946 lines
39 KiB
C

/*-
* Copyright (c) 1986, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)proc.h 8.15 (Berkeley) 5/19/95
* $FreeBSD$
*/
#ifndef _SYS_PROC_H_
#define _SYS_PROC_H_
#include <sys/callout.h> /* For struct callout. */
#include <sys/event.h> /* For struct klist. */
#ifndef _KERNEL
#include <sys/filedesc.h>
#endif
#include <sys/queue.h>
#include <sys/_lock.h>
#include <sys/_mutex.h>
#include <sys/priority.h>
#include <sys/rtprio.h> /* XXX. */
#include <sys/runq.h>
#include <sys/sigio.h>
#include <sys/signal.h>
#ifndef _KERNEL
#include <sys/time.h> /* For structs itimerval, timeval. */
#else
#include <sys/pcpu.h>
#endif
#include <sys/ucontext.h>
#include <sys/ucred.h>
#include <machine/proc.h> /* Machine-dependent proc substruct. */
/*
* One structure allocated per session.
*
* List of locks
* (m) locked by s_mtx mtx
* (e) locked by proctree_lock sx
* (c) const until freeing
*/
struct session {
int s_count; /* (m) Ref cnt; pgrps in session. */
struct proc *s_leader; /* (m + e) Session leader. */
struct vnode *s_ttyvp; /* (m) Vnode of controlling tty. */
struct tty *s_ttyp; /* (m) Controlling tty. */
pid_t s_sid; /* (c) Session ID. */
/* (m) Setlogin() name: */
char s_login[roundup(MAXLOGNAME, sizeof(long))];
struct mtx s_mtx; /* Mutex to protect members. */
};
/*
* One structure allocated per process group.
*
* List of locks
* (m) locked by pg_mtx mtx
* (e) locked by proctree_lock sx
* (c) const until freeing
*/
struct pgrp {
LIST_ENTRY(pgrp) pg_hash; /* (e) Hash chain. */
LIST_HEAD(, proc) pg_members; /* (m + e) Pointer to pgrp members. */
struct session *pg_session; /* (c) Pointer to session. */
struct sigiolst pg_sigiolst; /* (m) List of sigio sources. */
pid_t pg_id; /* (c) Process group id. */
int pg_jobc; /* (m) Job control process count. */
struct mtx pg_mtx; /* Mutex to protect members */
};
/*
* pargs, used to hold a copy of the command line, if it had a sane length.
*/
struct pargs {
u_int ar_ref; /* Reference count. */
u_int ar_length; /* Length. */
u_char ar_args[1]; /* Arguments. */
};
/*-
* Description of a process.
*
* This structure contains the information needed to manage a thread of
* control, known in UN*X as a process; it has references to substructures
* containing descriptions of things that the process uses, but may share
* with related processes. The process structure and the substructures
* are always addressable except for those marked "(CPU)" below,
* which might be addressable only on a processor on which the process
* is running.
*
* Below is a key of locks used to protect each member of struct proc. The
* lock is indicated by a reference to a specific character in parens in the
* associated comment.
* * - not yet protected
* a - only touched by curproc or parent during fork/wait
* b - created at fork, never changes
* (exception aiods switch vmspaces, but they are also
* marked 'P_SYSTEM' so hopefully it will be left alone)
* c - locked by proc mtx
* d - locked by allproc_lock lock
* e - locked by proctree_lock lock
* f - session mtx
* g - process group mtx
* h - callout_lock mtx
* i - by curproc or the master session mtx
* j - locked by sched_lock mtx
* k - only accessed by curthread
* k*- only accessed by curthread and from an interrupt
* l - the attaching proc or attaching proc parent
* m - Giant
* n - not locked, lazy
* o - ktrace lock
* p - select lock (sellock)
* q - td_contested lock
* r - p_peers lock
* x - created at fork, only changes during single threading in exec
* z - zombie threads/ksegroup lock
*
* If the locking key specifies two identifiers (for example, p_pptr) then
* either lock is sufficient for read access, but both locks must be held
* for write access.
*/
struct ithd;
struct kg_sched;
struct nlminfo;
struct kaioinfo;
struct p_sched;
struct sleepqueue;
struct td_sched;
struct trapframe;
struct turnstile;
/*
* Here we define the three structures used for process information.
*
* The first is the thread. It might be thought of as a "Kernel
* Schedulable Entity Context".
* This structure contains all the information as to where a thread of
* execution is now, or was when it was suspended, why it was suspended,
* and anything else that will be needed to restart it when it is
* rescheduled. Always associated with a KSE when running, but can be
* reassigned to an equivalent KSE when being restarted for
* load balancing. Each of these is associated with a kernel stack
* and a pcb.
*
* It is important to remember that a particular thread structure may only
* exist as long as the system call or kernel entrance (e.g. by pagefault)
* which it is currently executing. It should therefore NEVER be referenced
* by pointers in long lived structures that live longer than a single
* request. If several threads complete their work at the same time,
* they will all rewind their stacks to the user boundary, report their
* completion state, and all but one will be freed. That last one will
* be kept to provide a kernel stack and pcb for the NEXT syscall or kernel
* entrance (basically to save freeing and then re-allocating it). The existing
* thread keeps a cached spare thread available to allow it to quickly
* get one when it needs a new one. There is also a system
* cache of free threads. Threads have priority and partake in priority
* inheritance schemes.
*/
struct thread;
/*
* The KSEGRP is allocated resources across a number of CPUs.
* (Including a number of CPUxQUANTA. It parcels these QUANTA up among
* its threads, each of which should be running in a different CPU.
* BASE priority and total available quanta are properties of a KSEGRP.
