6
#define SID_ECMA 0x38
#define SID_ISO 0xC0
u_int8_t response_format;
#define SID_AENC 0x80
#define SID_TrmIOP 0x40
#define SID_NormACA 0x20
#define SID_HiSup 0x10
u_int8_t additional_length;
#define SID_ADDITIONAL_LENGTH(iqd) \
((iqd)->additional_length + \
__offsetof(struct scsi_inquiry_data, additional_length) + 1)
u_int8_t spc3_flags;
#define SPC3_SID_PROTECT 0x01
#define SPC3_SID_3PC 0x08
#define SPC3_SID_TPGS_MASK 0x30
#define SPC3_SID_TPGS_IMPLICIT 0x10
#define SPC3_SID_TPGS_EXPLICIT 0x20
#define SPC3_SID_ACC 0x40
#define SPC3_SID_SCCS 0x80
u_int8_t spc2_flags;
#define SPC2_SID_ADDR16 0x01
#define SPC2_SID_MChngr 0x08
#define SPC2_SID_MultiP 0x10
#define SPC2_SID_EncServ 0x40
#define SPC2_SID_BQueue 0x80
#define INQ_DATA_TQ_ENABLED(iqd) \
((SID_ANSI_REV(iqd) < SCSI_REV_SPC2)? ((iqd)->flags & SID_CmdQue) : \
(((iqd)->flags & SID_CmdQue) && !((iqd)->spc2_flags & SPC2_SID_BQueue)) || \
(!((iqd)->flags & SID_CmdQue) && ((iqd)->spc2_flags & SPC2_SID_BQueue)))
u_int8_t flags;
#define SID_SftRe 0x01
#define SID_CmdQue 0x02
#define SID_Linked 0x08
#define SID_Sync 0x10
#define SID_WBus16 0x20
#define SID_WBus32 0x40
#define SID_RelAdr 0x80
#define SID_VENDOR_SIZE 8
char vendor[SID_VENDOR_SIZE];
#define SID_PRODUCT_SIZE 16
char product[SID_PRODUCT_SIZE];
#define SID_REVISION_SIZE 4
char revision[SID_REVISION_SIZE];
/*
* The following fields were taken from SCSI Primary Commands - 2
* (SPC-2) Revision 14, Dated 11 November 1999
*/
#define SID_VENDOR_SPECIFIC_0_SIZE 20
u_int8_t vendor_specific0[SID_VENDOR_SPECIFIC_0_SIZE];
/*
* An extension of SCSI Parallel Specific Values
*/
#define SID_SPI_IUS 0x01
#define SID_SPI_QAS 0x02
#define SID_SPI_CLOCK_ST 0x00
#define SID_SPI_CLOCK_DT 0x04
#define SID_SPI_CLOCK_DT_ST 0x0C
#define SID_SPI_MASK 0x0F
u_int8_t spi3data;
u_int8_t reserved2;
/*
* Version Descriptors, stored 2 byte values.
*/
u_int8_t version1[2];
u_int8_t version2[2];
u_int8_t version3[2];
u_int8_t version4[2];
u_int8_t version5[2];
u_int8_t version6[2];
u_int8_t version7[2];
u_int8_t version8[2];
u_int8_t reserved3[22];
#define SID_VENDOR_SPECIFIC_1_SIZE 160
u_int8_t vendor_specific1[SID_VENDOR_SPECIFIC_1_SIZE];
};
/*
* This structure is more suited to initiator operation, because the
* maximum number of supported pages is already allocated.
*/
struct scsi_vpd_supported_page_list
{
u_int8_t device;
u_int8_t page_code;
#define SVPD_SUPPORTED_PAGE_LIST 0x00
#define SVPD_SUPPORTED_PAGES_HDR_LEN 4
u_int8_t reserved;
u_int8_t length; /* number of VPD entries */
#define SVPD_SUPPORTED_PAGES_SIZE 251
u_int8_t list[SVPD_SUPPORTED_PAGES_SIZE];
};
/*
* This structure is more suited to target operation, because the
* number of supported pages is left to the user to allocate.
*/
struct scsi_vpd_supported_pages
{
u_int8_t device;
u_int8_t page_code;
u_int8_t reserved;
#define SVPD_SUPPORTED_PAGES 0x00
u_int8_t length;
u_int8_t page_list[0];
};
struct scsi_vpd_unit_serial_number
{
u_int8_t device;
u_int8_t page_code;
#define SVPD_UNIT_SERIAL_NUMBER 0x80
u_int8_t reserved;
u_int8_t length; /* serial number length */
#define SVPD_SERIAL_NUM_SIZE 251
u_int8_t serial_num[SVPD_SERIAL_NUM_SIZE];
};
struct scsi_vpd_device_id
{
u_int8_t device;
u_int8_t page_code;
#define SVPD_DEVICE_ID 0x83
#define SVPD_DEVICE_ID_MAX_SIZE 252
#define SVPD_DEVICE_ID_HDR_LEN \
__offsetof(struct scsi_vpd_device_id, desc_list)
u_int8_t length[2];
u_int8_t desc_list[];
};
struct scsi_vpd_id_descriptor
{
u_int8_t proto_codeset;
/*
* See the SCSI_PROTO definitions above for the protocols.
*/
#define SVPD_ID_PROTO_SHIFT 4
#define SVPD_ID_CODESET_BINARY 0x01
#define SVPD_ID_CODESET_ASCII 0x02
#define SVPD_ID_CODESET_UTF8 0x03
#define SVPD_ID_CODESET_MASK 0x0f
u_int8_t id_type;
#define SVPD_ID_PIV 0x80
#define SVPD_ID_ASSOC_LUN 0x00
#define SVPD_ID_ASSOC_PORT 0x10
#define SVPD_ID_ASSOC_TARGET 0x20
#define SVPD_ID_ASSOC_MASK 0x30
#define SVPD_ID_TYPE_VENDOR 0x00
#define SVPD_ID_TYPE_T10 0x01
#define SVPD_ID_TYPE_EUI64 0x02
#define SVPD_ID_TYPE_NAA 0x03
#define SVPD_ID_TYPE_RELTARG 0x04
#define SVPD_ID_TYPE_TPORTGRP 0x05
#define SVPD_ID_TYPE_LUNGRP 0x06
#define SVPD_ID_TYPE_MD5_LUN_ID 0x07
#define SVPD_ID_TYPE_SCSI_NAME 0x08
#define SVPD_ID_TYPE_PROTO 0x09
#define SVPD_ID_TYPE_UUID 0x0a
#define SVPD_ID_TYPE_MASK 0x0f
u_int8_t reserved;
u_int8_t length;
#define SVPD_DEVICE_ID_DESC_HDR_LEN \
__offsetof(struct scsi_vpd_id_descriptor, identifier)
u_int8_t identifier[];
};
struct scsi_vpd_id_t10
{
u_int8_t vendor[8];
u_int8_t vendor_spec_id[0];
};
struct scsi_vpd_id_eui64
{
u_int8_t ieee_company_id[3];
u_int8_t extension_id[5];
};
struct scsi_vpd_id_naa_basic
{
uint8_t naa;
/* big endian, packed:
uint8_t naa : 4;
uint8_t naa_desig : 4;
*/
#define SVPD_ID_NAA_NAA_SHIFT 4
#define SVPD_ID_NAA_IEEE_EXT 0x02
#define SVPD_ID_NAA_LOCAL_REG 0x03
#define SVPD_ID_NAA_IEEE_REG 0x05
#define SVPD_ID_NAA_IEEE_REG_EXT 0x06
uint8_t naa_data[];
};
struct scsi_vpd_id_naa_ieee_extended_id
{
uint8_t naa;
uint8_t vendor_specific_id_a;
uint8_t ieee_company_id[3];
uint8_t vendor_specific_id_b[4];
};
struct scsi_vpd_id_naa_local_reg
{
uint8_t naa;
uint8_t local_value[7];
};
struct scsi_vpd_id_naa_ieee_reg
{
uint8_t naa;
uint8_t reg_value[7];
/* big endian, packed:
uint8_t naa_basic : 4;
uint8_t ieee_company_id_0 : 4;
uint8_t ieee_company_id_1[2];
uint8_t ieee_company_id_2 : 4;
uint8_t vendor_specific_id_0 : 4;
uint8_t vendor_specific_id_1[4];
*/
};
struct scsi_vpd_id_naa_ieee_reg_extended
{
uint8_t naa;
uint8_t reg_value[15];
