freebsd-skq/sys/pci/if_sk.c
bz cd218c4d5b Deal with failed malloc calls[1].
While there also check for failed device_add_child calls.

Found by:	Coventry Analysis tool[1].
Submitted by:	sam[1]
Approved by:	pjd (mentor)
MFC after:	1 week
2005-04-25 10:18:24 +00:00

2995 lines
74 KiB
C

/* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */
/*-
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
* the SK-984x series adapters, both single port and dual port.
* References:
* The XaQti XMAC II datasheet,
* http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
* The SysKonnect GEnesis manual, http://www.syskonnect.com
*
* Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
* XMAC II datasheet online. I have put my copy at people.freebsd.org as a
* convenience to others until Vitesse corrects this problem:
*
* http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Department of Electrical Engineering
* Columbia University, New York City
*/
/*
* The SysKonnect gigabit ethernet adapters consist of two main
* components: the SysKonnect GEnesis controller chip and the XaQti Corp.
* XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
* components and a PHY while the GEnesis controller provides a PCI
* interface with DMA support. Each card may have between 512K and
* 2MB of SRAM on board depending on the configuration.
*
* The SysKonnect GEnesis controller can have either one or two XMAC
* chips connected to it, allowing single or dual port NIC configurations.
* SysKonnect has the distinction of being the only vendor on the market
* with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
* dual DMA queues, packet/MAC/transmit arbiters and direct access to the
* XMAC registers. This driver takes advantage of these features to allow
* both XMACs to operate as independent interfaces.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/brgphyreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#if 0
#define SK_USEIOSPACE
#endif
#include <pci/if_skreg.h>
#include <pci/xmaciireg.h>
#include <pci/yukonreg.h>
MODULE_DEPEND(sk, pci, 1, 1, 1);
MODULE_DEPEND(sk, ether, 1, 1, 1);
MODULE_DEPEND(sk, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
static struct sk_type sk_devs[] = {
{
VENDORID_SK,
DEVICEID_SK_V1,
"SysKonnect Gigabit Ethernet (V1.0)"
},
{
VENDORID_SK,
DEVICEID_SK_V2,
"SysKonnect Gigabit Ethernet (V2.0)"
},
{
VENDORID_MARVELL,
DEVICEID_SK_V2,
"Marvell Gigabit Ethernet"
},
{
VENDORID_MARVELL,
DEVICEID_BELKIN_5005,
"Belkin F5D5005 Gigabit Ethernet"
},
{
VENDORID_3COM,
DEVICEID_3COM_3C940,
"3Com 3C940 Gigabit Ethernet"
},
{
VENDORID_LINKSYS,
DEVICEID_LINKSYS_EG1032,
"Linksys EG1032 Gigabit Ethernet"
},
{
VENDORID_DLINK,
DEVICEID_DLINK_DGE530T,
"D-Link DGE-530T Gigabit Ethernet"
},
{ 0, 0, NULL }
};
static int skc_probe(device_t);
static int skc_attach(device_t);
static int skc_detach(device_t);
static void skc_shutdown(device_t);
static int sk_detach(device_t);
static int sk_probe(device_t);
static int sk_attach(device_t);
static void sk_tick(void *);
static void sk_intr(void *);
static void sk_intr_xmac(struct sk_if_softc *);
static void sk_intr_bcom(struct sk_if_softc *);
static void sk_intr_yukon(struct sk_if_softc *);
static void sk_rxeof(struct sk_if_softc *);
static void sk_txeof(struct sk_if_softc *);
static int sk_encap(struct sk_if_softc *, struct mbuf *,
u_int32_t *);
static void sk_start(struct ifnet *);
static int sk_ioctl(struct ifnet *, u_long, caddr_t);
static void sk_init(void *);
static void sk_init_xmac(struct sk_if_softc *);
static void sk_init_yukon(struct sk_if_softc *);
static void sk_stop(struct sk_if_softc *);
static void sk_watchdog(struct ifnet *);
static int sk_ifmedia_upd(struct ifnet *);
static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void sk_reset(struct sk_softc *);
static int sk_newbuf(struct sk_if_softc *,
struct sk_chain *, struct mbuf *);
static int sk_alloc_jumbo_mem(struct sk_if_softc *);
static void sk_free_jumbo_mem(struct sk_if_softc *);
static void *sk_jalloc(struct sk_if_softc *);
static void sk_jfree(void *, void *);
static int sk_init_rx_ring(struct sk_if_softc *);
static void sk_init_tx_ring(struct sk_if_softc *);
static u_int32_t sk_win_read_4(struct sk_softc *, int);
static u_int16_t sk_win_read_2(struct sk_softc *, int);
static u_int8_t sk_win_read_1(struct sk_softc *, int);
static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
static u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
static void sk_vpd_read(struct sk_softc *);
static int sk_miibus_readreg(device_t, int, int);
static int sk_miibus_writereg(device_t, int, int, int);
static void sk_miibus_statchg(device_t);
static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
int);
static void sk_xmac_miibus_statchg(struct sk_if_softc *);
static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
int);
static void sk_marv_miibus_statchg(struct sk_if_softc *);
static uint32_t sk_xmchash(const uint8_t *);
static uint32_t sk_gmchash(const uint8_t *);
static void sk_setfilt(struct sk_if_softc *, caddr_t, int);
static void sk_setmulti(struct sk_if_softc *);
static void sk_setpromisc(struct sk_if_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
#ifdef SK_USEIOSPACE
#define SK_RES SYS_RES_IOPORT
#define SK_RID SK_PCI_LOIO
#else
#define SK_RES SYS_RES_MEMORY
#define SK_RID SK_PCI_LOMEM
#endif
/*
* Note that we have newbus methods for both the GEnesis controller
* itself and the XMAC(s). The XMACs are children of the GEnesis, and
* the miibus code is a child of the XMACs. We need to do it this way
* so that the miibus drivers can access the PHY registers on the
* right PHY. It's not quite what I had in mind, but it's the only
* design that achieves the desired effect.
*/
static device_method_t skc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, skc_probe),
DEVMETHOD(device_attach, skc_attach),
DEVMETHOD(device_detach, skc_detach),
DEVMETHOD(device_shutdown, skc_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
{ 0, 0 }
};
static driver_t skc_driver = {
"skc",
skc_methods,
sizeof(struct sk_softc)
};
static devclass_t skc_devclass;
static device_method_t sk_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sk_probe),
DEVMETHOD(device_attach, sk_attach),
DEVMETHOD(device_detach, sk_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, sk_miibus_readreg),
DEVMETHOD(miibus_writereg, sk_miibus_writereg),
DEVMETHOD(miibus_statchg, sk_miibus_statchg),
{ 0, 0 }
};
static driver_t sk_driver = {
"sk",
sk_methods,
sizeof(struct sk_if_softc)
};
static devclass_t sk_devclass;
DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
#define SK_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
#define SK_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
#define SK_WIN_SETBIT_4(sc, reg, x) \
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
#define SK_WIN_CLRBIT_4(sc, reg, x) \
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
#define SK_WIN_SETBIT_2(sc, reg, x) \
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
#define SK_WIN_CLRBIT_2(sc, reg, x) \
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
static u_int32_t
sk_win_read_4(sc, reg)
struct sk_softc *sc;
int reg;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
#else
return(CSR_READ_4(sc, reg));
#endif
}
static u_int16_t
sk_win_read_2(sc, reg)
struct sk_softc *sc;
int reg;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
#else
return(CSR_READ_2(sc, reg));
#endif
}
static u_int8_t
sk_win_read_1(sc, reg)
struct sk_softc *sc;
int reg;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
#else
return(CSR_READ_1(sc, reg));
#endif
}
static void
sk_win_write_4(sc, reg, val)
struct sk_softc *sc;
int reg;
u_int32_t val;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
#else
CSR_WRITE_4(sc, reg, val);
#endif
return;
}
static void
sk_win_write_2(sc, reg, val)
struct sk_softc *sc;
int reg;
u_int32_t val;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
#else
CSR_WRITE_2(sc, reg, val);
#endif
return;
}
static void
sk_win_write_1(sc, reg, val)
struct sk_softc *sc;
int reg;
u_int32_t val;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
#else
CSR_WRITE_1(sc, reg, val);
#endif
return;
}
/*
* The VPD EEPROM contains Vital Product Data, as suggested in
* the PCI 2.1 specification. The VPD data is separared into areas
* denoted by resource IDs. The SysKonnect VPD contains an ID string
* resource (the name of the adapter), a read-only area resource
* containing various key/data fields and a read/write area which
* can be used to store asset management information or log messages.