* Multiple KSEGRPs in a single process compete against each other
* for total quanta in the same way that a forked child competes against
* it's parent process.
*/
struct ksegrp;
/*
* A process is the owner of all system resources allocated to a task
* except CPU quanta.
* All KSEGs under one process see, and have the same access to, these
* resources (e.g. files, memory, sockets, credential, kqueues).
* A process may compete for CPU cycles on the same basis as a
* forked process cluster by spawning several KSEGRPs.
*/
struct proc;
/***************
* In pictures:
With a single run queue used by all processors:
RUNQ: --->KSE---KSE--... SLEEPQ:[]---THREAD---THREAD---THREAD
\ \ []---THREAD
KSEG---THREAD--THREAD--THREAD []
[]---THREAD---THREAD
(processors run THREADs from the KSEG until they are exhausted or
the KSEG exhausts its quantum)
With PER-CPU run queues:
KSEs on the separate run queues directly
They would be given priorities calculated from the KSEG.
*
*****************/
/*
* Kernel runnable context (thread).
* This is what is put to sleep and reactivated.
* The first KSE available in the correct group will run this thread.
* If several are available, use the one on the same CPU as last time.
* When waiting to be run, threads are hung off the KSEGRP in priority order.
* With N runnable and queued KSEs in the KSEGRP, the first N threads
* are linked to them. Other threads are not yet assigned.
*/
struct thread {
struct proc *td_proc; /* (*) Associated process. */
struct ksegrp *td_ksegrp; /* (*) Associated KSEG. */
TAILQ_ENTRY(thread) td_plist; /* (*) All threads in this proc. */
TAILQ_ENTRY(thread) td_kglist; /* (*) All threads in this ksegrp. */
/* The two queues below should someday be merged. */
TAILQ_ENTRY(thread) td_slpq; /* (j) Sleep queue. */
TAILQ_ENTRY(thread) td_lockq; /* (j) Lock queue. */
TAILQ_ENTRY(thread) td_runq; /* (j/z) Run queue(s). XXXKSE */
TAILQ_HEAD(, selinfo) td_selq; /* (p) List of selinfos. */
struct sleepqueue *td_sleepqueue; /* (k) Associated sleep queue. */
struct turnstile *td_turnstile; /* (k) Associated turnstile. */
struct umtx_q *td_umtxq; /* (c?) Link for when we're blocked. */
lwpid_t td_tid; /* (b) Thread ID. */
/* Cleared during fork1() or thread_schedule_upcall(). */
#define td_startzero td_flags
int td_flags; /* (j) TDF_* flags. */
int td_inhibitors; /* (j) Why can not run. */
int td_pflags; /* (k) Private thread (TDP_*) flags. */
int td_dupfd; /* (k) Ret value from fdopen. XXX */
void *td_wchan; /* (j) Sleep address. */
const char *td_wmesg; /* (j) Reason for sleep. */
u_char td_lastcpu; /* (j) Last cpu we were on. */
u_char td_oncpu; /* (j) Which cpu we are on. */
volatile u_char td_owepreempt; /* (k*) Preempt on last critical_exit */
short td_locks; /* (k) DEBUG: lockmgr count of locks. */
struct turnstile *td_blocked; /* (j) Lock process is blocked on. */
struct ithd *td_ithd; /* (b) For interrupt threads only. */
const char *td_lockname; /* (j) Name of lock blocked on. */
LIST_HEAD(, turnstile) td_contested; /* (q) Contested locks. */
struct lock_list_entry *td_sleeplocks; /* (k) Held sleep locks. */
int td_intr_nesting_level; /* (k) Interrupt recursion. */
int td_pinned; /* (k) Temporary cpu pin count. */
struct kse_thr_mailbox *td_mailbox; /* (*) Userland mailbox address. */
struct ucred *td_ucred; /* (k) Reference to credentials. */
struct thread *td_standin; /* (k + a) Use this for an upcall. */
struct kse_upcall *td_upcall; /* (k + j) Upcall structure. */
u_int64_t td_sticks; /* (k) Statclock hits in system mode. */
u_int td_uuticks; /* (k) Statclock hits (usr), for UTS. */
u_int td_usticks; /* (k) Statclock hits (sys), for UTS. */
int td_intrval; /* (j) Return value of TDF_INTERRUPT. */
sigset_t td_oldsigmask; /* (k) Saved mask from pre sigpause. */
sigset_t td_sigmask; /* (c) Current signal mask. */
sigset_t td_siglist; /* (c) Sigs arrived, not delivered. */
volatile u_int td_generation; /* (k) For detection of preemption */
stack_t td_sigstk; /* (k) Stack ptr and on-stack flag. */
int td_kflags; /* (c) Flags for KSE threading. */
int td_xsig; /* (c) Signal for ptrace */
u_long td_profil_addr; /* (k) Temporary addr until AST. */
u_int td_profil_ticks; /* (k) Temporary ticks until AST. */
#define td_endzero td_base_pri
/* Copied during fork1() or thread_sched_upcall(). */
#define td_startcopy td_endzero
u_char td_base_pri; /* (j) Thread base kernel priority. */
u_char td_priority; /* (j) Thread active priority. */
#define td_endcopy td_pcb
/*
* Fields that must be manually set in fork1() or thread_sched_upcall()
* or already have been set in the allocator, constructor, etc.