/* big endian, packed:
uint8_t naa_basic : 4;
uint8_t ieee_company_id_0 : 4;
uint8_t ieee_company_id_1[2];
uint8_t ieee_company_id_2 : 4;
uint8_t vendor_specific_id_0 : 4;
uint8_t vendor_specific_id_1[4];
uint8_t vendor_specific_id_ext[8];
*/
};
struct scsi_vpd_id_rel_trgt_port_id
{
uint8_t obsolete[2];
uint8_t rel_trgt_port_id[2];
};
struct scsi_vpd_id_trgt_port_grp_id
{
uint8_t reserved[2];
uint8_t trgt_port_grp[2];
};
struct scsi_vpd_id_lun_grp_id
{
uint8_t reserved[2];
uint8_t log_unit_grp[2];
};
struct scsi_vpd_id_md5_lun_id
{
uint8_t lun_id[16];
};
struct scsi_vpd_id_scsi_name
{
uint8_t name_string[256];
};
struct scsi_service_action_in
{
uint8_t opcode;
uint8_t service_action;
uint8_t action_dependent[13];
uint8_t control;
};
struct scsi_vpd_extended_inquiry_data
{
uint8_t device;
uint8_t page_code;
#define SVPD_EXTENDED_INQUIRY_DATA 0x86
uint8_t page_length[2];
uint8_t flags1;
/* These values are for direct access devices */
#define SVPD_EID_AM_MASK 0xC0
#define SVPD_EID_AM_DEFER 0x80
#define SVPD_EID_AM_IMMED 0x40
#define SVPD_EID_AM_UNDEFINED 0x00
#define SVPD_EID_AM_RESERVED 0xc0
#define SVPD_EID_SPT 0x38
#define SVPD_EID_SPT_1 0x00
#define SVPD_EID_SPT_12 0x08
#define SVPD_EID_SPT_2 0x10
#define SVPD_EID_SPT_13 0x18
#define SVPD_EID_SPT_3 0x20
#define SVPD_EID_SPT_23 0x28
#define SVPD_EID_SPT_123 0x38
/* These values are for sequential access devices */
#define SVPD_EID_SA_SPT_LBP 0x08
#define SVPD_EID_GRD_CHK 0x04
#define SVPD_EID_APP_CHK 0x02
#define SVPD_EID_REF_CHK 0x01
uint8_t flags2;
#define SVPD_EID_UASK_SUP 0x20
#define SVPD_EID_GROUP_SUP 0x10
#define SVPD_EID_PRIOR_SUP 0x08
#define SVPD_EID_HEADSUP 0x04
#define SVPD_EID_ORDSUP 0x02
#define SVPD_EID_SIMPSUP 0x01
uint8_t flags3;
#define SVPD_EID_WU_SUP 0x08
#define SVPD_EID_CRD_SUP 0x04
#define SVPD_EID_NV_SUP 0x02
#define SVPD_EID_V_SUP 0x01
uint8_t flags4;
#define SVPD_EID_P_I_I_SUP 0x10
#define SVPD_EID_LUICLT 0x01
uint8_t flags5;
#define SVPD_EID_R_SUP 0x10
#define SVPD_EID_CBCS 0x01
uint8_t flags6;
#define SVPD_EID_MULTI_I_T_FW 0x0F
#define SVPD_EID_MC_VENDOR_SPEC 0x00
#define SVPD_EID_MC_MODE_1 0x01
#define SVPD_EID_MC_MODE_2 0x02
#define SVPD_EID_MC_MODE_3 0x03
uint8_t est[2];
uint8_t flags7;
#define SVPD_EID_POA_SUP 0x80
#define SVPD_EID_HRA_SUP 0x80
#define SVPD_EID_VSA_SUP 0x80
uint8_t max_sense_length;
uint8_t reserved2[50];
};
struct scsi_vpd_mode_page_policy_descr
{
uint8_t page_code;
uint8_t subpage_code;
uint8_t policy;
#define SVPD_MPP_SHARED 0x00
#define SVPD_MPP_PORT 0x01
#define SVPD_MPP_I_T 0x03
#define SVPD_MPP_MLUS 0x80
uint8_t reserved;
};
struct scsi_vpd_mode_page_policy
{
uint8_t device;
uint8_t page_code;
#define SVPD_MODE_PAGE_POLICY 0x87
uint8_t page_length[2];
struct scsi_vpd_mode_page_policy_descr descr[0];
};
struct scsi_diag_page {
uint8_t page_code;
uint8_t page_specific_flags;
uint8_t length[2];
uint8_t params[0];
};
struct scsi_vpd_port_designation
{
uint8_t reserved[2];
uint8_t relative_port_id[2];
uint8_t reserved2[2];
uint8_t initiator_transportid_length[2];
uint8_t initiator_transportid[0];
};
struct scsi_vpd_port_designation_cont
{
uint8_t reserved[2];
uint8_t target_port_descriptors_length[2];
struct scsi_vpd_id_descriptor target_port_descriptors[0];
};
struct scsi_vpd_scsi_ports
{
u_int8_t device;
u_int8_t page_code;
#define SVPD_SCSI_PORTS 0x88
u_int8_t page_length[2];
struct scsi_vpd_port_designation design[];
};
/*
* ATA Information VPD Page based on
* T10/2126-D Revision 04
*/
#define SVPD_ATA_INFORMATION 0x89
struct scsi_vpd_tpc_descriptor
{
uint8_t desc_type[2];
uint8_t desc_length[2];
uint8_t parameters[];
};
struct scsi_vpd_tpc_descriptor_bdrl
{
uint8_t desc_type[2];
#define SVPD_TPC_BDRL 0x0000
uint8_t desc_length[2];
uint8_t vendor_specific[6];
uint8_t maximum_ranges[2];
uint8_t maximum_inactivity_timeout[4];
uint8_t default_inactivity_timeout[4];
uint8_t maximum_token_transfer_size[8];
uint8_t optimal_transfer_count[8];
};
struct scsi_vpd_tpc_descriptor_sc_descr
{
uint8_t opcode;
uint8_t sa_length;
uint8_t supported_service_actions[0];
};
struct scsi_vpd_tpc_descriptor_sc
{
uint8_t desc_type[2];
#define SVPD_TPC_SC 0x0001
uint8_t desc_length[2];
uint8_t list_length;
struct scsi_vpd_tpc_descriptor_sc_descr descr[];
};
struct scsi_vpd_tpc_descriptor_pd
{
uint8_t desc_type[2];
#define SVPD_TPC_PD 0x0004
uint8_t desc_length[2];
uint8_t reserved[4];
uint8_t maximum_cscd_descriptor_count[2];
uint8_t maximum_segment_descriptor_count[2];
uint8_t maximum_descriptor_list_length[4];
uint8_t maximum_inline_data_length[4];
uint8_t reserved2[12];
};
struct scsi_vpd_tpc_descriptor_sd
{
uint8_t desc_type[2];
#define SVPD_TPC_SD 0x0008
uint8_t desc_length[2];
uint8_t list_length;
uint8_t supported_descriptor_codes[];
};
struct scsi_vpd_tpc_descriptor_sdid
{
uint8_t desc_type[2];
#define SVPD_TPC_SDID 0x000C
uint8_t desc_length[2];
uint8_t list_length[2];
uint8_t supported_descriptor_ids[];
};
struct scsi_vpd_tpc_descriptor_rtf_block
{
uint8_t type_format;
#define SVPD_TPC_RTF_BLOCK 0x00
uint8_t reserved;
uint8_t desc_length[2];
uint8_t reserved2[2];
uint8_t optimal_length_granularity[2];
uint8_t maximum_bytes[8];
uint8_t optimal_bytes[8];
uint8_t optimal_bytes_to_token_per_segment[8];
uint8_t optimal_bytes_from_token_per_segment[8];
uint8_t reserved3[8];
};
struct scsi_vpd_tpc_descriptor_rtf
{
uint8_t desc_type[2];
#define SVPD_TPC_RTF 0x0106
uint8_t desc_length[2];
uint8_t remote_tokens;
uint8_t reserved[11];
uint8_t minimum_token_lifetime[4];
uint8_t maximum_token_lifetime[4];