* We read the ID string and read-only into buffers attached to
* the controller softc structure for later use. At the moment,
* we only use the ID string during skc_attach().
*/
static u_int8_t
sk_vpd_readbyte(sc, addr)
struct sk_softc *sc;
int addr;
{
int i;
sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (sk_win_read_2(sc,
SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
break;
}
if (i == SK_TIMEOUT)
return(0);
return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
}
static void
sk_vpd_read_res(sc, res, addr)
struct sk_softc *sc;
struct vpd_res *res;
int addr;
{
int i;
u_int8_t *ptr;
ptr = (u_int8_t *)res;
for (i = 0; i < sizeof(struct vpd_res); i++)
ptr[i] = sk_vpd_readbyte(sc, i + addr);
return;
}
static void
sk_vpd_read(sc)
struct sk_softc *sc;
{
int pos = 0, i;
struct vpd_res res;
if (sc->sk_vpd_prodname != NULL)
free(sc->sk_vpd_prodname, M_DEVBUF);
if (sc->sk_vpd_readonly != NULL)
free(sc->sk_vpd_readonly, M_DEVBUF);
sc->sk_vpd_prodname = NULL;
sc->sk_vpd_readonly = NULL;
sc->sk_vpd_readonly_len = 0;
sk_vpd_read_res(sc, &res, pos);
/*
* Bail out quietly if the eeprom appears to be missing or empty.
*/
if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff)
return;
if (res.vr_id != VPD_RES_ID) {
printf("skc%d: bad VPD resource id: expected %x got %x\n",
sc->sk_unit, VPD_RES_ID, res.vr_id);
return;
}
pos += sizeof(res);
sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
if (sc->sk_vpd_prodname != NULL) {
for (i = 0; i < res.vr_len; i++)
sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
sc->sk_vpd_prodname[i] = '\0';
}
pos += res.vr_len;
sk_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_READ) {
printf("skc%d: bad VPD resource id: expected %x got %x\n",
sc->sk_unit, VPD_RES_READ, res.vr_id);
return;
}
pos += sizeof(res);
sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
for (i = 0; i < res.vr_len; i++)
sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
sc->sk_vpd_readonly_len = res.vr_len;
return;
}
static int
sk_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct sk_if_softc *sc_if;
sc_if = device_get_softc(dev);
switch(sc_if->sk_softc->sk_type) {
case SK_GENESIS:
return(sk_xmac_miibus_readreg(sc_if, phy, reg));
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
return(sk_marv_miibus_readreg(sc_if, phy, reg));
}
return(0);
}
static int
sk_miibus_writereg(dev, phy, reg, val)
device_t dev;
int phy, reg, val;
{
struct sk_if_softc *sc_if;
sc_if = device_get_softc(dev);
switch(sc_if->sk_softc->sk_type) {
case SK_GENESIS:
return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
}
return(0);
}
static void
sk_miibus_statchg(dev)
device_t dev;
{
struct sk_if_softc *sc_if;
sc_if = device_get_softc(dev);
switch(sc_if->sk_softc->sk_type) {
case SK_GENESIS:
sk_xmac_miibus_statchg(sc_if);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
sk_marv_miibus_statchg(sc_if);
break;
}
return;
}
static int
sk_xmac_miibus_readreg(sc_if, phy, reg)
struct sk_if_softc *sc_if;
int phy, reg;
{
int i;
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
return(0);
SK_IF_LOCK(sc_if);
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
SK_XM_READ_2(sc_if, XM_PHY_DATA);
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
XM_MMUCMD_PHYDATARDY)
break;
}
if (i == SK_TIMEOUT) {
printf("sk%d: phy failed to come ready\n",
sc_if->sk_unit);
SK_IF_UNLOCK(sc_if);
return(0);
}
}
DELAY(1);
i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
SK_IF_UNLOCK(sc_if);
return(i);
}
static int
sk_xmac_miibus_writereg(sc_if, phy, reg, val)
struct sk_if_softc *sc_if;
int phy, reg, val;
{
int i;
SK_IF_LOCK(sc_if);
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
for (i = 0; i < SK_TIMEOUT; i++) {
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
break;
}
if (i == SK_TIMEOUT) {
printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
SK_IF_UNLOCK(sc_if);
return(ETIMEDOUT);
}
SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
break;
}
SK_IF_UNLOCK(sc_if);
if (i == SK_TIMEOUT)
printf("sk%d: phy write timed out\n", sc_if->sk_unit);
return(0);
}
static void
sk_xmac_miibus_statchg(sc_if)
struct sk_if_softc *sc_if;
{
struct mii_data *mii;
mii = device_get_softc(sc_if->sk_miibus);
SK_IF_LOCK(sc_if);
/*
* If this is a GMII PHY, manually set the XMAC's
* duplex mode accordingly.
*/
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
} else {
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
}
}
SK_IF_UNLOCK(sc_if);
return;
}
static int
sk_marv_miibus_readreg(sc_if, phy, reg)
struct sk_if_softc *sc_if;
int phy, reg;
{
u_int16_t val;
int i;
if (phy != 0 ||
(sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
return(0);
}
SK_IF_LOCK(sc_if);
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
val = SK_YU_READ_2(sc_if, YUKON_SMICR);
if (val & YU_SMICR_READ_VALID)
break;
}
if (i == SK_TIMEOUT) {
printf("sk%d: phy failed to come ready\n",
sc_if->sk_unit);
SK_IF_UNLOCK(sc_if);
return(0);
}
val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
SK_IF_UNLOCK(sc_if);
return(val);
}
static int
sk_marv_miibus_writereg(sc_if, phy, reg, val)
struct sk_if_softc *sc_if;
int phy, reg, val;
{
int i;
SK_IF_LOCK(sc_if);
SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
break;
}
SK_IF_UNLOCK(sc_if);
return(0);
}
static void
sk_marv_miibus_statchg(sc_if)
struct sk_if_softc *sc_if;
{
return;
}
#define HASH_BITS 6
static u_int32_t
sk_xmchash(addr)
const uint8_t *addr;
{
uint32_t crc;
/* Compute CRC for the address value. */
crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
return (~crc & ((1 << HASH_BITS) - 1));
}
/* gmchash is just a big endian crc */
static u_int32_t
sk_gmchash(addr)
const uint8_t *addr;
{
uint32_t crc;
/* Compute CRC for the address value. */
crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
return (crc & ((1 << HASH_BITS) - 1));
}
static void
sk_setfilt(sc_if, addr, slot)
struct sk_if_softc *sc_if;
caddr_t addr;
int slot;
{
int base;
base = XM_RXFILT_ENTRY(slot);
SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
return;
}
static void
sk_setmulti(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc = sc_if->sk_softc;
struct ifnet *ifp = &sc_if->arpcom.ac_if;
u_int32_t hashes[2] = { 0, 0 };
int h = 0, i;
struct ifmultiaddr *ifma;
u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
/* First, zot all the existing filters. */
switch(sc->sk_type) {
case SK_GENESIS:
for (i = 1; i < XM_RXFILT_MAX; i++)
sk_setfilt(sc_if, (caddr_t)&dummy, i);
SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
break;
}
/* Now program new ones. */
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
} else {
i = 1;
TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
/*
* Program the first XM_RXFILT_MAX multicast groups
* into the perfect filter. For all others,
* use the hash table.