*/
struct pcb *td_pcb; /* (k) Kernel VA of pcb and kstack. */
enum {
TDS_INACTIVE = 0x0,
TDS_INHIBITED,
TDS_CAN_RUN,
TDS_RUNQ,
TDS_RUNNING
} td_state;
register_t td_retval[2]; /* (k) Syscall aux returns. */
struct callout td_slpcallout; /* (h) Callout for sleep. */
struct trapframe *td_frame; /* (k) */
struct vm_object *td_kstack_obj;/* (a) Kstack object. */
vm_offset_t td_kstack; /* (a) Kernel VA of kstack. */
int td_kstack_pages; /* (a) Size of the kstack. */
struct vm_object *td_altkstack_obj;/* (a) Alternate kstack object. */
vm_offset_t td_altkstack; /* (a) Kernel VA of alternate kstack. */
int td_altkstack_pages; /* (a) Size of alternate kstack. */
volatile u_int td_critnest; /* (k*) Critical section nest level. */
struct mdthread td_md; /* (k) Any machine-dependent fields. */
struct td_sched *td_sched; /* (*) Scheduler-specific data. */
};
/*
* Flags kept in td_flags:
* To change these you MUST have the scheduler lock.
*/
#define TDF_BORROWING 0x00000001 /* Thread is borrowing pri from another. */
#define TDF_INPANIC 0x00000002 /* Caused a panic, let it drive crashdump. */
#define TDF_SINTR 0x00000008 /* Sleep is interruptible. */
#define TDF_TIMEOUT 0x00000010 /* Timing out during sleep. */
#define TDF_IDLETD 0x00000020 /* This is a per-CPU idle thread. */
#define TDF_SELECT 0x00000040 /* Selecting; wakeup/waiting danger. */
#define TDF_UNUSED7 0x00000080 /* --available -- */
#define TDF_TSNOBLOCK 0x00000100 /* Don't block on a turnstile due to race. */
#define TDF_UNUSED9 0x00000200 /* --available -- */
#define TDF_BOUNDARY 0x00000400 /* Thread suspended at user boundary */
#define TDF_ASTPENDING 0x00000800 /* Thread has some asynchronous events. */
#define TDF_TIMOFAIL 0x00001000 /* Timeout from sleep after we were awake. */
#define TDF_INTERRUPT 0x00002000 /* Thread is marked as interrupted. */
#define TDF_UNUSED14 0x00004000 /* --available -- */
#define TDF_UNUSED15 0x00008000 /* --available -- */
#define TDF_NEEDRESCHED 0x00010000 /* Thread needs to yield. */
#define TDF_NEEDSIGCHK 0x00020000 /* Thread may need signal delivery. */
#define TDF_XSIG 0x00040000 /* Thread is exchanging signal under trace */
#define TDF_UMTXQ 0x00080000 /* Thread is sleeping on a umtx. */
#define TDF_THRWAKEUP 0x00100000 /* Libthr thread must not suspend itself. */
#define TDF_DBSUSPEND 0x00200000 /* Thread is suspended by debugger */
#define TDF_UNUSED22 0x00400000 /* --available -- */
#define TDF_UNUSED23 0x00800000 /* --available -- */
#define TDF_SCHED0 0x01000000 /* Reserved for scheduler private use */
#define TDF_SCHED1 0x02000000 /* Reserved for scheduler private use */
#define TDF_SCHED2 0x04000000 /* Reserved for scheduler private use */
#define TDF_SCHED3 0x08000000 /* Reserved for scheduler private use */
/*
* "Private" flags kept in td_pflags:
* These are only accessed by curthread and thus need no locking.
*/
#define TDP_OLDMASK 0x00000001 /* Need to restore mask after suspend. */
#define TDP_INKTR 0x00000002 /* Thread is currently in KTR code. */
#define TDP_INKTRACE 0x00000004 /* Thread is currently in KTRACE code. */
#define TDP_UPCALLING 0x00000008 /* This thread is doing an upcall. */
#define TDP_COWINPROGRESS 0x00000010 /* Snapshot copy-on-write in progress. */
#define TDP_ALTSTACK 0x00000020 /* Have alternate signal stack. */
#define TDP_DEADLKTREAT 0x00000040 /* Lock aquisition - deadlock treatment. */
#define TDP_SA 0x00000080 /* A scheduler activation based thread. */
#define TDP_UNUSED8 0x00000100 /* --available -- */
#define TDP_OWEUPC 0x00000200 /* Call addupc() at next AST. */
#define TDP_UNUSED10 0x00000400 /* --available -- */
#define TDP_CAN_UNBIND 0x00000800 /* Only temporarily bound. */
#define TDP_SCHED1 0x00001000 /* Reserved for scheduler private use */
#define TDP_SCHED2 0x00002000 /* Reserved for scheduler private use */
#define TDP_SCHED3 0x00004000 /* Reserved for scheduler private use */
#define TDP_SCHED4 0x00008000 /* Reserved for scheduler private use */
#define TDP_GEOM 0x00010000 /* Settle GEOM before finishing syscall */
#define TDP_SOFTDEP 0x00020000 /* Stuck processing softdep worklist */
/*
* Reasons that the current thread can not be run yet.
* More than one may apply.
*/
#define TDI_SUSPENDED 0x0001 /* On suspension queue. */
#define TDI_SLEEPING 0x0002 /* Actually asleep! (tricky). */
#define TDI_SWAPPED 0x0004 /* Stack not in mem. Bad juju if run. */
#define TDI_LOCK 0x0008 /* Stopped on a lock. */
#define TDI_IWAIT 0x0010 /* Awaiting interrupt. */
/*
* flags (in kflags) related to M:N threading.