uint8_t maximum_token_inactivity_timeout[4];
uint8_t reserved2[18];
uint8_t type_specific_features_length[2];
uint8_t type_specific_features[0];
};
struct scsi_vpd_tpc_descriptor_srtd
{
uint8_t rod_type[4];
uint8_t flags;
#define SVPD_TPC_SRTD_TOUT 0x01
#define SVPD_TPC_SRTD_TIN 0x02
#define SVPD_TPC_SRTD_ECPY 0x80
uint8_t reserved;
uint8_t preference_indicator[2];
uint8_t reserved2[56];
};
struct scsi_vpd_tpc_descriptor_srt
{
uint8_t desc_type[2];
#define SVPD_TPC_SRT 0x0108
uint8_t desc_length[2];
uint8_t reserved[2];
uint8_t rod_type_descriptors_length[2];
uint8_t rod_type_descriptors[0];
};
struct scsi_vpd_tpc_descriptor_gco
{
uint8_t desc_type[2];
#define SVPD_TPC_GCO 0x8001
uint8_t desc_length[2];
uint8_t total_concurrent_copies[4];
uint8_t maximum_identified_concurrent_copies[4];
uint8_t maximum_segment_length[4];
uint8_t data_segment_granularity;
uint8_t inline_data_granularity;
uint8_t reserved[18];
};
struct scsi_vpd_tpc
{
uint8_t device;
uint8_t page_code;
#define SVPD_SCSI_TPC 0x8F
uint8_t page_length[2];
struct scsi_vpd_tpc_descriptor descr[];
};
/*
* Block Device Characteristics VPD Page based on
* T10/1799-D Revision 31
*/
struct scsi_vpd_block_characteristics
{
u_int8_t device;
u_int8_t page_code;
#define SVPD_BDC 0xB1
u_int8_t page_length[2];
u_int8_t medium_rotation_rate[2];
#define SVPD_BDC_RATE_NOT_REPORTED 0x00
#define SVPD_BDC_RATE_NON_ROTATING 0x01
u_int8_t reserved1;
u_int8_t nominal_form_factor;
#define SVPD_BDC_FORM_NOT_REPORTED 0x00
#define SVPD_BDC_FORM_5_25INCH 0x01
#define SVPD_BDC_FORM_3_5INCH 0x02
#define SVPD_BDC_FORM_2_5INCH 0x03
#define SVPD_BDC_FORM_1_5INCH 0x04
#define SVPD_BDC_FORM_LESSTHAN_1_5INCH 0x05
u_int8_t reserved2[56];
};
/*
* Block Device Characteristics VPD Page
*/
struct scsi_vpd_block_device_characteristics
{
uint8_t device;
uint8_t page_code;
#define SVPD_BDC 0xB1
uint8_t page_length[2];
uint8_t medium_rotation_rate[2];
#define SVPD_NOT_REPORTED 0x0000
#define SVPD_NON_ROTATING 0x0001
uint8_t product_type;
uint8_t wab_wac_ff;
uint8_t flags;
#define SVPD_VBULS 0x01
#define SVPD_FUAB 0x02
#define SVPD_ZBC_NR 0x00 /* Not Reported */
#define SVPD_HAW_ZBC 0x10 /* Host Aware */
#define SVPD_DM_ZBC 0x20 /* Drive Managed */
#define SVPD_ZBC_MASK 0x30 /* Zoned mask */
uint8_t reserved[55];
};
#define SBDC_IS_PRESENT(bdc, length, field) \
((length >= offsetof(struct scsi_vpd_block_device_characteristics, \
field) + sizeof(bdc->field)) ? 1 : 0)
/*
* Logical Block Provisioning VPD Page based on
* T10/1799-D Revision 31
*/
struct scsi_vpd_logical_block_prov
{
u_int8_t device;
u_int8_t page_code;
#define SVPD_LBP 0xB2
u_int8_t page_length[2];
#define SVPD_LBP_PL_BASIC 0x04
u_int8_t threshold_exponent;
u_int8_t flags;
#define SVPD_LBP_UNMAP 0x80
#define SVPD_LBP_WS16 0x40
#define SVPD_LBP_WS10 0x20
#define SVPD_LBP_RZ 0x04
#define SVPD_LBP_ANC_SUP 0x02
#define SVPD_LBP_DP 0x01
u_int8_t prov_type;
#define SVPD_LBP_RESOURCE 0x01
#define SVPD_LBP_THIN 0x02
u_int8_t reserved;
/*
* Provisioning Group Descriptor can be here if SVPD_LBP_DP is set
* Its size can be determined from page_length - 4
*/
};
/*
* Block Limits VDP Page based on SBC-4 Revision 2
*/
struct scsi_vpd_block_limits
{
u_int8_t device;
u_int8_t page_code;
#define SVPD_BLOCK_LIMITS 0xB0
u_int8_t page_length[2];
#define SVPD_BL_PL_BASIC 0x10
#define SVPD_BL_PL_TP 0x3C
u_int8_t reserved1;
u_int8_t max_cmp_write_len;
u_int8_t opt_txfer_len_grain[2];
u_int8_t max_txfer_len[4];
u_int8_t opt_txfer_len[4];
u_int8_t max_prefetch[4];
u_int8_t max_unmap_lba_cnt[4];
u_int8_t max_unmap_blk_cnt[4];
u_int8_t opt_unmap_grain[4];
u_int8_t unmap_grain_align[4];
u_int8_t max_write_same_length[8];
u_int8_t max_atomic_transfer_length[4];
u_int8_t atomic_alignment[4];
u_int8_t atomic_transfer_length_granularity[4];
u_int8_t max_atomic_transfer_length_with_atomic_boundary[4];
u_int8_t max_atomic_boundary_size[4];
};
/*
* Zoned Block Device Characacteristics VPD page.
* From ZBC-r04, dated August 12, 2015.
*/
struct scsi_vpd_zoned_bdc {
uint8_t device;
uint8_t page_code;
#define SVPD_ZONED_BDC 0xB6
uint8_t page_length[2];
#define SVPD_ZBDC_PL 0x3C
uint8_t flags;
#define SVPD_ZBDC_URSWRZ 0x01
uint8_t reserved1[3];
uint8_t optimal_seq_zones[4];
#define SVPD_ZBDC_OPT_SEQ_NR 0xffffffff
uint8_t optimal_nonseq_zones[4];
#define SVPD_ZBDC_OPT_NONSEQ_NR 0xffffffff
uint8_t max_seq_req_zones[4];
#define SVPD_ZBDC_MAX_SEQ_UNLIMITED 0xffffffff
uint8_t reserved2[44];
};
struct scsi_read_capacity
{
u_int8_t opcode;
u_int8_t byte2;
#define SRC_RELADR 0x01
u_int8_t addr[4];
u_int8_t unused[2];
u_int8_t pmi;
#define SRC_PMI 0x01
u_int8_t control;
};
struct scsi_read_capacity_16
{
uint8_t opcode;
#define SRC16_SERVICE_ACTION 0x10
uint8_t service_action;
uint8_t addr[8];
uint8_t alloc_len[4];
#define SRC16_PMI 0x01
#define SRC16_RELADR 0x02
uint8_t reladr;
uint8_t control;
};
struct scsi_read_capacity_data
{
u_int8_t addr[4];
u_int8_t length[4];
};
struct scsi_read_capacity_data_long
{
uint8_t addr[8];
uint8_t length[4];
#define SRC16_PROT_EN 0x01
#define SRC16_P_TYPE 0x0e
#define SRC16_PTYPE_1 0x00
#define SRC16_PTYPE_2 0x02
#define SRC16_PTYPE_3 0x04
uint8_t prot;
#define SRC16_LBPPBE 0x0f
#define SRC16_PI_EXPONENT 0xf0
#define SRC16_PI_EXPONENT_SHIFT 4
uint8_t prot_lbppbe;
#define SRC16_LALBA 0x3f
#define SRC16_LBPRZ 0x40
#define SRC16_LBPME 0x80
/*
* Alternate versions of these macros that are intended for use on a 16-bit
* version of the lalba_lbp field instead of the array of 2 8 bit numbers.