*/
if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
sk_setfilt(sc_if,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
i++;
continue;
}
switch(sc->sk_type) {
case SK_GENESIS:
h = sk_xmchash(
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
h = sk_gmchash(
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
break;
}
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
}
switch(sc->sk_type) {
case SK_GENESIS:
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
XM_MODE_RX_USE_PERFECT);
SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
break;
}
return;
}
static void
sk_setpromisc(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc = sc_if->sk_softc;
struct ifnet *ifp = &sc_if->arpcom.ac_if;
switch(sc->sk_type) {
case SK_GENESIS:
if (ifp->if_flags & IFF_PROMISC) {
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
} else {
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
}
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
if (ifp->if_flags & IFF_PROMISC) {
SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
YU_RCR_UFLEN | YU_RCR_MUFLEN);
} else {
SK_YU_SETBIT_2(sc_if, YUKON_RCR,
YU_RCR_UFLEN | YU_RCR_MUFLEN);
}
break;
}
return;
}
static int
sk_init_rx_ring(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_chain_data *cd = &sc_if->sk_cdata;
struct sk_ring_data *rd = sc_if->sk_rdata;
int i;
bzero((char *)rd->sk_rx_ring,
sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
for (i = 0; i < SK_RX_RING_CNT; i++) {
cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (SK_RX_RING_CNT - 1)) {
cd->sk_rx_chain[i].sk_next =
&cd->sk_rx_chain[0];
rd->sk_rx_ring[i].sk_next =
vtophys(&rd->sk_rx_ring[0]);
} else {
cd->sk_rx_chain[i].sk_next =
&cd->sk_rx_chain[i + 1];
rd->sk_rx_ring[i].sk_next =
vtophys(&rd->sk_rx_ring[i + 1]);
}
}
sc_if->sk_cdata.sk_rx_prod = 0;
sc_if->sk_cdata.sk_rx_cons = 0;
return(0);
}
static void
sk_init_tx_ring(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_chain_data *cd = &sc_if->sk_cdata;
struct sk_ring_data *rd = sc_if->sk_rdata;
int i;
bzero((char *)sc_if->sk_rdata->sk_tx_ring,
sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
for (i = 0; i < SK_TX_RING_CNT; i++) {
cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
if (i == (SK_TX_RING_CNT - 1)) {
cd->sk_tx_chain[i].sk_next =
&cd->sk_tx_chain[0];
rd->sk_tx_ring[i].sk_next =
vtophys(&rd->sk_tx_ring[0]);
} else {
cd->sk_tx_chain[i].sk_next =
&cd->sk_tx_chain[i + 1];
rd->sk_tx_ring[i].sk_next =
vtophys(&rd->sk_tx_ring[i + 1]);
}
}
sc_if->sk_cdata.sk_tx_prod = 0;
sc_if->sk_cdata.sk_tx_cons = 0;
sc_if->sk_cdata.sk_tx_cnt = 0;
return;
}
static int
sk_newbuf(sc_if, c, m)
struct sk_if_softc *sc_if;
struct sk_chain *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct sk_rx_desc *r;
if (m == NULL) {
caddr_t *buf = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return(ENOBUFS);
/* Allocate the jumbo buffer */
buf = sk_jalloc(sc_if);
if (buf == NULL) {
m_freem(m_new);
#ifdef SK_VERBOSE
printf("sk%d: jumbo allocation failed "
"-- packet dropped!\n", sc_if->sk_unit);
#endif
return(ENOBUFS);
}
/* Attach the buffer to the mbuf */
MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
(struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
m_new->m_data = (void *)buf;
m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
} else {
/*
* We're re-using a previously allocated mbuf;
* be sure to re-init pointers and lengths to
* default values.
*/
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
m_new->m_data = m_new->m_ext.ext_buf;
}
/*
* Adjust alignment so packet payload begins on a
* longword boundary. Mandatory for Alpha, useful on
* x86 too.
*/
m_adj(m_new, ETHER_ALIGN);
r = c->sk_desc;
c->sk_mbuf = m_new;
r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
r->sk_ctl = m_new->m_len | SK_RXSTAT;
return(0);
}
/*
* Allocate jumbo buffer storage. The SysKonnect adapters support
* "jumbograms" (9K frames), although SysKonnect doesn't currently
* use them in their drivers. In order for us to use them, we need
* large 9K receive buffers, however standard mbuf clusters are only
* 2048 bytes in size. Consequently, we need to allocate and manage
* our own jumbo buffer pool. Fortunately, this does not require an
* excessive amount of additional code.
*/
static int
sk_alloc_jumbo_mem(sc_if)
struct sk_if_softc *sc_if;
{
caddr_t ptr;
register int i;
struct sk_jpool_entry *entry;
/* Grab a big chunk o' storage. */
sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
return(ENOBUFS);
}
mtx_init(&sc_if->sk_jlist_mtx, "sk_jlist_mtx", NULL, MTX_DEF);
SLIST_INIT(&sc_if->sk_jfree_listhead);
SLIST_INIT(&sc_if->sk_jinuse_listhead);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc_if->sk_cdata.sk_jumbo_buf;
for (i = 0; i < SK_JSLOTS; i++) {
sc_if->sk_cdata.sk_jslots[i] = ptr;
ptr += SK_JLEN;
entry = malloc(sizeof(struct sk_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
sk_free_jumbo_mem(sc_if);
sc_if->sk_cdata.sk_jumbo_buf = NULL;
printf("sk%d: no memory for jumbo "
"buffer queue!\n", sc_if->sk_unit);
return(ENOBUFS);
}
entry->slot = i;
SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
entry, jpool_entries);
}
return(0);
}
static void
sk_free_jumbo_mem(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_jpool_entry *entry;
SK_JLIST_LOCK(sc_if);
/* We cannot release external mbuf storage while in use. */
if (!SLIST_EMPTY(&sc_if->sk_jinuse_listhead)) {
printf("sk%d: will leak jumbo buffer memory!\n", sc_if->sk_unit);
SK_JLIST_UNLOCK(sc_if);
return;
}
while (!SLIST_EMPTY(&sc_if->sk_jfree_listhead)) {
entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
free(entry, M_DEVBUF);
}
SK_JLIST_UNLOCK(sc_if);
mtx_destroy(&sc_if->sk_jlist_mtx);
contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
return;
}
/*
* Allocate a jumbo buffer.