*/
#define TDK_KSEREL 0x0001 /* Blocked in msleep on kg->kg_completed. */
#define TDK_KSERELSIG 0x0002 /* Blocked in msleep on p->p_siglist. */
#define TDK_WAKEUP 0x0004 /* Thread has been woken by kse_wakeup. */
#define TD_CAN_UNBIND(td) \
(((td)->td_pflags & TDP_CAN_UNBIND) && \
((td)->td_upcall != NULL))
#define TD_IS_SLEEPING(td) ((td)->td_inhibitors & TDI_SLEEPING)
#define TD_ON_SLEEPQ(td) ((td)->td_wchan != NULL)
#define TD_IS_SUSPENDED(td) ((td)->td_inhibitors & TDI_SUSPENDED)
#define TD_IS_SWAPPED(td) ((td)->td_inhibitors & TDI_SWAPPED)
#define TD_ON_LOCK(td) ((td)->td_inhibitors & TDI_LOCK)
#define TD_AWAITING_INTR(td) ((td)->td_inhibitors & TDI_IWAIT)
#define TD_IS_RUNNING(td) ((td)->td_state == TDS_RUNNING)
#define TD_ON_RUNQ(td) ((td)->td_state == TDS_RUNQ)
#define TD_CAN_RUN(td) ((td)->td_state == TDS_CAN_RUN)
#define TD_IS_INHIBITED(td) ((td)->td_state == TDS_INHIBITED)
#define TD_SET_INHIB(td, inhib) do { \
(td)->td_state = TDS_INHIBITED; \
(td)->td_inhibitors |= (inhib); \
} while (0)
#define TD_CLR_INHIB(td, inhib) do { \
if (((td)->td_inhibitors & (inhib)) && \
(((td)->td_inhibitors &= ~(inhib)) == 0)) \
(td)->td_state = TDS_CAN_RUN; \
} while (0)
#define TD_SET_SLEEPING(td) TD_SET_INHIB((td), TDI_SLEEPING)
#define TD_SET_SWAPPED(td) TD_SET_INHIB((td), TDI_SWAPPED)
#define TD_SET_LOCK(td) TD_SET_INHIB((td), TDI_LOCK)
#define TD_SET_SUSPENDED(td) TD_SET_INHIB((td), TDI_SUSPENDED)
#define TD_SET_IWAIT(td) TD_SET_INHIB((td), TDI_IWAIT)
#define TD_SET_EXITING(td) TD_SET_INHIB((td), TDI_EXITING)
#define TD_CLR_SLEEPING(td) TD_CLR_INHIB((td), TDI_SLEEPING)
#define TD_CLR_SWAPPED(td) TD_CLR_INHIB((td), TDI_SWAPPED)
#define TD_CLR_LOCK(td) TD_CLR_INHIB((td), TDI_LOCK)
#define TD_CLR_SUSPENDED(td) TD_CLR_INHIB((td), TDI_SUSPENDED)
#define TD_CLR_IWAIT(td) TD_CLR_INHIB((td), TDI_IWAIT)
#define TD_SET_RUNNING(td) (td)->td_state = TDS_RUNNING
#define TD_SET_RUNQ(td) (td)->td_state = TDS_RUNQ
#define TD_SET_CAN_RUN(td) (td)->td_state = TDS_CAN_RUN
/*
* An upcall is used when returning to userland. If a thread does not have
* an upcall on return to userland the thread exports its context and exits.
*/
struct kse_upcall {
TAILQ_ENTRY(kse_upcall) ku_link; /* List of upcalls in KSEG. */
struct ksegrp *ku_ksegrp; /* Associated KSEG. */
struct thread *ku_owner; /* Owning thread. */
int ku_flags; /* KUF_* flags. */
struct kse_mailbox *ku_mailbox; /* Userland mailbox address. */
stack_t ku_stack; /* Userland upcall stack. */
void *ku_func; /* Userland upcall function. */
unsigned int ku_mflags; /* Cached upcall mbox flags. */
};
#define KUF_DOUPCALL 0x00001 /* Do upcall now; don't wait. */
#define KUF_EXITING 0x00002 /* Upcall structure is exiting. */
/*
* Kernel-scheduled entity group (KSEG). The scheduler considers each KSEG to
* be an indivisible unit from a time-sharing perspective, though each KSEG may
* contain multiple KSEs.
*/
struct ksegrp {
struct proc *kg_proc; /* (*) Proc that contains this KSEG. */
TAILQ_ENTRY(ksegrp) kg_ksegrp; /* (*) Queue of KSEGs in kg_proc. */
TAILQ_HEAD(, thread) kg_threads;/* (td_kglist) All threads. */
TAILQ_HEAD(, thread) kg_runq; /* (td_runq) waiting RUNNABLE threads */
TAILQ_HEAD(, kse_upcall) kg_upcalls; /* All upcalls in the group. */
#define kg_startzero kg_estcpu
u_int kg_estcpu; /* (j) Sum of the same field in KSEs. */
u_int kg_slptime; /* (j) How long completely blocked. */
int kg_numupcalls; /* (j) Num upcalls. */
int kg_upsleeps; /* (c) Num threads in kse_release(). */
struct kse_thr_mailbox *kg_completed; /* (c) Completed thread mboxes. */
int kg_nextupcall; /* (n) Next upcall time. */
int kg_upquantum; /* (n) Quantum to schedule an upcall. */
#define kg_endzero kg_pri_class
#define kg_startcopy kg_endzero
u_char kg_pri_class; /* (j) Scheduling class. */
u_char kg_user_pri; /* (j) User pri from estcpu and nice. */
#define kg_endcopy kg_numthreads
int kg_numthreads; /* (j) Num threads in total. */
struct kg_sched *kg_sched; /* (*) Scheduler-specific data. */
};
/*
* XXX: Does this belong in resource.h or resourcevar.h instead?
* Resource usage extension. The times in rusage structs in the kernel are
* never up to date. The actual times are kept as runtimes and tick counts
* (with control info in the "previous" times), and are converted when
* userland asks for rusage info. Backwards compatibility prevents putting
* this directly in the user-visible rusage struct.