*/
#define SRC16_LALBA_A 0x3fff
#define SRC16_LBPRZ_A 0x4000
#define SRC16_LBPME_A 0x8000
uint8_t lalba_lbp[2];
uint8_t reserved[16];
};
struct scsi_get_lba_status
{
uint8_t opcode;
#define SGLS_SERVICE_ACTION 0x12
uint8_t service_action;
uint8_t addr[8];
uint8_t alloc_len[4];
uint8_t reserved;
uint8_t control;
};
struct scsi_get_lba_status_data_descr
{
uint8_t addr[8];
uint8_t length[4];
uint8_t status;
uint8_t reserved[3];
};
struct scsi_get_lba_status_data
{
uint8_t length[4];
uint8_t reserved[4];
struct scsi_get_lba_status_data_descr descr[];
};
struct scsi_report_luns
{
uint8_t opcode;
uint8_t reserved1;
#define RPL_REPORT_DEFAULT 0x00
#define RPL_REPORT_WELLKNOWN 0x01
#define RPL_REPORT_ALL 0x02
#define RPL_REPORT_ADMIN 0x10
#define RPL_REPORT_NONSUBSID 0x11
#define RPL_REPORT_CONGLOM 0x12
uint8_t select_report;
uint8_t reserved2[3];
uint8_t length[4];
uint8_t reserved3;
uint8_t control;
};
struct scsi_report_luns_lundata {
uint8_t lundata[8];
#define RPL_LUNDATA_PERIPH_BUS_MASK 0x3f
#define RPL_LUNDATA_FLAT_LUN_MASK 0x3f
#define RPL_LUNDATA_FLAT_LUN_BITS 0x06
#define RPL_LUNDATA_LUN_TARG_MASK 0x3f
#define RPL_LUNDATA_LUN_BUS_MASK 0xe0
#define RPL_LUNDATA_LUN_LUN_MASK 0x1f
#define RPL_LUNDATA_EXT_LEN_MASK 0x30
#define RPL_LUNDATA_EXT_EAM_MASK 0x0f
#define RPL_LUNDATA_EXT_EAM_WK 0x01
#define RPL_LUNDATA_EXT_EAM_NOT_SPEC 0x0f
#define RPL_LUNDATA_ATYP_MASK 0xc0 /* MBZ for type 0 lun */
#define RPL_LUNDATA_ATYP_PERIPH 0x00
#define RPL_LUNDATA_ATYP_FLAT 0x40
#define RPL_LUNDATA_ATYP_LUN 0x80
#define RPL_LUNDATA_ATYP_EXTLUN 0xc0
};
struct scsi_report_luns_data {
u_int8_t length[4]; /* length of LUN inventory, in bytes */
u_int8_t reserved[4]; /* unused */
/*
* LUN inventory- we only support the type zero form for now.
*/
struct scsi_report_luns_lundata luns[0];
};
struct scsi_target_group
{
uint8_t opcode;
uint8_t service_action;
#define STG_PDF_MASK 0xe0
#define STG_PDF_LENGTH 0x00
#define STG_PDF_EXTENDED 0x20
uint8_t reserved1[4];
uint8_t length[4];
uint8_t reserved2;
uint8_t control;
};
struct scsi_target_port_descriptor {
uint8_t reserved[2];
uint8_t relative_target_port_identifier[2];
uint8_t desc_list[];
};
struct scsi_target_port_group_descriptor {
uint8_t pref_state;
#define TPG_PRIMARY 0x80
#define TPG_ASYMMETRIC_ACCESS_STATE_MASK 0xf
#define TPG_ASYMMETRIC_ACCESS_OPTIMIZED 0x0
#define TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED 0x1
#define TPG_ASYMMETRIC_ACCESS_STANDBY 0x2
#define TPG_ASYMMETRIC_ACCESS_UNAVAILABLE 0x3
#define TPG_ASYMMETRIC_ACCESS_LBA_DEPENDENT 0x4
#define TPG_ASYMMETRIC_ACCESS_OFFLINE 0xE
#define TPG_ASYMMETRIC_ACCESS_TRANSITIONING 0xF
uint8_t support;
#define TPG_AO_SUP 0x01
#define TPG_AN_SUP 0x02
#define TPG_S_SUP 0x04
#define TPG_U_SUP 0x08
#define TPG_LBD_SUP 0x10
#define TPG_O_SUP 0x40
#define TPG_T_SUP 0x80
uint8_t target_port_group[2];
uint8_t reserved;
uint8_t status;
#define TPG_UNAVLBL 0
#define TPG_SET_BY_STPG 0x01
#define TPG_IMPLICIT 0x02
uint8_t vendor_specific;
uint8_t target_port_count;
struct scsi_target_port_descriptor descriptors[];
};
struct scsi_target_group_data {
uint8_t length[4]; /* length of returned data, in bytes */
struct scsi_target_port_group_descriptor groups[];
};
struct scsi_target_group_data_extended {
uint8_t length[4]; /* length of returned data, in bytes */
uint8_t format_type; /* STG_PDF_LENGTH or STG_PDF_EXTENDED */
uint8_t implicit_transition_time;
uint8_t reserved[2];
struct scsi_target_port_group_descriptor groups[];
};
struct scsi_security_protocol_in
{
uint8_t opcode;
uint8_t security_protocol;
#define SPI_PROT_INFORMATION 0x00
#define SPI_PROT_CBCS 0x07
#define SPI_PROT_TAPE_DATA_ENC 0x20
#define SPI_PROT_DATA_ENC_CONFIG 0x21
#define SPI_PROT_SA_CREATE_CAP 0x40
#define SPI_PROT_IKEV2_SCSI 0x41
#define SPI_PROT_JEDEC_UFS 0xEC
#define SPI_PROT_SDCARD_TFSSS 0xED
#define SPI_PROT_AUTH_HOST_TRANSIENT 0xEE
#define SPI_PROT_ATA_DEVICE_PASSWORD 0xEF
uint8_t security_protocol_specific[2];
uint8_t byte4;
#define SPI_INC_512 0x80
uint8_t reserved1;
uint8_t length[4];
uint8_t reserved2;
uint8_t control;
};
struct scsi_security_protocol_out
{
uint8_t opcode;
uint8_t security_protocol;
uint8_t security_protocol_specific[2];
uint8_t byte4;
#define SPO_INC_512 0x80
uint8_t reserved1;
uint8_t length[4];
uint8_t reserved2;
uint8_t control;
};
typedef enum {
SSD_TYPE_NONE,
SSD_TYPE_FIXED,
SSD_TYPE_DESC
} scsi_sense_data_type;
typedef enum {
SSD_ELEM_NONE,
SSD_ELEM_SKIP,
SSD_ELEM_DESC,
SSD_ELEM_SKS,
SSD_ELEM_COMMAND,
SSD_ELEM_INFO,
SSD_ELEM_FRU,
SSD_ELEM_STREAM,
SSD_ELEM_MAX
} scsi_sense_elem_type;
struct scsi_sense_data
{
uint8_t error_code;
/*
* SPC-4 says that the maximum length of sense data is 252 bytes.
* So this structure is exactly 252 bytes log.
*/
#define SSD_FULL_SIZE 252
uint8_t sense_buf[SSD_FULL_SIZE - 1];
/*
* XXX KDM is this still a reasonable minimum size?
*/
#define SSD_MIN_SIZE 18
/*
* Maximum value for the extra_len field in the sense data.
*/
#define SSD_EXTRA_MAX 244
};
/*
* Fixed format sense data.