*/
static void *
sk_jalloc(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_jpool_entry *entry;
SK_JLIST_LOCK(sc_if);
entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
if (entry == NULL) {
#ifdef SK_VERBOSE
printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
#endif
SK_JLIST_UNLOCK(sc_if);
return(NULL);
}
SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
SK_JLIST_UNLOCK(sc_if);
return(sc_if->sk_cdata.sk_jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
static void
sk_jfree(buf, args)
void *buf;
void *args;
{
struct sk_if_softc *sc_if;
int i;
struct sk_jpool_entry *entry;
/* Extract the softc struct pointer. */
sc_if = (struct sk_if_softc *)args;
if (sc_if == NULL)
panic("sk_jfree: didn't get softc pointer!");
SK_JLIST_LOCK(sc_if);
/* calculate the slot this buffer belongs to */
i = ((vm_offset_t)buf
- (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
if ((i < 0) || (i >= SK_JSLOTS))
panic("sk_jfree: asked to free buffer that we don't manage!");
entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
if (entry == NULL)
panic("sk_jfree: buffer not in use!");
entry->slot = i;
SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
if (SLIST_EMPTY(&sc_if->sk_jinuse_listhead))
wakeup(sc_if);
SK_JLIST_UNLOCK(sc_if);
return;
}
/*
* Set media options.
*/
static int
sk_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc_if->sk_miibus);
sk_init(sc_if);
mii_mediachg(mii);
return(0);
}
/*
* Report current media status.
*/
static void
sk_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct sk_if_softc *sc_if;
struct mii_data *mii;
sc_if = ifp->if_softc;
mii = device_get_softc(sc_if->sk_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int
sk_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
struct mii_data *mii;
switch(command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu > SK_JUMBO_MTU)
error = EINVAL;
else {
ifp->if_mtu = ifr->ifr_mtu;
ifp->if_flags &= ~IFF_RUNNING;
sk_init(sc_if);
}
break;
case SIOCSIFFLAGS:
SK_IF_LOCK(sc_if);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING) {
if ((ifp->if_flags ^ sc_if->sk_if_flags)
& IFF_PROMISC) {
sk_setpromisc(sc_if);
sk_setmulti(sc_if);
}
} else
sk_init(sc_if);
} else {
if (ifp->if_flags & IFF_RUNNING)
sk_stop(sc_if);
}
sc_if->sk_if_flags = ifp->if_flags;
SK_IF_UNLOCK(sc_if);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_flags & IFF_RUNNING) {
SK_IF_LOCK(sc_if);
sk_setmulti(sc_if);
SK_IF_UNLOCK(sc_if);
error = 0;
}
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc_if->sk_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return(error);
}
/*
* Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
skc_probe(dev)
device_t dev;
{
struct sk_softc *sc;
struct sk_type *t = sk_devs;
sc = device_get_softc(dev);
while(t->sk_name != NULL) {
if ((pci_get_vendor(dev) == t->sk_vid) &&
(pci_get_device(dev) == t->sk_did)) {
device_set_desc(dev, t->sk_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return(ENXIO);
}
/*
* Force the GEnesis into reset, then bring it out of reset.
*/
static void
sk_reset(sc)
struct sk_softc *sc;
{
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
if (SK_YUKON_FAMILY(sc->sk_type))
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
DELAY(1000);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
DELAY(2);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
if (SK_YUKON_FAMILY(sc->sk_type))
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
if (sc->sk_type == SK_GENESIS) {
/* Configure packet arbiter */
sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
}
/* Enable RAM interface */
sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
/*
* Configure interrupt moderation. The moderation timer
* defers interrupts specified in the interrupt moderation
* timer mask based on the timeout specified in the interrupt
* moderation timer init register. Each bit in the timer
* register represents 18.825ns, so to specify a timeout in
* microseconds, we have to multiply by 54.
*/
printf("skc%d: interrupt moderation is %d us\n",
sc->sk_unit, sc->sk_int_mod);
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
return;
}
static int
sk_probe(dev)
device_t dev;
{
struct sk_softc *sc;
sc = device_get_softc(device_get_parent(dev));
/*
* Not much to do here. We always know there will be
* at least one XMAC present, and if there are two,
* skc_attach() will create a second device instance
* for us.
*/
switch (sc->sk_type) {
case SK_GENESIS:
device_set_desc(dev, "XaQti Corp. XMAC II");
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
break;
}
return (BUS_PROBE_DEFAULT);
}
/*
* Each XMAC chip is attached as a separate logical IP interface.
* Single port cards will have only one logical interface of course.
*/
static int
sk_attach(dev)
device_t dev;
{
struct sk_softc *sc;
struct sk_if_softc *sc_if;
struct ifnet *ifp;
int i, port, error;
if (dev == NULL)
return(EINVAL);
error = 0;
sc_if = device_get_softc(dev);
sc = device_get_softc(device_get_parent(dev));
port = *(int *)device_get_ivars(dev);
sc_if->sk_dev = dev;
sc_if->sk_unit = device_get_unit(dev);
sc_if->sk_port = port;
sc_if->sk_softc = sc;
sc->sk_if[port] = sc_if;
if (port == SK_PORT_A)
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
if (port == SK_PORT_B)
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
/* Allocate the descriptor queues. */
sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
M_NOWAIT, M_ZERO, 0xffffffff, PAGE_SIZE, 0);
if (sc_if->sk_rdata == NULL) {
printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
error = ENOMEM;
goto fail;
}
/* Try to allocate memory for jumbo buffers. */
if (sk_alloc_jumbo_mem(sc_if)) {
printf("sk%d: jumbo buffer allocation failed\n",
sc_if->sk_unit);
error = ENOMEM;
goto fail;
}
ifp = &sc_if->arpcom.ac_if;
ifp->if_softc = sc_if;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sk_ioctl;
ifp->if_start = sk_start;
ifp->if_watchdog = sk_watchdog;
ifp->if_init = sk_init;
ifp->if_baudrate = 1000000000;
IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
callout_handle_init(&sc_if->sk_tick_ch);
/*
* Get station address for this interface. Note that
* dual port cards actually come with three station
* addresses: one for each port, plus an extra. The
* extra one is used by the SysKonnect driver software
* as a 'virtual' station address for when both ports
* are operating in failover mode. Currently we don't
* use this extra address.
*/
SK_LOCK(sc);
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc_if->arpcom.ac_enaddr[i] =
sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
/*
* Set up RAM buffer addresses. The NIC will have a certain
* amount of SRAM on it, somewhere between 512K and 2MB. We
* need to divide this up a) between the transmitter and
* receiver and b) between the two XMACs, if this is a
* dual port NIC. Our algotithm is to divide up the memory
* evenly so that everyone gets a fair share.
*/
if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
u_int32_t chunk, val;
chunk = sc->sk_ramsize / 2;
val = sc->sk_rboff / sizeof(u_int64_t);
sc_if->sk_rx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_rx_ramend = val - 1;
sc_if->sk_tx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_tx_ramend = val - 1;
} else {
u_int32_t chunk, val;
chunk = sc->sk_ramsize / 4;
val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
sizeof(u_int64_t);
sc_if->sk_rx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_rx_ramend = val - 1;
sc_if->sk_tx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_tx_ramend = val - 1;
}
/* Read and save PHY type and set PHY address */
sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
switch(sc_if->sk_phytype) {
case SK_PHYTYPE_XMAC:
sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
break;
case SK_PHYTYPE_BCOM:
sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
break;
case SK_PHYTYPE_MARV_COPPER:
sc_if->sk_phyaddr = SK_PHYADDR_MARV;
break;
default:
printf("skc%d: unsupported PHY type: %d\n",
sc->sk_unit, sc_if->sk_phytype);
error = ENODEV;
SK_UNLOCK(sc);
goto fail;
}
/*
* Call MI attach routine. Can't hold locks when calling into ether_*.