*
* Locking: (cj) means (j) for p_rux and (c) for p_crux.
*/
struct rusage_ext {
struct bintime rux_runtime; /* (cj) Real time. */
u_int64_t rux_uticks; /* (cj) Statclock hits in user mode. */
u_int64_t rux_sticks; /* (cj) Statclock hits in sys mode. */
u_int64_t rux_iticks; /* (cj) Statclock hits in intr mode. */
u_int64_t rux_uu; /* (c) Previous user time in usec. */
u_int64_t rux_su; /* (c) Previous sys time in usec. */
u_int64_t rux_iu; /* (c) Previous intr time in usec. */
};
/*
* The old fashionned process. May have multiple threads, KSEGRPs
* and KSEs. Starts off with a single embedded KSEGRP and THREAD.
*/
struct proc {
LIST_ENTRY(proc) p_list; /* (d) List of all processes. */
TAILQ_HEAD(, ksegrp) p_ksegrps; /* (c)(kg_ksegrp) All KSEGs. */
TAILQ_HEAD(, thread) p_threads; /* (j)(td_plist) Threads. (shortcut) */
TAILQ_HEAD(, thread) p_suspended; /* (td_runq) Suspended threads. */
struct ucred *p_ucred; /* (c) Process owner's identity. */
struct filedesc *p_fd; /* (b) Open files. */
struct filedesc_to_leader *p_fdtol; /* (b) Tracking node */
/* Accumulated stats for all threads? */
struct pstats *p_stats; /* (b) Accounting/statistics (CPU). */
struct plimit *p_limit; /* (c) Process limits. */
struct sigacts *p_sigacts; /* (x) Signal actions, state (CPU). */
/*
* The following don't make too much sense.
* See the td_ or ke_ versions of the same flags.
*/
int p_flag; /* (c) P_* flags. */
int p_sflag; /* (j) PS_* flags. */
enum {
PRS_NEW = 0, /* In creation */
PRS_NORMAL, /* threads can be run. */
PRS_ZOMBIE
} p_state; /* (j/c) S* process status. */
pid_t p_pid; /* (b) Process identifier. */
LIST_ENTRY(proc) p_hash; /* (d) Hash chain. */
LIST_ENTRY(proc) p_pglist; /* (g + e) List of processes in pgrp. */
struct proc *p_pptr; /* (c + e) Pointer to parent process. */
LIST_ENTRY(proc) p_sibling; /* (e) List of sibling processes. */
LIST_HEAD(, proc) p_children; /* (e) Pointer to list of children. */
struct mtx p_mtx; /* (n) Lock for this struct. */
/* The following fields are all zeroed upon creation in fork. */
#define p_startzero p_oppid
pid_t p_oppid; /* (c + e) Save ppid in ptrace. XXX */
struct vmspace *p_vmspace; /* (b) Address space. */
u_int p_swtime; /* (j) Time swapped in or out. */
struct itimerval p_realtimer; /* (c) Alarm timer. */
struct rusage_ext p_rux; /* (cj) Internal resource usage. */
struct rusage_ext p_crux; /* (c) Internal child resource usage. */
int p_profthreads; /* (c) Num threads in addupc_task. */
int p_maxthrwaits; /* (c) Max threads num waiters */
int p_traceflag; /* (o) Kernel trace points. */
struct vnode *p_tracevp; /* (c + o) Trace to vnode. */
struct ucred *p_tracecred; /* (o) Credentials to trace with. */
struct vnode *p_textvp; /* (b) Vnode of executable. */
sigset_t p_siglist; /* (c) Sigs not delivered to a td. */
char p_lock; /* (c) Proclock (prevent swap) count. */
struct sigiolst p_sigiolst; /* (c) List of sigio sources. */
int p_sigparent; /* (c) Signal to parent on exit. */
int p_sig; /* (n) For core dump/debugger XXX. */
u_long p_code; /* (n) For core dump/debugger XXX. */
u_int p_stops; /* (c) Stop event bitmask. */
u_int p_stype; /* (c) Stop event type. */
char p_step; /* (c) Process is stopped. */
u_char p_pfsflags; /* (c) Procfs flags. */
struct nlminfo *p_nlminfo; /* (?) Only used by/for lockd. */
struct kaioinfo *p_aioinfo; /* (c) ASYNC I/O info. */
struct thread *p_singlethread;/* (c + j) If single threading this is it */
int p_suspcount; /* (c) Num threads in suspended mode. */
struct thread *p_xthread; /* (c) Trap thread */
int p_boundary_count;/* (c) Num threads at user boundary */
struct ksegrp *p_procscopegrp;
/* End area that is zeroed on creation. */
#define p_endzero p_magic
/* The following fields are all copied upon creation in fork. */
#define p_startcopy p_endzero
u_int p_magic; /* (b) Magic number. */
char p_comm[MAXCOMLEN + 1]; /* (b) Process name. */
struct pgrp *p_pgrp; /* (c + e) Pointer to process group. */
struct sysentvec *p_sysent; /* (b) Syscall dispatch info. */
struct pargs *p_args; /* (c) Process arguments. */
rlim_t p_cpulimit; /* (j) Current CPU limit in seconds. */
signed char p_nice; /* (c + j) Process "nice" value. */
/* End area that is copied on creation. */
#define p_endcopy p_xstat
u_short p_xstat; /* (c) Exit status; also stop sig. */
struct knlist p_klist; /* (c) Knotes attached to this proc. */
int p_numthreads; /* (j) Number of threads. */
int p_numksegrps; /* (c) Number of ksegrps. */
struct mdproc p_md; /* Any machine-dependent fields. */
struct callout p_itcallout; /* (h + c) Interval timer callout. */
u_short p_acflag; /* (c) Accounting flags. */
struct rusage *p_ru; /* (a) Exit information. XXX */
struct proc *p_peers; /* (r) */
struct proc *p_leader; /* (b) */
void *p_emuldata; /* (c) Emulator state data. */
struct label *p_label; /* (*) Proc (not subject) MAC label. */