*/
struct scsi_sense_data_fixed
{
u_int8_t error_code;
#define SSD_ERRCODE 0x7F
#define SSD_CURRENT_ERROR 0x70
#define SSD_DEFERRED_ERROR 0x71
#define SSD_ERRCODE_VALID 0x80
u_int8_t segment;
u_int8_t flags;
#define SSD_KEY 0x0F
#define SSD_KEY_NO_SENSE 0x00
#define SSD_KEY_RECOVERED_ERROR 0x01
#define SSD_KEY_NOT_READY 0x02
#define SSD_KEY_MEDIUM_ERROR 0x03
#define SSD_KEY_HARDWARE_ERROR 0x04
#define SSD_KEY_ILLEGAL_REQUEST 0x05
#define SSD_KEY_UNIT_ATTENTION 0x06
#define SSD_KEY_DATA_PROTECT 0x07
#define SSD_KEY_BLANK_CHECK 0x08
#define SSD_KEY_Vendor_Specific 0x09
#define SSD_KEY_COPY_ABORTED 0x0a
#define SSD_KEY_ABORTED_COMMAND 0x0b
#define SSD_KEY_EQUAL 0x0c
#define SSD_KEY_VOLUME_OVERFLOW 0x0d
#define SSD_KEY_MISCOMPARE 0x0e
#define SSD_KEY_COMPLETED 0x0f
#define SSD_ILI 0x20
#define SSD_EOM 0x40
#define SSD_FILEMARK 0x80
u_int8_t info[4];
u_int8_t extra_len;
u_int8_t cmd_spec_info[4];
u_int8_t add_sense_code;
u_int8_t add_sense_code_qual;
u_int8_t fru;
u_int8_t sense_key_spec[3];
#define SSD_SCS_VALID 0x80
#define SSD_FIELDPTR_CMD 0x40
#define SSD_BITPTR_VALID 0x08
#define SSD_BITPTR_VALUE 0x07
u_int8_t extra_bytes[14];
#define SSD_FIXED_IS_PRESENT(sense, length, field) \
((length >= (offsetof(struct scsi_sense_data_fixed, field) + \
sizeof(sense->field))) ? 1 :0)
#define SSD_FIXED_IS_FILLED(sense, field) \
((((offsetof(struct scsi_sense_data_fixed, field) + \
sizeof(sense->field)) - \
(offsetof(struct scsi_sense_data_fixed, extra_len) + \
sizeof(sense->extra_len))) <= sense->extra_len) ? 1 : 0)
};
/*
* Descriptor format sense data definitions.
* Introduced in SPC-3.
*/
struct scsi_sense_data_desc
{
uint8_t error_code;
#define SSD_DESC_CURRENT_ERROR 0x72
#define SSD_DESC_DEFERRED_ERROR 0x73
uint8_t sense_key;
uint8_t add_sense_code;
uint8_t add_sense_code_qual;
uint8_t reserved[3];
/*
* Note that SPC-4, section 4.5.2.1 says that the extra_len field
* must be less than or equal to 244.
*/
uint8_t extra_len;
uint8_t sense_desc[0];
#define SSD_DESC_IS_PRESENT(sense, length, field) \
((length >= (offsetof(struct scsi_sense_data_desc, field) + \
sizeof(sense->field))) ? 1 :0)
};
struct scsi_sense_desc_header
{
uint8_t desc_type;
uint8_t length;
};
/*
* The information provide in the Information descriptor is device type or
* command specific information, and defined in a command standard.
*
* Note that any changes to the field names or positions in this structure,
* even reserved fields, should be accompanied by an examination of the
* code in ctl_set_sense() that uses them.
*
* Maximum descriptors allowed: 1 (as of SPC-4)
*/
struct scsi_sense_info
{
uint8_t desc_type;
#define SSD_DESC_INFO 0x00
uint8_t length;
uint8_t byte2;
#define SSD_INFO_VALID 0x80
uint8_t reserved;
uint8_t info[8];
};
/*
* Command-specific information depends on the command for which the
* reported condition occurred.
*
* Note that any changes to the field names or positions in this structure,
* even reserved fields, should be accompanied by an examination of the
* code in ctl_set_sense() that uses them.
*
* Maximum descriptors allowed: 1 (as of SPC-4)
*/
struct scsi_sense_command
{
uint8_t desc_type;
#define SSD_DESC_COMMAND 0x01
uint8_t length;
uint8_t reserved[2];
uint8_t command_info[8];
};
/*
* Sense key specific descriptor. The sense key specific data format
* depends on the sense key in question.
*
* Maximum descriptors allowed: 1 (as of SPC-4)
*/
struct scsi_sense_sks
{
uint8_t desc_type;
#define SSD_DESC_SKS 0x02
uint8_t length;
uint8_t reserved1[2];
uint8_t sense_key_spec[3];
#define SSD_SKS_VALID 0x80
uint8_t reserved2;
};
/*
* This is used for the Illegal Request sense key (0x05) only.
*/
struct scsi_sense_sks_field
{
uint8_t byte0;
#define SSD_SKS_FIELD_VALID 0x80
#define SSD_SKS_FIELD_CMD 0x40
#define SSD_SKS_BPV 0x08
#define SSD_SKS_BIT_VALUE 0x07
uint8_t field[2];
};
/*
* This is used for the Hardware Error (0x04), Medium Error (0x03) and
* Recovered Error (0x01) sense keys.
*/
struct scsi_sense_sks_retry
{
uint8_t byte0;
#define SSD_SKS_RETRY_VALID 0x80
uint8_t actual_retry_count[2];
};
/*
* Used with the NO Sense (0x00) or Not Ready (0x02) sense keys.
*/
struct scsi_sense_sks_progress
{
uint8_t byte0;
#define SSD_SKS_PROGRESS_VALID 0x80
uint8_t progress[2];
#define SSD_SKS_PROGRESS_DENOM 0x10000
};
/*
* Used with the Copy Aborted (0x0a) sense key.
*/
struct scsi_sense_sks_segment
{
uint8_t byte0;
#define SSD_SKS_SEGMENT_VALID 0x80
#define SSD_SKS_SEGMENT_SD 0x20
#define SSD_SKS_SEGMENT_BPV 0x08
#define SSD_SKS_SEGMENT_BITPTR 0x07
uint8_t field[2];
};
/*
* Used with the Unit Attention (0x06) sense key.
*
* This is currently used to indicate that the unit attention condition
* queue has overflowed (when the overflow bit is set).
*/
struct scsi_sense_sks_overflow
{
uint8_t byte0;
#define SSD_SKS_OVERFLOW_VALID 0x80
#define SSD_SKS_OVERFLOW_SET 0x01
uint8_t reserved[2];
};
/*
* This specifies which component is associated with the sense data. There
* is no standard meaning for the fru value.
*
* Maximum descriptors allowed: 1 (as of SPC-4)
*/
struct scsi_sense_fru
{
uint8_t desc_type;
#define SSD_DESC_FRU 0x03
uint8_t length;
uint8_t reserved;
uint8_t fru;
};
/*
* Used for Stream commands, defined in SSC-4.
*
* Maximum descriptors allowed: 1 (as of SPC-4)
*/
struct scsi_sense_stream
{
uint8_t desc_type;
#define SSD_DESC_STREAM 0x04
uint8_t length;
uint8_t reserved;
uint8_t byte3;
#define SSD_DESC_STREAM_FM 0x80
#define SSD_DESC_STREAM_EOM 0x40
#define SSD_DESC_STREAM_ILI 0x20
};
/*
* Used for Block commands, defined in SBC-3.
*
* This is currently (as of SBC-3) only used for the Incorrect Length
* Indication (ILI) bit, which says that the data length requested in the
* READ LONG or WRITE LONG command did not match the length of the logical
* block.
*
* Maximum descriptors allowed: 1 (as of SPC-4)
*/
struct scsi_sense_block
{
uint8_t desc_type;
#define SSD_DESC_BLOCK 0x05
uint8_t length;
uint8_t reserved;
uint8_t byte3;
#define SSD_DESC_BLOCK_ILI 0x20
};
/*
* Used for Object-Based Storage Devices (OSD-3).
*
* Maximum descriptors allowed: 1 (as of SPC-4)
*/
struct scsi_sense_osd_objid
{
uint8_t desc_type;
#define SSD_DESC_OSD_OBJID 0x06
uint8_t length;
uint8_t reserved[6];
/*
* XXX KDM provide the bit definitions here? There are a lot of
* them, and we don't have an OSD driver yet.
*/
uint8_t not_init_cmds[4];
uint8_t completed_cmds[4];
uint8_t partition_id[8];
uint8_t object_id[8];
};
/*
* Used for Object-Based Storage Devices (OSD-3).
*
* Maximum descriptors allowed: 1 (as of SPC-4)
*/
struct scsi_sense_osd_integrity
{
uint8_t desc_type;
#define SSD_DESC_OSD_INTEGRITY 0x07
uint8_t length;
uint8_t integ_check_val[32];
};
/*
* Used for Object-Based Storage Devices (OSD-3).