*/
SK_UNLOCK(sc);
ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
SK_LOCK(sc);
/*
* Do miibus setup.
*/
switch (sc->sk_type) {
case SK_GENESIS:
sk_init_xmac(sc_if);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
sk_init_yukon(sc_if);
break;
}
SK_UNLOCK(sc);
if (mii_phy_probe(dev, &sc_if->sk_miibus,
sk_ifmedia_upd, sk_ifmedia_sts)) {
printf("skc%d: no PHY found!\n", sc_if->sk_unit);
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
fail:
if (error) {
/* Access should be ok even though lock has been dropped */
sc->sk_if[port] = NULL;
sk_detach(dev);
}
return(error);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
skc_attach(dev)
device_t dev;
{
struct sk_softc *sc;
int unit, error = 0, rid, *port;
uint8_t skrs;
char *pname, *revstr;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = SK_RID;
sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
if (sc->sk_res == NULL) {
printf("sk%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->sk_btag = rman_get_bustag(sc->sk_res);
sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
/* Bail out if chip is not recognized. */
if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
printf("skc%d: unknown device: chipver=%02x, rev=%x\n",
unit, sc->sk_type, sc->sk_rev);
error = ENXIO;
goto fail;
}
/* Allocate interrupt */
rid = 0;
sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->sk_irq == NULL) {
printf("skc%d: couldn't map interrupt\n", unit);
error = ENXIO;
goto fail;
}
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
"SK interrupt moderation");
/* Pull in device tunables. */
sc->sk_int_mod = SK_IM_DEFAULT;
error = resource_int_value(device_get_name(dev), unit,
"int_mod", &sc->sk_int_mod);
if (error == 0) {
if (sc->sk_int_mod < SK_IM_MIN ||
sc->sk_int_mod > SK_IM_MAX) {
printf("skc%d: int_mod value out of range; "
"using default: %d\n", unit, SK_IM_DEFAULT);
sc->sk_int_mod = SK_IM_DEFAULT;
}
}
/* Reset the adapter. */
sk_reset(sc);
sc->sk_unit = unit;
/* Read and save vital product data from EEPROM. */
sk_vpd_read(sc);
skrs = sk_win_read_1(sc, SK_EPROM0);
if (sc->sk_type == SK_GENESIS) {
/* Read and save RAM size and RAMbuffer offset */
switch(skrs) {
case SK_RAMSIZE_512K_64:
sc->sk_ramsize = 0x80000;
sc->sk_rboff = SK_RBOFF_0;
break;
case SK_RAMSIZE_1024K_64:
sc->sk_ramsize = 0x100000;
sc->sk_rboff = SK_RBOFF_80000;
break;
case SK_RAMSIZE_1024K_128:
sc->sk_ramsize = 0x100000;
sc->sk_rboff = SK_RBOFF_0;
break;
case SK_RAMSIZE_2048K_128:
sc->sk_ramsize = 0x200000;
sc->sk_rboff = SK_RBOFF_0;
break;
default:
printf("skc%d: unknown ram size: %d\n",
sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
error = ENXIO;
goto fail;
}
} else { /* SK_YUKON_FAMILY */
if (skrs == 0x00)
sc->sk_ramsize = 0x20000;
else
sc->sk_ramsize = skrs * (1<<12);
sc->sk_rboff = SK_RBOFF_0;
}
/* Read and save physical media type */
switch(sk_win_read_1(sc, SK_PMDTYPE)) {
case SK_PMD_1000BASESX:
sc->sk_pmd = IFM_1000_SX;
break;
case SK_PMD_1000BASELX:
sc->sk_pmd = IFM_1000_LX;
break;
case SK_PMD_1000BASECX:
sc->sk_pmd = IFM_1000_CX;
break;
case SK_PMD_1000BASETX:
sc->sk_pmd = IFM_1000_T;
break;
default:
printf("skc%d: unknown media type: 0x%x\n",
sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
error = ENXIO;
goto fail;
}
/* Determine whether to name it with VPD PN or just make it up.
* Marvell Yukon VPD PN seems to freqently be bogus. */
switch (pci_get_device(dev)) {
case DEVICEID_SK_V1:
case DEVICEID_BELKIN_5005:
case DEVICEID_3COM_3C940:
case DEVICEID_LINKSYS_EG1032:
case DEVICEID_DLINK_DGE530T:
/* Stay with VPD PN. */
pname = sc->sk_vpd_prodname;
break;
case DEVICEID_SK_V2:
/* YUKON VPD PN might bear no resemblance to reality. */
switch (sc->sk_type) {
case SK_GENESIS:
/* Stay with VPD PN. */
pname = sc->sk_vpd_prodname;
break;
case SK_YUKON:
pname = "Marvell Yukon Gigabit Ethernet";
break;
case SK_YUKON_LITE:
pname = "Marvell Yukon Lite Gigabit Ethernet";
break;
case SK_YUKON_LP:
pname = "Marvell Yukon LP Gigabit Ethernet";
break;
default:
pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
break;
}
/* Yukon Lite Rev. A0 needs special test. */
if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
u_int32_t far;
u_int8_t testbyte;
/* Save flash address register before testing. */
far = sk_win_read_4(sc, SK_EP_ADDR);
sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
if (testbyte != 0x00) {
/* Yukon Lite Rev. A0 detected. */
sc->sk_type = SK_YUKON_LITE;
sc->sk_rev = SK_YUKON_LITE_REV_A0;
/* Restore flash address register. */
sk_win_write_4(sc, SK_EP_ADDR, far);
}
}
break;
default:
device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
"chipver=%02x, rev=%x\n",
pci_get_vendor(dev), pci_get_device(dev),
sc->sk_type, sc->sk_rev);
error = ENXIO;
goto fail;
}
if (sc->sk_type == SK_YUKON_LITE) {
switch (sc->sk_rev) {
case SK_YUKON_LITE_REV_A0:
revstr = "A0";
break;
case SK_YUKON_LITE_REV_A1:
revstr = "A1";
break;
case SK_YUKON_LITE_REV_A3:
revstr = "A3";
break;
default:
revstr = "";
break;
}
} else {
revstr = "";
}
/* Announce the product name and more VPD data if there. */
device_printf(dev, "%s rev. %s(0x%x)\n",
pname != NULL ? pname : "<unknown>", revstr, sc->sk_rev);
if (bootverbose) {
if (sc->sk_vpd_readonly != NULL &&
sc->sk_vpd_readonly_len != 0) {
char buf[256];
char *dp = sc->sk_vpd_readonly;
uint16_t l, len = sc->sk_vpd_readonly_len;
while (len >= 3) {
if ((*dp == 'P' && *(dp+1) == 'N') ||
(*dp == 'E' && *(dp+1) == 'C') ||
(*dp == 'M' && *(dp+1) == 'N') ||
(*dp == 'S' && *(dp+1) == 'N')) {
l = 0;
while (l < *(dp+2)) {
buf[l] = *(dp+3+l);
++l;
}
buf[l] = '\0';
device_printf(dev, "%c%c: %s\n",
*dp, *(dp+1), buf);
len -= (3 + l);
dp += (3 + l);
} else {
len -= (3 + *(dp+2));
dp += (3 + *(dp+2));
}
}
}
device_printf(dev, "chip ver = 0x%02x\n", sc->sk_type);
device_printf(dev, "chip rev = 0x%02x\n", sc->sk_rev);