struct p_sched *p_sched; /* (*) Scheduler-specific data. */
};
#define p_session p_pgrp->pg_session
#define p_pgid p_pgrp->pg_id
#define NOCPU 0xff /* For when we aren't on a CPU. */
/* These flags are kept in p_flag. */
#define P_ADVLOCK 0x00001 /* Process may hold a POSIX advisory lock. */
#define P_CONTROLT 0x00002 /* Has a controlling terminal. */
#define P_KTHREAD 0x00004 /* Kernel thread (*). */
#define P_NOLOAD 0x00008 /* Ignore during load avg calculations. */
#define P_PPWAIT 0x00010 /* Parent is waiting for child to exec/exit. */
#define P_PROFIL 0x00020 /* Has started profiling. */
#define P_STOPPROF 0x00040 /* Has thread requesting to stop profiling. */
#define P_HADTHREADS 0x00080 /* Has had threads (no cleanup shortcuts) */
#define P_SUGID 0x00100 /* Had set id privileges since last exec. */
#define P_SYSTEM 0x00200 /* System proc: no sigs, stats or swapping. */
#define P_SINGLE_EXIT 0x00400 /* Threads suspending should exit, not wait. */
#define P_TRACED 0x00800 /* Debugged process being traced. */
#define P_WAITED 0x01000 /* Someone is waiting for us. */
#define P_WEXIT 0x02000 /* Working on exiting. */
#define P_EXEC 0x04000 /* Process called exec. */
#define P_SA 0x08000 /* Using scheduler activations. */
#define P_CONTINUED 0x10000 /* Proc has continued from a stopped state. */
#define P_STOPPED_SIG 0x20000 /* Stopped due to SIGSTOP/SIGTSTP. */
#define P_STOPPED_TRACE 0x40000 /* Stopped because of tracing. */
#define P_STOPPED_SINGLE 0x80000 /* Only 1 thread can continue (not to user). */
#define P_PROTECTED 0x100000 /* Do not kill on memory overcommit. */
#define P_SIGEVENT 0x200000 /* Process pending signals changed. */
#define P_SINGLE_BOUNDARY 0x400000 /* Threads should suspend at user boundary. */
#define P_HWPMC 0x800000 /* Process is using HWPMCs */
#define P_JAILED 0x1000000 /* Process is in jail. */
#define P_INEXEC 0x4000000 /* Process is in execve(). */
#define P_STATCHILD 0x8000000 /* Child process stopped or exited. */
#define P_STOPPED (P_STOPPED_SIG|P_STOPPED_SINGLE|P_STOPPED_TRACE)
#define P_SHOULDSTOP(p) ((p)->p_flag & P_STOPPED)
/* These flags are kept in p_sflag and are protected with sched_lock. */
#define PS_INMEM 0x00001 /* Loaded into memory. */
#define PS_XCPU 0x00002 /* Exceeded CPU limit. */
#define PS_ALRMPEND 0x00020 /* Pending SIGVTALRM needs to be posted. */
#define PS_PROFPEND 0x00040 /* Pending SIGPROF needs to be posted. */
#define PS_SWAPINREQ 0x00100 /* Swapin request due to wakeup. */
#define PS_SWAPPINGOUT 0x00200 /* Process is being swapped out. */
#define PS_SWAPPINGIN 0x04000 /* Process is being swapped in. */
#define PS_MACPEND 0x08000 /* AST-based MAC event pending. */
/*
* These were process status values (p_stat), now they are only used in
* legacy conversion code.
*/
#define SIDL 1 /* Process being created by fork. */
#define SRUN 2 /* Currently runnable. */
#define SSLEEP 3 /* Sleeping on an address. */
#define SSTOP 4 /* Process debugging or suspension. */
#define SZOMB 5 /* Awaiting collection by parent. */
#define SWAIT 6 /* Waiting for interrupt. */
#define SLOCK 7 /* Blocked on a lock. */
#define P_MAGIC 0xbeefface
#ifdef _KERNEL
/* Flags for mi_switch(). */
#define SW_VOL 0x0001 /* Voluntary switch. */
#define SW_INVOL 0x0002 /* Involuntary switch. */
#define SW_PREEMPT 0x0004 /* The invol switch is a preemption */
/* Flags for setrunqueue(). Why are we setting this thread on the run queue? */
#define SRQ_BORING 0x0000 /* No special circumstances. */
#define SRQ_YIELDING 0x0001 /* We are yielding (from mi_switch). */
#define SRQ_OURSELF 0x0002 /* It is ourself (from mi_switch). */
#define SRQ_INTR 0x0004 /* It is probably urgent. */
#define SRQ_PREEMPTED 0x0008 /* has been preempted.. be kind */
/* How values for thread_single(). */
#define SINGLE_NO_EXIT 0
#define SINGLE_EXIT 1
#define SINGLE_BOUNDARY 2
/* XXXKSE: Missing values for thread_suspsend_check(). */
#ifdef MALLOC_DECLARE
MALLOC_DECLARE(M_PARGS);
MALLOC_DECLARE(M_PGRP);
MALLOC_DECLARE(M_SESSION);
MALLOC_DECLARE(M_SUBPROC);
MALLOC_DECLARE(M_ZOMBIE);
#endif
#define FOREACH_PROC_IN_SYSTEM(p) \
LIST_FOREACH((p), &allproc, p_list)
#define FOREACH_KSEGRP_IN_PROC(p, kg) \
TAILQ_FOREACH((kg), &(p)->p_ksegrps, kg_ksegrp)
#define FOREACH_THREAD_IN_GROUP(kg, td) \
TAILQ_FOREACH((td), &(kg)->kg_threads, td_kglist)
#define FOREACH_UPCALL_IN_GROUP(kg, ku) \
TAILQ_FOREACH((ku), &(kg)->kg_upcalls, ku_link)
#define FOREACH_THREAD_IN_PROC(p, td) \
TAILQ_FOREACH((td), &(p)->p_threads, td_plist)
/* XXXKSE the following lines should probably only be used in 1:1 code: */
#define FIRST_THREAD_IN_PROC(p) TAILQ_FIRST(&(p)->p_threads)
#define FIRST_KSEGRP_IN_PROC(p) TAILQ_FIRST(&(p)->p_ksegrps)
/*
* We use process IDs <= PID_MAX; PID_MAX + 1 must also fit in a pid_t,
* as it is used to represent "no process group".