*
* Maximum descriptors allowed: 1 (as of SPC-4)
*/
struct scsi_sense_osd_attr_id
{
uint8_t desc_type;
#define SSD_DESC_OSD_ATTR_ID 0x08
uint8_t length;
uint8_t reserved[2];
uint8_t attr_desc[0];
};
/*
* ATA Return descriptor, used for the SCSI ATA PASS-THROUGH(12), (16) and
* (32) commands. Described in SAT-4r05.
*/
struct scsi_sense_ata_ret_desc
{
uint8_t desc_type;
#define SSD_DESC_ATA 0x09
uint8_t length;
uint8_t flags;
#define SSD_DESC_ATA_FLAG_EXTEND 0x01
uint8_t error;
uint8_t count_15_8;
uint8_t count_7_0;
uint8_t lba_31_24;
uint8_t lba_7_0;
uint8_t lba_39_32;
uint8_t lba_15_8;
uint8_t lba_47_40;
uint8_t lba_23_16;
uint8_t device;
uint8_t status;
};
/*
* Used with Sense keys No Sense (0x00) and Not Ready (0x02).
*
* Maximum descriptors allowed: 32 (as of SPC-4)
*/
struct scsi_sense_progress
{
uint8_t desc_type;
#define SSD_DESC_PROGRESS 0x0a
uint8_t length;
uint8_t sense_key;
uint8_t add_sense_code;
uint8_t add_sense_code_qual;
uint8_t reserved;
uint8_t progress[2];
};
/*
* This is typically forwarded as the result of an EXTENDED COPY command.
*
* Maximum descriptors allowed: 2 (as of SPC-4)
*/
struct scsi_sense_forwarded
{
uint8_t desc_type;
#define SSD_DESC_FORWARDED 0x0c
uint8_t length;
uint8_t byte2;
#define SSD_FORWARDED_FSDT 0x80
#define SSD_FORWARDED_SDS_MASK 0x0f
#define SSD_FORWARDED_SDS_UNK 0x00
#define SSD_FORWARDED_SDS_EXSRC 0x01
#define SSD_FORWARDED_SDS_EXDST 0x02
};
/*
* Vendor-specific sense descriptor. The desc_type field will be in the
* range between MIN and MAX inclusive.
*/
struct scsi_sense_vendor
{
uint8_t desc_type;
#define SSD_DESC_VENDOR_MIN 0x80
#define SSD_DESC_VENDOR_MAX 0xff
uint8_t length;
uint8_t data[0];
};
struct scsi_mode_header_6
{
u_int8_t data_length; /* Sense data length */
u_int8_t medium_type;
u_int8_t dev_spec;
u_int8_t blk_desc_len;
};
struct scsi_mode_header_10
{
u_int8_t data_length[2];/* Sense data length */
u_int8_t medium_type;
u_int8_t dev_spec;
u_int8_t unused[2];
u_int8_t blk_desc_len[2];
};
struct scsi_mode_page_header
{
u_int8_t page_code;
#define SMPH_PS 0x80
#define SMPH_SPF 0x40
#define SMPH_PC_MASK 0x3f
u_int8_t page_length;
};
struct scsi_mode_page_header_sp
{
uint8_t page_code;
uint8_t subpage;
uint8_t page_length[2];
};
struct scsi_mode_blk_desc
{
u_int8_t density;
u_int8_t nblocks[3];
u_int8_t reserved;
u_int8_t blklen[3];
};
#define SCSI_DEFAULT_DENSITY 0x00 /* use 'default' density */
#define SCSI_SAME_DENSITY 0x7f /* use 'same' density- >= SCSI-2 only */
/*
* Status Byte
*/
#define SCSI_STATUS_OK 0x00
#define SCSI_STATUS_CHECK_COND 0x02
#define SCSI_STATUS_COND_MET 0x04
#define SCSI_STATUS_BUSY 0x08
#define SCSI_STATUS_INTERMED 0x10
#define SCSI_STATUS_INTERMED_COND_MET 0x14
#define SCSI_STATUS_RESERV_CONFLICT 0x18
#define SCSI_STATUS_CMD_TERMINATED 0x22 /* Obsolete in SAM-2 */
#define SCSI_STATUS_QUEUE_FULL 0x28
#define SCSI_STATUS_ACA_ACTIVE 0x30
#define SCSI_STATUS_TASK_ABORTED 0x40
struct scsi_inquiry_pattern {
u_int8_t type;
u_int8_t media_type;
#define SIP_MEDIA_REMOVABLE 0x01
#define SIP_MEDIA_FIXED 0x02
const char *vendor;
const char *product;
const char *revision;
};
struct scsi_static_inquiry_pattern {
u_int8_t type;
u_int8_t media_type;
char vendor[SID_VENDOR_SIZE+1];
char product[SID_PRODUCT_SIZE+1];
char revision[SID_REVISION_SIZE+1];
};
struct scsi_sense_quirk_entry {
struct scsi_inquiry_pattern inq_pat;
int num_sense_keys;
int num_ascs;
struct sense_key_table_entry *sense_key_info;
struct asc_table_entry *asc_info;
};
struct sense_key_table_entry {
u_int8_t sense_key;
u_int32_t action;
const char *desc;
};
struct asc_table_entry {
u_int8_t asc;
u_int8_t ascq;
u_int32_t action;
const char *desc;
};
struct op_table_entry {
u_int8_t opcode;
u_int32_t opmask;
const char *desc;
};
struct scsi_op_quirk_entry {
struct scsi_inquiry_pattern inq_pat;
int num_ops;
struct op_table_entry *op_table;
};
typedef enum {
SSS_FLAG_NONE = 0x00,
SSS_FLAG_PRINT_COMMAND = 0x01
} scsi_sense_string_flags;
struct scsi_nv {
const char *name;
uint64_t value;
};
typedef enum {
SCSI_NV_FOUND,
SCSI_NV_AMBIGUOUS,
SCSI_NV_NOT_FOUND
} scsi_nv_status;
typedef enum {
SCSI_NV_FLAG_NONE = 0x00,
SCSI_NV_FLAG_IG_CASE = 0x01 /* Case insensitive comparison */
} scsi_nv_flags;
struct ccb_scsiio;
struct cam_periph;
union ccb;
#ifndef _KERNEL
struct cam_device;
#endif
extern const char *scsi_sense_key_text[];
__BEGIN_DECLS
void scsi_sense_desc(int sense_key, int asc, int ascq,
struct scsi_inquiry_data *inq_data,
const char **sense_key_desc, const char **asc_desc);
scsi_sense_action scsi_error_action(struct ccb_scsiio* csio,
struct scsi_inquiry_data *inq_data,
u_int32_t sense_flags);
const char * scsi_status_string(struct ccb_scsiio *csio);
void scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
int (*iter_func)(struct scsi_sense_data_desc *sense,
u_int, struct scsi_sense_desc_header *,
void *), void *arg);
uint8_t *scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
uint8_t desc_type);
void scsi_set_sense_data(struct scsi_sense_data *sense_data,
scsi_sense_data_type sense_format, int current_error,
int sense_key, int asc, int ascq, ...) ;
void scsi_set_sense_data_va(struct scsi_sense_data *sense_data,
scsi_sense_data_type sense_format,
int current_error, int sense_key, int asc,
int ascq, va_list ap);
int scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
uint8_t info_type, uint64_t *info,
int64_t *signed_info);
int scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len,
uint8_t *sks);
int scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
struct scsi_inquiry_data *inq_data,
uint8_t *block_bits);
int scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
struct scsi_inquiry_data *inq_data,
uint8_t *stream_bits);
void scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data, uint64_t info);
void scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data, uint64_t csi);
void scsi_progress_sbuf(struct sbuf *sb, uint16_t progress);
int scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks);
void scsi_fru_sbuf(struct sbuf *sb, uint64_t fru);
void scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info);
void scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info);
void scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header);
void scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header);
void scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header);
void scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header);
void scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header);
void scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header);
void scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header);
void scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header);
void scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header);
scsi_sense_data_type scsi_sense_type(struct scsi_sense_data *sense_data);
void scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
struct sbuf *sb, char *path_str,
struct scsi_inquiry_data *inq_data, uint8_t *cdb,
int cdb_len);
#ifdef _KERNEL
int scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb);
int scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
scsi_sense_string_flags flags);
char * scsi_sense_string(struct ccb_scsiio *csio,
char *str, int str_len);
void scsi_sense_print(struct ccb_scsiio *csio);
int scsi_vpd_supported_page(struct cam_periph *periph,
uint8_t page_id);
#else /* _KERNEL */
int scsi_command_string(struct cam_device *device,
struct ccb_scsiio *csio, struct sbuf *sb);
int scsi_sense_sbuf(struct cam_device *device,
struct ccb_scsiio *csio, struct sbuf *sb,