device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
}
sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
if (sc->sk_devs[SK_PORT_A] == NULL) {
device_printf(dev, "failed to add child for PORT_A\n");
error = ENXIO;
goto fail;
}
port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
if (port == NULL) {
device_printf(dev, "failed to allocate memory for "
"ivars of PORT_A\n");
error = ENXIO;
goto fail;
}
*port = SK_PORT_A;
device_set_ivars(sc->sk_devs[SK_PORT_A], port);
if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
if (sc->sk_devs[SK_PORT_B] == NULL) {
device_printf(dev, "failed to add child for PORT_B\n");
error = ENXIO;
goto fail;
}
port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
if (port == NULL) {
device_printf(dev, "failed to allocate memory for "
"ivars of PORT_B\n");
error = ENXIO;
goto fail;
}
*port = SK_PORT_B;
device_set_ivars(sc->sk_devs[SK_PORT_B], port);
}
/* Turn on the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
bus_generic_attach(dev);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET|INTR_MPSAFE,
sk_intr, sc, &sc->sk_intrhand);
if (error) {
printf("skc%d: couldn't set up irq\n", unit);
goto fail;
}
fail:
if (error)
skc_detach(dev);
return(error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
sk_detach(dev)
device_t dev;
{
struct sk_if_softc *sc_if;
struct ifnet *ifp;
sc_if = device_get_softc(dev);
KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
("sk mutex not initialized in sk_detach"));
SK_IF_LOCK(sc_if);
ifp = &sc_if->arpcom.ac_if;
/* These should only be active if attach_xmac succeeded */
if (device_is_attached(dev)) {
sk_stop(sc_if);
/* Can't hold locks while calling detach */
SK_IF_UNLOCK(sc_if);
ether_ifdetach(ifp);
SK_IF_LOCK(sc_if);
}
/*
* We're generally called from skc_detach() which is using
* device_delete_child() to get to here. It's already trashed
* miibus for us, so don't do it here or we'll panic.
*/
/*
if (sc_if->sk_miibus != NULL)
device_delete_child(dev, sc_if->sk_miibus);
*/
bus_generic_detach(dev);
if (sc_if->sk_cdata.sk_jumbo_buf != NULL)
sk_free_jumbo_mem(sc_if);
if (sc_if->sk_rdata != NULL) {
contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
M_DEVBUF);
}
SK_IF_UNLOCK(sc_if);
return(0);
}
static int
skc_detach(dev)
device_t dev;
{
struct sk_softc *sc;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
if (device_is_alive(dev)) {
if (sc->sk_devs[SK_PORT_A] != NULL) {
free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
}
if (sc->sk_devs[SK_PORT_B] != NULL) {
free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
}
bus_generic_detach(dev);
}
if (sc->sk_vpd_prodname != NULL)
free(sc->sk_vpd_prodname, M_DEVBUF);
if (sc->sk_vpd_readonly != NULL)
free(sc->sk_vpd_readonly, M_DEVBUF);
if (sc->sk_intrhand)
bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
if (sc->sk_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
if (sc->sk_res)
bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
mtx_destroy(&sc->sk_mtx);
return(0);
}
static int
sk_encap(sc_if, m_head, txidx)
struct sk_if_softc *sc_if;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct sk_tx_desc *f = NULL;
struct mbuf *m;
u_int32_t frag, cur, cnt = 0;
SK_IF_LOCK_ASSERT(sc_if);
m = m_head;
cur = frag = *txidx;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if ((SK_TX_RING_CNT -
(sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
return(ENOBUFS);
f = &sc_if->sk_rdata->sk_tx_ring[frag];
f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
if (cnt == 0)
f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
else
f->sk_ctl |= SK_TXCTL_OWN;
cur = frag;
SK_INC(frag, SK_TX_RING_CNT);
cnt++;
}
}
if (m != NULL)
return(ENOBUFS);
sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
sc_if->sk_cdata.sk_tx_cnt += cnt;
*txidx = frag;
return(0);
}
static void
sk_start(ifp)
struct ifnet *ifp;
{
struct sk_softc *sc;
struct sk_if_softc *sc_if;
struct mbuf *m_head = NULL;
u_int32_t idx;
sc_if = ifp->if_softc;
sc = sc_if->sk_softc;
SK_IF_LOCK(sc_if);
idx = sc_if->sk_cdata.sk_tx_prod;
while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (sk_encap(sc_if, m_head, &idx)) {
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
/* Transmit */
if (idx != sc_if->sk_cdata.sk_tx_prod) {
sc_if->sk_cdata.sk_tx_prod = idx;
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
/* Set a timeout in case the chip goes out to lunch. */
ifp->if_timer = 5;
}
SK_IF_UNLOCK(sc_if);
return;
}
static void
sk_watchdog(ifp)
struct ifnet *ifp;
{
struct sk_if_softc *sc_if;
sc_if = ifp->if_softc;
printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
ifp->if_flags &= ~IFF_RUNNING;
sk_init(sc_if);
return;
}
static void
skc_shutdown(dev)
device_t dev;
{
struct sk_softc *sc;
sc = device_get_softc(dev);
SK_LOCK(sc);
/* Turn off the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
/*
* Reset the GEnesis controller. Doing this should also
* assert the resets on the attached XMAC(s).
*/
sk_reset(sc);
SK_UNLOCK(sc);
return;
}
static void
sk_rxeof(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
struct mbuf *m;
struct ifnet *ifp;
struct sk_chain *cur_rx;
int total_len = 0;
int i;
u_int32_t rxstat;
sc = sc_if->sk_softc;
ifp = &sc_if->arpcom.ac_if;
i = sc_if->sk_cdata.sk_rx_prod;
cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
SK_LOCK_ASSERT(sc);
while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
m = cur_rx->sk_mbuf;
cur_rx->sk_mbuf = NULL;
total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
SK_INC(i, SK_RX_RING_CNT);
if (rxstat & XM_RXSTAT_ERRFRAME) {
ifp->if_ierrors++;
sk_newbuf(sc_if, cur_rx, m);
continue;
}
/*
* Try to allocate a new jumbo buffer. If that
* fails, copy the packet to mbufs and put the
* jumbo buffer back in the ring so it can be
* re-used. If allocating mbufs fails, then we
* have to drop the packet.