*/
#define PID_MAX 99999
#define NO_PID 100000
#define SESS_LEADER(p) ((p)->p_session->s_leader == (p))
#define SESSHOLD(s) ((s)->s_count++)
#define SESSRELE(s) sessrele(s)
#define STOPEVENT(p, e, v) do { \
if ((p)->p_stops & (e)) { \
PROC_LOCK(p); \
stopevent((p), (e), (v)); \
PROC_UNLOCK(p); \
} \
} while (0)
#define _STOPEVENT(p, e, v) do { \
PROC_LOCK_ASSERT(p, MA_OWNED); \
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &p->p_mtx.mtx_object, \
"checking stopevent %d", (e)); \
if ((p)->p_stops & (e)) \
stopevent((p), (e), (v)); \
} while (0)
/* Lock and unlock a process. */
#define PROC_LOCK(p) mtx_lock(&(p)->p_mtx)
#define PROC_TRYLOCK(p) mtx_trylock(&(p)->p_mtx)
#define PROC_UNLOCK(p) mtx_unlock(&(p)->p_mtx)
#define PROC_LOCKED(p) mtx_owned(&(p)->p_mtx)
#define PROC_LOCK_ASSERT(p, type) mtx_assert(&(p)->p_mtx, (type))
/* Lock and unlock a process group. */
#define PGRP_LOCK(pg) mtx_lock(&(pg)->pg_mtx)
#define PGRP_UNLOCK(pg) mtx_unlock(&(pg)->pg_mtx)
#define PGRP_LOCKED(pg) mtx_owned(&(pg)->pg_mtx)
#define PGRP_LOCK_ASSERT(pg, type) mtx_assert(&(pg)->pg_mtx, (type))
#define PGRP_LOCK_PGSIGNAL(pg) do { \
if ((pg) != NULL) \
PGRP_LOCK(pg); \
} while (0)
#define PGRP_UNLOCK_PGSIGNAL(pg) do { \
if ((pg) != NULL) \
PGRP_UNLOCK(pg); \
} while (0)
/* Lock and unlock a session. */
#define SESS_LOCK(s) mtx_lock(&(s)->s_mtx)
#define SESS_UNLOCK(s) mtx_unlock(&(s)->s_mtx)
#define SESS_LOCKED(s) mtx_owned(&(s)->s_mtx)
#define SESS_LOCK_ASSERT(s, type) mtx_assert(&(s)->s_mtx, (type))
/* Hold process U-area in memory, normally for ptrace/procfs work. */
#define PHOLD(p) do { \
PROC_LOCK(p); \
_PHOLD(p); \
PROC_UNLOCK(p); \
} while (0)
#define _PHOLD(p) do { \
PROC_LOCK_ASSERT((p), MA_OWNED); \
(p)->p_lock++; \
if (((p)->p_sflag & PS_INMEM) == 0) \
faultin((p)); \
} while (0)
#define PRELE(p) do { \
PROC_LOCK((p)); \
_PRELE((p)); \
PROC_UNLOCK((p)); \
} while (0)
#define _PRELE(p) do { \
PROC_LOCK_ASSERT((p), MA_OWNED); \
(--(p)->p_lock); \
} while (0)
/* Check whether a thread is safe to be swapped out. */
#define thread_safetoswapout(td) (TD_IS_SLEEPING(td) || TD_IS_SUSPENDED(td))
/* Lock and unlock process arguments. */
#define PARGS_LOCK(p) mtx_lock(&pargs_ref_lock)
#define PARGS_UNLOCK(p) mtx_unlock(&pargs_ref_lock)
#define PIDHASH(pid) (&pidhashtbl[(pid) & pidhash])
extern LIST_HEAD(pidhashhead, proc) *pidhashtbl;
extern u_long pidhash;
#define PGRPHASH(pgid) (&pgrphashtbl[(pgid) & pgrphash])
extern LIST_HEAD(pgrphashhead, pgrp) *pgrphashtbl;
extern u_long pgrphash;
extern struct sx allproc_lock;
extern struct sx proctree_lock;
extern struct mtx pargs_ref_lock;
extern struct mtx ppeers_lock;
extern struct ksegrp ksegrp0; /* Primary ksegrp in proc0. */
extern struct proc proc0; /* Process slot for swapper. */
extern struct thread thread0; /* Primary thread in proc0. */
extern struct vmspace vmspace0; /* VM space for proc0. */
extern int hogticks; /* Limit on kernel cpu hogs. */
extern int lastpid;
extern int nprocs, maxproc; /* Current and max number of procs. */
extern int maxprocperuid; /* Max procs per uid. */
extern u_long ps_arg_cache_limit;
extern int sched_quantum; /* Scheduling quantum in ticks. */
LIST_HEAD(proclist, proc);
TAILQ_HEAD(procqueue, proc);
TAILQ_HEAD(threadqueue, thread);
extern struct proclist allproc; /* List of all processes. */
extern struct proclist zombproc; /* List of zombie processes. */
extern struct proc *initproc, *pageproc; /* Process slots for init, pager. */
extern struct proc *updateproc; /* Process slot for syncer (sic). */
extern struct uma_zone *proc_zone;
struct proc *pfind(pid_t); /* Find process by id. */
struct pgrp *pgfind(pid_t); /* Find process group by id. */
struct proc *zpfind(pid_t); /* Find zombie process by id. */
void adjustrunqueue(struct thread *, int newpri);
void ast(struct trapframe *framep);
struct thread *choosethread(void);
int cr_cansignal(struct ucred *cred, struct proc *proc, int signum);
int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp,
struct session *sess);
int enterthispgrp(struct proc *p, struct pgrp *pgrp);
void faultin(struct proc *p);