scsi_sense_string_flags flags);
char * scsi_sense_string(struct cam_device *device,
struct ccb_scsiio *csio,
char *str, int str_len);
void scsi_sense_print(struct cam_device *device,
struct ccb_scsiio *csio, FILE *ofile);
#endif /* _KERNEL */
const char * scsi_op_desc(u_int16_t opcode,
struct scsi_inquiry_data *inq_data);
char * scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string,
size_t len);
void scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb);
void scsi_print_inquiry(struct scsi_inquiry_data *inq_data);
void scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data);
u_int scsi_calc_syncsrate(u_int period_factor);
u_int scsi_calc_syncparam(u_int period);
typedef int (*scsi_devid_checkfn_t)(uint8_t *);
int scsi_devid_is_naa_ieee_reg(uint8_t *bufp);
int scsi_devid_is_sas_target(uint8_t *bufp);
int scsi_devid_is_lun_eui64(uint8_t *bufp);
int scsi_devid_is_lun_naa(uint8_t *bufp);
int scsi_devid_is_lun_name(uint8_t *bufp);
int scsi_devid_is_lun_t10(uint8_t *bufp);
int scsi_devid_is_port_naa(uint8_t *bufp);
struct scsi_vpd_id_descriptor *
scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t len,
scsi_devid_checkfn_t ck_fn);
struct scsi_vpd_id_descriptor *
scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
scsi_devid_checkfn_t ck_fn);
int scsi_transportid_sbuf(struct sbuf *sb,
struct scsi_transportid_header *hdr,
uint32_t valid_len);
const char * scsi_nv_to_str(struct scsi_nv *table, int num_table_entries,
uint64_t value);
scsi_nv_status scsi_get_nv(struct scsi_nv *table, int num_table_entries,
char *name, int *table_entry, scsi_nv_flags flags);
int scsi_parse_transportid_64bit(int proto_id, char *id_str,
struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str, int error_str_len);
int scsi_parse_transportid_spi(char *id_str,
struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str, int error_str_len);
int scsi_parse_transportid_rdma(char *id_str,
struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str, int error_str_len);
int scsi_parse_transportid_iscsi(char *id_str,
struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str,int error_str_len);
int scsi_parse_transportid_sop(char *id_str,
struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str,int error_str_len);
int scsi_parse_transportid(char *transportid_str,
struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str, int error_str_len);
int scsi_attrib_volcoh_sbuf(struct sbuf *sb,
struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len);
int scsi_attrib_vendser_sbuf(struct sbuf *sb,
struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len);
int scsi_attrib_hexdump_sbuf(struct sbuf *sb,
struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len);
int scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len);
int scsi_attrib_ascii_sbuf(struct sbuf *sb,
struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len);
int scsi_attrib_text_sbuf(struct sbuf *sb,
struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len);
struct scsi_attrib_table_entry *scsi_find_attrib_entry(
struct scsi_attrib_table_entry *table,
size_t num_table_entries, uint32_t id);
struct scsi_attrib_table_entry *scsi_get_attrib_entry(uint32_t id);
int scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
struct scsi_mam_attribute_header *hdr,
uint32_t output_flags, char *error_str,
size_t error_str_len);
void scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, const char *desc);
int scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
uint32_t valid_len,
struct scsi_attrib_table_entry *user_table,
size_t num_user_entries, int prefer_user_table,
uint32_t output_flags, char *error_str, int error_str_len);
void scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *),
u_int8_t tag_action,
u_int8_t sense_len, u_int32_t timeout);
void scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *),
void *data_ptr, u_int8_t dxfer_len,
u_int8_t tag_action, u_int8_t sense_len,
u_int32_t timeout);
void scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int8_t tag_action, u_int8_t *inq_buf,
u_int32_t inq_len, int evpd, u_int8_t page_code,
u_int8_t sense_len, u_int32_t timeout);
void scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *),
u_int8_t tag_action, int dbd,
u_int8_t page_code, u_int8_t page,
u_int8_t *param_buf, u_int32_t param_len,
u_int8_t sense_len, u_int32_t timeout);
void scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *),
u_int8_t tag_action, int dbd,
u_int8_t page_code, u_int8_t page,
u_int8_t *param_buf, u_int32_t param_len,
int minimum_cmd_size, u_int8_t sense_len,
u_int32_t timeout);
void scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *),
u_int8_t tag_action, int scsi_page_fmt,
int save_pages, u_int8_t *param_buf,
u_int32_t param_len, u_int8_t sense_len,
u_int32_t timeout);
void scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *),
u_int8_t tag_action, int scsi_page_fmt,
int save_pages, u_int8_t *param_buf,
u_int32_t param_len, int minimum_cmd_size,
u_int8_t sense_len, u_int32_t timeout);
void scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int8_t tag_action, u_int8_t page_code,
u_int8_t page, int save_pages, int ppc,
u_int32_t paramptr, u_int8_t *param_buf,
u_int32_t param_len, u_int8_t sense_len,
u_int32_t timeout);
void scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *), u_int8_t tag_action,
u_int8_t page_code, int save_pages,
int pc_reset, u_int8_t *param_buf,
u_int32_t param_len, u_int8_t sense_len,
u_int32_t timeout);
void scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int8_t tag_action, u_int8_t action,
u_int8_t sense_len, u_int32_t timeout);
void scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *), u_int8_t tag_action,
struct scsi_read_capacity_data *,
u_int8_t sense_len, u_int32_t timeout);
void scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *), uint8_t tag_action,
uint64_t lba, int reladr, int pmi,
uint8_t *rcap_buf, int rcap_buf_len,
uint8_t sense_len, uint32_t timeout);
void scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *), u_int8_t tag_action,
u_int8_t select_report,
struct scsi_report_luns_data *rpl_buf,
u_int32_t alloc_len, u_int8_t sense_len,
u_int32_t timeout);
void scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *), u_int8_t tag_action,
u_int8_t pdf,
void *buf,
u_int32_t alloc_len, u_int8_t sense_len,
u_int32_t timeout);
void scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *), u_int8_t tag_action, void *buf,
u_int32_t alloc_len, u_int8_t sense_len,
u_int32_t timeout);
void scsi_synchronize_cache(struct ccb_scsiio *csio,
u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *), u_int8_t tag_action,
u_int32_t begin_lba, u_int16_t lb_count,
u_int8_t sense_len, u_int32_t timeout);
void scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb*),
uint8_t tag_action, int pcv,
uint8_t page_code, uint8_t *data_ptr,
uint16_t allocation_length,
uint8_t sense_len, uint32_t timeout);
void scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, int unit_offline,
int device_offline, int self_test, int page_format,
int self_test_code, uint8_t *data_ptr,
uint16_t param_list_length, uint8_t sense_len,
uint32_t timeout);
void scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb*),
uint8_t tag_action, int mode,
uint8_t buffer_id, u_int32_t offset,
uint8_t *data_ptr, uint32_t allocation_length,
uint8_t sense_len, uint32_t timeout);
void scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, int mode,
uint8_t buffer_id, u_int32_t offset,
uint8_t *data_ptr, uint32_t param_list_length,
uint8_t sense_len, uint32_t timeout);