*/
if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
struct mbuf *m0;
m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
ifp, NULL);
sk_newbuf(sc_if, cur_rx, m);
if (m0 == NULL) {
printf("sk%d: no receive buffers "
"available -- packet dropped!\n",
sc_if->sk_unit);
ifp->if_ierrors++;
continue;
}
m = m0;
} else {
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
}
ifp->if_ipackets++;
SK_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
SK_LOCK(sc);
}
sc_if->sk_cdata.sk_rx_prod = i;
return;
}
static void
sk_txeof(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
struct sk_tx_desc *cur_tx;
struct ifnet *ifp;
u_int32_t idx;
sc = sc_if->sk_softc;
ifp = &sc_if->arpcom.ac_if;
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
idx = sc_if->sk_cdata.sk_tx_cons;
while(idx != sc_if->sk_cdata.sk_tx_prod) {
cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
if (cur_tx->sk_ctl & SK_TXCTL_OWN)
break;
if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
ifp->if_opackets++;
if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
}
sc_if->sk_cdata.sk_tx_cnt--;
SK_INC(idx, SK_TX_RING_CNT);
}
if (sc_if->sk_cdata.sk_tx_cnt == 0) {
ifp->if_timer = 0;
} else /* nudge chip to keep tx ring moving */
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
ifp->if_flags &= ~IFF_OACTIVE;
sc_if->sk_cdata.sk_tx_cons = idx;
}
static void
sk_tick(xsc_if)
void *xsc_if;
{
struct sk_if_softc *sc_if;
struct mii_data *mii;
struct ifnet *ifp;
int i;
sc_if = xsc_if;
SK_IF_LOCK(sc_if);
ifp = &sc_if->arpcom.ac_if;
mii = device_get_softc(sc_if->sk_miibus);
if (!(ifp->if_flags & IFF_UP)) {
SK_IF_UNLOCK(sc_if);
return;
}
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
sk_intr_bcom(sc_if);
SK_IF_UNLOCK(sc_if);
return;
}
/*
* According to SysKonnect, the correct way to verify that
* the link has come back up is to poll bit 0 of the GPIO
* register three times. This pin has the signal from the
* link_sync pin connected to it; if we read the same link
* state 3 times in a row, we know the link is up.
*/
for (i = 0; i < 3; i++) {
if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
break;
}
if (i != 3) {
sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
SK_IF_UNLOCK(sc_if);
return;
}
/* Turn the GP0 interrupt back on. */
SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
SK_XM_READ_2(sc_if, XM_ISR);
mii_tick(mii);
untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
SK_IF_UNLOCK(sc_if);
return;
}
static void
sk_intr_bcom(sc_if)
struct sk_if_softc *sc_if;
{
struct mii_data *mii;
struct ifnet *ifp;
int status;
mii = device_get_softc(sc_if->sk_miibus);
ifp = &sc_if->arpcom.ac_if;
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
/*
* Read the PHY interrupt register to make sure
* we clear any pending interrupts.
*/
status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
if (!(ifp->if_flags & IFF_RUNNING)) {
sk_init_xmac(sc_if);
return;
}
if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
int lstat;
lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
BRGPHY_MII_AUXSTS);
if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
mii_mediachg(mii);
/* Turn off the link LED. */
SK_IF_WRITE_1(sc_if, 0,
SK_LINKLED1_CTL, SK_LINKLED_OFF);
sc_if->sk_link = 0;
} else if (status & BRGPHY_ISR_LNK_CHG) {
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
BRGPHY_MII_IMR, 0xFF00);
mii_tick(mii);
sc_if->sk_link = 1;
/* Turn on the link LED. */
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
SK_LINKLED_BLINK_OFF);
} else {
mii_tick(mii);
sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
}
}
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
return;
}
static void
sk_intr_xmac(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
u_int16_t status;
sc = sc_if->sk_softc;
status = SK_XM_READ_2(sc_if, XM_ISR);
/*
* Link has gone down. Start MII tick timeout to
* watch for link resync.
*/
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
if (status & XM_ISR_GP0_SET) {
SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
}
if (status & XM_ISR_AUTONEG_DONE) {
sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
}
}
if (status & XM_IMR_TX_UNDERRUN)
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
if (status & XM_IMR_RX_OVERRUN)
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
status = SK_XM_READ_2(sc_if, XM_ISR);
return;
}
static void
sk_intr_yukon(sc_if)
struct sk_if_softc *sc_if;
{
int status;
status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
return;
}
static void
sk_intr(xsc)
void *xsc;
{
struct sk_softc *sc = xsc;
struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL;
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
u_int32_t status;
SK_LOCK(sc);
sc_if0 = sc->sk_if[SK_PORT_A];
sc_if1 = sc->sk_if[SK_PORT_B];
if (sc_if0 != NULL)
ifp0 = &sc_if0->arpcom.ac_if;
if (sc_if1 != NULL)
ifp1 = &sc_if1->arpcom.ac_if;
for (;;) {
status = CSR_READ_4(sc, SK_ISSR);
if (!(status & sc->sk_intrmask))
break;
/* Handle receive interrupts first. */
if (status & SK_ISR_RX1_EOF) {
sk_rxeof(sc_if0);
CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
}
if (status & SK_ISR_RX2_EOF) {
sk_rxeof(sc_if1);
CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
}
/* Then transmit interrupts. */
if (status & SK_ISR_TX1_S_EOF) {
sk_txeof(sc_if0);
CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
SK_TXBMU_CLR_IRQ_EOF);
}
if (status & SK_ISR_TX2_S_EOF) {
sk_txeof(sc_if1);
CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
SK_TXBMU_CLR_IRQ_EOF);
}
/* Then MAC interrupts. */
if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
if (sc->sk_type == SK_GENESIS)
sk_intr_xmac(sc_if0);
else
sk_intr_yukon(sc_if0);
}
if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
if (sc->sk_type == SK_GENESIS)
sk_intr_xmac(sc_if1);
else
sk_intr_yukon(sc_if1);
}
if (status & SK_ISR_EXTERNAL_REG) {
if (ifp0 != NULL &&
sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
sk_intr_bcom(sc_if0);
if (ifp1 != NULL &&
sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
sk_intr_bcom(sc_if1);
}
}
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
sk_start(ifp0);
if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
sk_start(ifp1);
SK_UNLOCK(sc);
return;
}
static void
sk_init_xmac(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
struct ifnet *ifp;
struct sk_bcom_hack bhack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
{ 0, 0 } };
sc = sc_if->sk_softc;
ifp = &sc_if->arpcom.ac_if;
/* Unreset the XMAC. */
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
DELAY(1000);
/* Reset the XMAC's internal state. */
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
/* Save the XMAC II revision */
sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
/*
* Perform additional initialization for external PHYs,
* namely for the 1000baseTX cards that use the XMAC's
* GMII mode.
*/
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
int i = 0;
u_int32_t val;
/* Take PHY out of reset. */
val = sk_win_read_4(sc, SK_GPIO);
if (sc_if->sk_port == SK_PORT_A)
val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
else
val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
sk_win_write_4(sc, SK_GPIO, val);
/* Enable GMII mode on the XMAC. */
SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
DELAY(10000);
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
BRGPHY_MII_IMR, 0xFFF0);
/*
* Early versions of the BCM5400 apparently have
* a bug that requires them to have their reserved
* registers initialized to some magic values. I don't
* know what the numbers do, I'm just the messenger.