void fixjobc(struct proc *p, struct pgrp *pgrp, int entering);
int fork1(struct thread *, int, int, struct proc **);
void fork_exit(void (*)(void *, struct trapframe *), void *,
struct trapframe *);
void fork_return(struct thread *, struct trapframe *);
int inferior(struct proc *p);
void kick_proc0(void);
int leavepgrp(struct proc *p);
int maybe_preempt(struct thread *td);
void mi_switch(int flags, struct thread *newtd);
int p_candebug(struct thread *td, struct proc *p);
int p_cansee(struct thread *td, struct proc *p);
int p_cansched(struct thread *td, struct proc *p);
int p_cansignal(struct thread *td, struct proc *p, int signum);
int p_canwait(struct thread *td, struct proc *p);
struct pargs *pargs_alloc(int len);
void pargs_drop(struct pargs *pa);
void pargs_free(struct pargs *pa);
void pargs_hold(struct pargs *pa);
void procinit(void);
void proc_linkup(struct proc *p, struct ksegrp *kg, struct thread *td);
void proc_reparent(struct proc *child, struct proc *newparent);
struct pstats *pstats_alloc(void);
void pstats_fork(struct pstats *src, struct pstats *dst);
void pstats_free(struct pstats *ps);
int securelevel_ge(struct ucred *cr, int level);
int securelevel_gt(struct ucred *cr, int level);
void sessrele(struct session *);
void setrunnable(struct thread *);
void setrunqueue(struct thread *, int flags);
void setsugid(struct proc *p);
int sigonstack(size_t sp);
void sleepinit(void);
void stopevent(struct proc *, u_int, u_int);
void threadinit(void);
void cpu_idle(void);
extern void (*cpu_idle_hook)(void); /* Hook to machdep CPU idler. */
void cpu_switch(struct thread *old, struct thread *new);
void cpu_throw(struct thread *old, struct thread *new) __dead2;
void unsleep(struct thread *);
void userret(struct thread *, struct trapframe *, u_int);
void cpu_exit(struct thread *);
void exit1(struct thread *, int) __dead2;
void cpu_fork(struct thread *, struct proc *, struct thread *, int);
void cpu_set_fork_handler(struct thread *, void (*)(void *), void *);
/* New in KSE. */
struct ksegrp *ksegrp_alloc(void);
void ksegrp_free(struct ksegrp *kg);
void ksegrp_stash(struct ksegrp *kg);
void kse_GC(void);
void kseinit(void);
void cpu_set_upcall(struct thread *td, struct thread *td0);
void cpu_set_upcall_kse(struct thread *, void (*)(void *), void *, stack_t *);
void cpu_set_user_tls(struct thread *, void *tls_base);
void cpu_thread_clean(struct thread *);
void cpu_thread_exit(struct thread *);
void cpu_thread_setup(struct thread *td);
void cpu_thread_siginfo(int sig, u_long code, siginfo_t *si);
void cpu_thread_swapin(struct thread *);
void cpu_thread_swapout(struct thread *);
void ksegrp_link(struct ksegrp *kg, struct proc *p);
void ksegrp_unlink(struct ksegrp *kg);
struct thread *thread_alloc(void);
void thread_continued(struct proc *p);
void thread_exit(void) __dead2;
int thread_export_context(struct thread *td, int willexit);
void thread_free(struct thread *td);
void thread_link(struct thread *td, struct ksegrp *kg);
void thread_reap(void);
struct thread *thread_schedule_upcall(struct thread *td, struct kse_upcall *ku);
void thread_signal_add(struct thread *td, int sig);
int thread_single(int how);
void thread_single_end(void);
int thread_sleep_check(struct thread *td);
void thread_stash(struct thread *td);
int thread_statclock(int user);
void thread_stopped(struct proc *p);
int thread_suspend_check(int how);
void thread_suspend_one(struct thread *td);
struct thread *thread_switchout(struct thread *td, int flags,
struct thread *newtd);
void thread_unlink(struct thread *td);
void thread_unsuspend(struct proc *p);
void thread_unsuspend_one(struct thread *td);
void thread_unthread(struct thread *td);
int thread_userret(struct thread *td, struct trapframe *frame);
void thread_user_enter(struct thread *td);
void thread_wait(struct proc *p);
void thr_exit1(void);
struct kse_upcall *upcall_alloc(void);
void upcall_free(struct kse_upcall *ku);
void upcall_link(struct kse_upcall *ku, struct ksegrp *kg);
void upcall_unlink(struct kse_upcall *ku);
void upcall_remove(struct thread *td);
void upcall_stash(struct kse_upcall *ke);
#endif /* _KERNEL */
#endif /* !_SYS_PROC_H_ */