freebsd-skq/sys/netinet/if_ether.h
1995-05-30 08:16:23 +00:00

237 lines
7.9 KiB
C

/*
* Copyright (c) 1982, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if_ether.h 8.1 (Berkeley) 6/10/93
* $Id: if_ether.h,v 1.8 1995/04/02 01:26:26 wpaul Exp $
*/
#ifndef _NETINET_IF_ETHER_H_
#define _NETINET_IF_ETHER_H_
/*
* Structure of a 10Mb/s Ethernet header.
*/
struct ether_header {
u_char ether_dhost[6];
u_char ether_shost[6];
u_short ether_type;
};
/*
* Structure of a 48-bit Ethernet address.
*/
struct ether_addr {
u_char octet[6];
};
#define ETHERTYPE_PUP 0x0200 /* PUP protocol */
#define ETHERTYPE_IP 0x0800 /* IP protocol */
#define ETHERTYPE_ARP 0x0806 /* Addr. resolution protocol */
#define ETHERTYPE_REVARP 0x8035 /* reverse Addr. resolution protocol */
/*
* The ETHERTYPE_NTRAILER packet types starting at ETHERTYPE_TRAIL have
* (type-ETHERTYPE_TRAIL)*512 bytes of data followed
* by an ETHER type (as given above) and then the (variable-length) header.
*/
#define ETHERTYPE_TRAIL 0x1000 /* Trailer packet */
#define ETHERTYPE_NTRAILER 16
#define ETHERMTU 1500
#define ETHERMIN (60-14)
#ifdef KERNEL
/*
* Macro to map an IP multicast address to an Ethernet multicast address.
* The high-order 25 bits of the Ethernet address are statically assigned,
* and the low-order 23 bits are taken from the low end of the IP address.
*/
#define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \
/* struct in_addr *ipaddr; */ \
/* u_char enaddr[6]; */ \
{ \
(enaddr)[0] = 0x01; \
(enaddr)[1] = 0x00; \
(enaddr)[2] = 0x5e; \
(enaddr)[3] = ((u_char *)ipaddr)[1] & 0x7f; \
(enaddr)[4] = ((u_char *)ipaddr)[2]; \
(enaddr)[5] = ((u_char *)ipaddr)[3]; \
}
#endif
/*
* Ethernet Address Resolution Protocol.
*
* See RFC 826 for protocol description. Structure below is adapted
* to resolving internet addresses. Field names used correspond to
* RFC 826.
*/
struct ether_arp {
struct arphdr ea_hdr; /* fixed-size header */
u_char arp_sha[6]; /* sender hardware address */
u_char arp_spa[4]; /* sender protocol address */
u_char arp_tha[6]; /* target hardware address */
u_char arp_tpa[4]; /* target protocol address */
};
#define arp_hrd ea_hdr.ar_hrd
#define arp_pro ea_hdr.ar_pro
#define arp_hln ea_hdr.ar_hln
#define arp_pln ea_hdr.ar_pln
#define arp_op ea_hdr.ar_op
/*
* Structure shared between the ethernet driver modules and
* the address resolution code. For example, each ec_softc or il_softc
* begins with this structure.
*/
struct arpcom {
struct ifnet ac_if; /* network-visible interface */
u_char ac_enaddr[6]; /* ethernet hardware address */
struct in_addr ac_ipaddr; /* copy of ip address- XXX */
struct ether_multi *ac_multiaddrs; /* list of ether multicast addrs */
int ac_multicnt; /* length of ac_multiaddrs list */
};
struct llinfo_arp {
struct llinfo_arp *la_next;
struct llinfo_arp *la_prev;
struct rtentry *la_rt;
struct mbuf *la_hold; /* last packet until resolved/timeout */
long la_asked; /* last time we QUERIED for this addr */
#define la_timer la_rt->rt_rmx.rmx_expire /* deletion time in seconds */
};
struct sockaddr_inarp {
u_char sin_len;
u_char sin_family;
u_short sin_port;
struct in_addr sin_addr;
struct in_addr sin_srcaddr;
u_short sin_tos;
u_short sin_other;
#define SIN_PROXY 1
};
/*
* IP and ethernet specific routing flags
*/
#define RTF_USETRAILERS RTF_PROTO1 /* use trailers */
#define RTF_ANNOUNCE RTF_PROTO2 /* announce new arp entry */
#ifdef KERNEL
extern u_char etherbroadcastaddr[6];
extern u_char ether_ipmulticast_min[6];
extern u_char ether_ipmulticast_max[6];
extern struct ifqueue arpintrq;
struct llinfo_arp *arptnew __P((struct in_addr *));
extern struct llinfo_arp llinfo_arp; /* head of the llinfo queue */
void arpwhohas __P((struct arpcom *, struct in_addr *));
void arpintr __P((void));
int arpresolve __P((struct arpcom *, struct rtentry *, struct mbuf *,
struct sockaddr *, u_char *, struct rtentry *));
void arp_ifinit __P((struct arpcom *, struct ifaddr *));
int ether_addmulti __P((struct ifreq *, struct arpcom *));
int ether_delmulti __P((struct ifreq *, struct arpcom *));
/*
* Ethernet multicast address structure. There is one of these for each
* multicast address or range of multicast addresses that we are supposed
* to listen to on a particular interface. They are kept in a linked list,
* rooted in the interface's arpcom structure. (This really has nothing to
* do with ARP, or with the Internet address family, but this appears to be
* the minimally-disrupting place to put it.)
*/
struct ether_multi {
u_char enm_addrlo[6]; /* low or only address of range */
u_char enm_addrhi[6]; /* high or only address of range */
struct arpcom *enm_ac; /* back pointer to arpcom */
u_int enm_refcount; /* no. claims to this addr/range */
struct ether_multi *enm_next; /* ptr to next ether_multi */
};
/*
* Structure used by macros below to remember position when stepping through
* all of the ether_multi records.
*/
struct ether_multistep {
struct ether_multi *e_enm;
};
/*
* Macro for looking up the ether_multi record for a given range of Ethernet
* multicast addresses connected to a given arpcom structure. If no matching
* record is found, "enm" returns NULL.
*/
#define ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm) \
/* u_char addrlo[6]; */ \
/* u_char addrhi[6]; */ \
/* struct arpcom *ac; */ \
/* struct ether_multi *enm; */ \
{ \
for ((enm) = (ac)->ac_multiaddrs; \
(enm) != NULL && \
(bcmp((enm)->enm_addrlo, (addrlo), 6) != 0 || \
bcmp((enm)->enm_addrhi, (addrhi), 6) != 0); \
(enm) = (enm)->enm_next); \
}
/*
* Macro to step through all of the ether_multi records, one at a time.
* The current position is remembered in "step", which the caller must
* provide. ETHER_FIRST_MULTI(), below, must be called to initialize "step"
* and get the first record. Both macros return a NULL "enm" when there
* are no remaining records.
*/
#define ETHER_NEXT_MULTI(step, enm) \
/* struct ether_multistep step; */ \
/* struct ether_multi *enm; */ \
{ \
if (((enm) = (step).e_enm) != NULL) \
(step).e_enm = (enm)->enm_next; \
}
#define ETHER_FIRST_MULTI(step, ac, enm) \
/* struct ether_multistep step; */ \
/* struct arpcom *ac; */ \
/* struct ether_multi *enm; */ \
{ \
(step).e_enm = (ac)->ac_multiaddrs; \
ETHER_NEXT_MULTI((step), (enm)); \
}
#endif
#endif