*/
if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
== 0x6041) {
while(bhack[i].reg) {
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
bhack[i].reg, bhack[i].val);
i++;
}
}
}
/* Set station address */
SK_XM_WRITE_2(sc_if, XM_PAR0,
*(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
SK_XM_WRITE_2(sc_if, XM_PAR1,
*(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
SK_XM_WRITE_2(sc_if, XM_PAR2,
*(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
if (ifp->if_flags & IFF_BROADCAST) {
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
} else {
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
}
/* We don't need the FCS appended to the packet. */
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
/* We want short frames padded to 60 bytes. */
SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
/*
* Enable the reception of all error frames. This is is
* a necessary evil due to the design of the XMAC. The
* XMAC's receive FIFO is only 8K in size, however jumbo
* frames can be up to 9000 bytes in length. When bad
* frame filtering is enabled, the XMAC's RX FIFO operates
* in 'store and forward' mode. For this to work, the
* entire frame has to fit into the FIFO, but that means
* that jumbo frames larger than 8192 bytes will be
* truncated. Disabling all bad frame filtering causes
* the RX FIFO to operate in streaming mode, in which
* case the XMAC will start transfering frames out of the
* RX FIFO as soon as the FIFO threshold is reached.
*/
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
XM_MODE_RX_INRANGELEN);
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
else
SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
/*
* Bump up the transmit threshold. This helps hold off transmit
* underruns when we're blasting traffic from both ports at once.
*/
SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
/* Set promiscuous mode */
sk_setpromisc(sc_if);
/* Set multicast filter */
sk_setmulti(sc_if);
/* Clear and enable interrupts */
SK_XM_READ_2(sc_if, XM_ISR);
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
else
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
/* Configure MAC arbiter */
switch(sc_if->sk_xmac_rev) {
case XM_XMAC_REV_B2:
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
break;
case XM_XMAC_REV_C1:
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
break;
default:
break;
}
sk_win_write_2(sc, SK_MACARB_CTL,
SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
sc_if->sk_link = 1;
return;
}
static void
sk_init_yukon(sc_if)
struct sk_if_softc *sc_if;
{
u_int32_t phy;
u_int16_t reg;
struct sk_softc *sc;
struct ifnet *ifp;
int i;
sc = sc_if->sk_softc;
ifp = &sc_if->arpcom.ac_if;
if (sc->sk_type == SK_YUKON_LITE &&
sc->sk_rev == SK_YUKON_LITE_REV_A3) {
/* Take PHY out of reset. */
sk_win_write_4(sc, SK_GPIO,
(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
}
/* GMAC and GPHY Reset */
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
DELAY(1000);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
DELAY(1000);
phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
switch(sc_if->sk_softc->sk_pmd) {
case IFM_1000_SX:
case IFM_1000_LX:
phy |= SK_GPHY_FIBER;
break;
case IFM_1000_CX:
case IFM_1000_T:
phy |= SK_GPHY_COPPER;
break;
}
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
DELAY(1000);
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
/* unused read of the interrupt source register */
SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
reg = SK_YU_READ_2(sc_if, YUKON_PAR);
/* MIB Counter Clear Mode set */
reg |= YU_PAR_MIB_CLR;
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
/* MIB Counter Clear Mode clear */
reg &= ~YU_PAR_MIB_CLR;
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
/* receive control reg */
SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
/* transmit parameter register */
SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
/* serial mode register */
reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
reg |= YU_SMR_MFL_JUMBO;
SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
/* Setup Yukon's address */
for (i = 0; i < 3; i++) {
/* Write Source Address 1 (unicast filter) */
SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
sc_if->arpcom.ac_enaddr[i * 2] |
sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
}
for (i = 0; i < 3; i++) {
reg = sk_win_read_2(sc_if->sk_softc,
SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
}
/* Set promiscuous mode */
sk_setpromisc(sc_if);
/* Set multicast filter */
sk_setmulti(sc_if);
/* enable interrupt mask for counter overflows */
SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
/* Configure RX MAC FIFO */
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
/* Configure TX MAC FIFO */
SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
}
/*
* Note that to properly initialize any part of the GEnesis chip,
* you first have to take it out of reset mode.
*/
static void
sk_init(xsc)
void *xsc;
{
struct sk_if_softc *sc_if = xsc;
struct sk_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
u_int16_t reg;
u_int32_t imr;
SK_IF_LOCK(sc_if);
ifp = &sc_if->arpcom.ac_if;
sc = sc_if->sk_softc;
mii = device_get_softc(sc_if->sk_miibus);
if (ifp->if_flags & IFF_RUNNING) {
SK_IF_UNLOCK(sc_if);
return;
}
/* Cancel pending I/O and free all RX/TX buffers. */
sk_stop(sc_if);
if (sc->sk_type == SK_GENESIS) {
/* Configure LINK_SYNC LED */
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
SK_LINKLED_LINKSYNC_ON);
/* Configure RX LED */
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
SK_RXLEDCTL_COUNTER_START);
/* Configure TX LED */
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
SK_TXLEDCTL_COUNTER_START);
}
/* Configure I2C registers */
/* Configure XMAC(s) */
switch (sc->sk_type) {
case SK_GENESIS:
sk_init_xmac(sc_if);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
sk_init_yukon(sc_if);
break;
}
mii_mediachg(mii);
if (sc->sk_type == SK_GENESIS) {
/* Configure MAC FIFOs */
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
}
/* Configure transmit arbiter(s) */
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
/* Configure RAMbuffers */
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
/* Configure BMUs */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
/* Init descriptors */
if (sk_init_rx_ring(sc_if) == ENOBUFS) {
printf("sk%d: initialization failed: no "
"memory for rx buffers\n", sc_if->sk_unit);
sk_stop(sc_if);
SK_IF_UNLOCK(sc_if);
return;
}
sk_init_tx_ring(sc_if);
/* Set interrupt moderation if changed via sysctl. */
/* SK_LOCK(sc); */
imr = sk_win_read_4(sc, SK_IMTIMERINIT);
if (imr != SK_IM_USECS(sc->sk_int_mod)) {
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
printf("skc%d: interrupt moderation is %d us\n",
sc->sk_unit, sc->sk_int_mod);
}
/* SK_UNLOCK(sc); */
/* Configure interrupt handling */
CSR_READ_4(sc, SK_ISSR);
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask |= SK_INTRS1;
else
sc->sk_intrmask |= SK_INTRS2;
sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
/* Start BMUs. */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
switch(sc->sk_type) {
case SK_GENESIS:
/* Enable XMACs TX and RX state machines */
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
SK_IF_UNLOCK(sc_if);
return;
}
static void
sk_stop(sc_if)
struct sk_if_softc *sc_if;
{
int i;
struct sk_softc *sc;
struct ifnet *ifp;
SK_IF_LOCK(sc_if);
sc = sc_if->sk_softc;
ifp = &sc_if->arpcom.ac_if;
untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
u_int32_t val;
/* Put PHY back into reset. */
val = sk_win_read_4(sc, SK_GPIO);
if (sc_if->sk_port == SK_PORT_A) {
val |= SK_GPIO_DIR0;
val &= ~SK_GPIO_DAT0;
} else {
val |= SK_GPIO_DIR2;
val &= ~SK_GPIO_DAT2;
}
sk_win_write_4(sc, SK_GPIO, val);
}
/* Turn off various components of this interface. */
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
switch (sc->sk_type) {
case SK_GENESIS:
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
break;
}
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
/* Disable interrupts */
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask &= ~SK_INTRS1;
else
sc->sk_intrmask &= ~SK_INTRS2;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
SK_XM_READ_2(sc_if, XM_ISR);
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
/* Free RX and TX mbufs still in the queues. */
for (i = 0; i < SK_RX_RING_CNT; i++) {
if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
}
}
for (i = 0; i < SK_TX_RING_CNT; i++) {
if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
}
}
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
SK_IF_UNLOCK(sc_if);
return;
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (!arg1)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
}