#define SCSI_RW_READ 0x0001
#define SCSI_RW_WRITE 0x0002
#define SCSI_RW_DIRMASK 0x0003
#define SCSI_RW_BIO 0x1000
void scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int8_t tag_action, int readop, u_int8_t byte2,
int minimum_cmd_size, u_int64_t lba,
u_int32_t block_count, u_int8_t *data_ptr,
u_int32_t dxfer_len, u_int8_t sense_len,
u_int32_t timeout);
void scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int8_t tag_action, u_int8_t byte2,
int minimum_cmd_size, u_int64_t lba,
u_int32_t block_count, u_int8_t *data_ptr,
u_int32_t dxfer_len, u_int8_t sense_len,
u_int32_t timeout);
void scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int8_t tag_action, u_int8_t *data_ptr,
u_int16_t dxfer_len, u_int8_t sense_len,
u_int32_t timeout);
void scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int8_t tag_action, u_int16_t block_count,
u_int8_t *data_ptr, u_int16_t dxfer_len,
u_int8_t sense_len, u_int32_t timeout);
int scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint32_t log_address,
uint32_t page_number, uint16_t block_count,
uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
uint8_t sense_len, uint32_t timeout);
int scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint32_t flags, uint8_t tag_action,
uint8_t protocol, uint8_t ata_flags, uint16_t features,
uint16_t sector_count, uint64_t lba, uint8_t command,
uint8_t device, uint8_t icc, uint32_t auxiliary,
uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len,
uint8_t *cdb_storage, size_t cdb_storage_len,
int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout);
void scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int32_t flags, u_int8_t tag_action,
u_int8_t protocol, u_int8_t ata_flags, u_int16_t features,
u_int16_t sector_count, uint64_t lba, u_int8_t command,
u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len,
u_int8_t sense_len, u_int32_t timeout);
void scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int8_t tag_action, u_int8_t byte2,
u_int8_t *data_ptr, u_int16_t dxfer_len,
u_int8_t sense_len, u_int32_t timeout);
void scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int8_t tag_action, int start, int load_eject,
int immediate, u_int8_t sense_len, u_int32_t timeout);
void scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int8_t tag_action, u_int8_t service_action,
uint32_t element, u_int8_t elem_type,
int logical_volume, int partition,
u_int32_t first_attribute, int cache, u_int8_t *data_ptr,
u_int32_t length, int sense_len, u_int32_t timeout);
void scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int8_t tag_action, uint32_t element,
int logical_volume, int partition, int wtc, u_int8_t *data_ptr,
u_int32_t length, int sense_len, u_int32_t timeout);
void scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint32_t security_protocol,
uint32_t security_protocol_specific, int byte4,
uint8_t *data_ptr, uint32_t dxfer_len,
int sense_len, int timeout);
void scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *,union ccb *),
uint8_t tag_action, uint32_t security_protocol,
uint32_t security_protocol_specific, int byte4,
uint8_t *data_ptr, uint32_t dxfer_len,
int sense_len, int timeout);
void scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *,union ccb *),
uint8_t tag_action, int service_action,
uint8_t *data_ptr, uint32_t dxfer_len,
int sense_len, int timeout);
void scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *),
uint8_t tag_action, int service_action,
int scope, int res_type, uint8_t *data_ptr,
uint32_t dxfer_len, int sense_len,
int timeout);
void scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *,
union ccb *),
uint8_t tag_action, int options,
int req_opcode, int req_service_action,
uint8_t *data_ptr, uint32_t dxfer_len,
int sense_len, int timeout);
int scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry);
int scsi_static_inquiry_match(caddr_t inqbuffer,
caddr_t table_entry);
int scsi_devid_match(uint8_t *rhs, size_t rhs_len,
uint8_t *lhs, size_t lhs_len);
void scsi_extract_sense(struct scsi_sense_data *sense, int *error_code,
int *sense_key, int *asc, int *ascq);
int scsi_extract_sense_ccb(union ccb *ccb, int *error_code, int *sense_key,
int *asc, int *ascq);
void scsi_extract_sense_len(struct scsi_sense_data *sense,
u_int sense_len, int *error_code, int *sense_key,
int *asc, int *ascq, int show_errors);
int scsi_get_sense_key(struct scsi_sense_data *sense, u_int sense_len,
int show_errors);
int scsi_get_asc(struct scsi_sense_data *sense, u_int sense_len,
int show_errors);
int scsi_get_ascq(struct scsi_sense_data *sense, u_int sense_len,
int show_errors);
static __inline void scsi_ulto2b(u_int32_t val, u_int8_t *bytes);
static __inline void scsi_ulto3b(u_int32_t val, u_int8_t *bytes);
static __inline void scsi_ulto4b(u_int32_t val, u_int8_t *bytes);
static __inline void scsi_u64to8b(u_int64_t val, u_int8_t *bytes);
static __inline uint32_t scsi_2btoul(const uint8_t *bytes);
static __inline uint32_t scsi_3btoul(const uint8_t *bytes);
static __inline int32_t scsi_3btol(const uint8_t *bytes);
static __inline uint32_t scsi_4btoul(const uint8_t *bytes);
static __inline uint64_t scsi_8btou64(const uint8_t *bytes);
static __inline void *find_mode_page_6(struct scsi_mode_header_6 *mode_header);
static __inline void *find_mode_page_10(struct scsi_mode_header_10 *mode_header);
static __inline void
scsi_ulto2b(u_int32_t val, u_int8_t *bytes)
{
bytes[0] = (val >> 8) & 0xff;
bytes[1] = val & 0xff;
}
static __inline void
scsi_ulto3b(u_int32_t val, u_int8_t *bytes)
{
bytes[0] = (val >> 16) & 0xff;
bytes[1] = (val >> 8) & 0xff;
bytes[2] = val & 0xff;
}
static __inline void
scsi_ulto4b(u_int32_t val, u_int8_t *bytes)
{
bytes[0] = (val >> 24) & 0xff;
bytes[1] = (val >> 16) & 0xff;
bytes[2] = (val >> 8) & 0xff;
bytes[3] = val & 0xff;
}
static __inline void
scsi_u64to8b(u_int64_t val, u_int8_t *bytes)
{
bytes[0] = (val >> 56) & 0xff;
bytes[1] = (val >> 48) & 0xff;
bytes[2] = (val >> 40) & 0xff;
bytes[3] = (val >> 32) & 0xff;
bytes[4] = (val >> 24) & 0xff;
bytes[5] = (val >> 16) & 0xff;
bytes[6] = (val >> 8) & 0xff;
bytes[7] = val & 0xff;
}
static __inline uint32_t
scsi_2btoul(const uint8_t *bytes)
{
uint32_t rv;
rv = (bytes[0] << 8) |
bytes[1];
return (rv);
}
static __inline uint32_t
scsi_3btoul(const uint8_t *bytes)
{
uint32_t rv;
rv = (bytes[0] << 16) |
(bytes[1] << 8) |
bytes[2];
return (rv);
}
static __inline int32_t
scsi_3btol(const uint8_t *bytes)
{
uint32_t rc = scsi_3btoul(bytes);
if (rc & 0x00800000)
rc |= 0xff000000;
return (int32_t) rc;
}
static __inline uint32_t
scsi_4btoul(const uint8_t *bytes)
{
uint32_t rv;
rv = (bytes[0] << 24) |
(bytes[1] << 16) |
(bytes[2] << 8) |
bytes[3];
return (rv);
}
static __inline uint64_t
scsi_8btou64(const uint8_t *bytes)
{
uint64_t rv;
rv = (((uint64_t)bytes[0]) << 56) |
(((uint64_t)bytes[1]) << 48) |
(((uint64_t)bytes[2]) << 40) |
(((uint64_t)bytes[3]) << 32) |
(((uint64_t)bytes[4]) << 24) |
(((uint64_t)bytes[5]) << 16) |
(((uint64_t)bytes[6]) << 8) |
bytes[7];
return (rv);
}
/*
* Given the pointer to a returned mode sense buffer, return a pointer to
* the start of the first mode page.
*/
static __inline void *
find_mode_page_6(struct scsi_mode_header_6 *mode_header)
{
void *page_start;
page_start = (void *)((u_int8_t *)&mode_header[1] +
mode_header->blk_desc_len);
return(page_start);
}
static __inline void *
find_mode_page_10(struct scsi_mode_header_10 *mode_header)
{
void *page_start;
page_start = (void *)((u_int8_t *)&mode_header[1] +
scsi_2btoul(mode_header->blk_desc_len));
return(page_start);
}
__END_DECLS
#endif /*_SCSI_SCSI_ALL_H*/