b819e1ed19
Approved by: re@ (gjb)
1009 lines
23 KiB
C
1009 lines
23 KiB
C
/*-
|
|
* Copyright (c) 2012 Adrian Chadd <adrian@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ath.h"
|
|
/*
|
|
* This is needed for register operations which are performed
|
|
* by the driver - eg, calls to ath_hal_gettsf32().
|
|
*
|
|
* It's also required for any AH_DEBUG checks in here, eg the
|
|
* module dependencies.
|
|
*/
|
|
#include "opt_ah.h"
|
|
#include "opt_wlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/module.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/smp.h> /* for mp_ncpus */
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_regdomain.h>
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
#include <net80211/ieee80211_superg.h>
|
|
#endif
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
#include <net80211/ieee80211_tdma.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_athvar.h>
|
|
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
|
|
#include <dev/ath/ath_hal/ah_diagcodes.h>
|
|
|
|
#include <dev/ath/if_ath_debug.h>
|
|
#include <dev/ath/if_ath_misc.h>
|
|
#include <dev/ath/if_ath_tsf.h>
|
|
#include <dev/ath/if_ath_tx.h>
|
|
#include <dev/ath/if_ath_sysctl.h>
|
|
#include <dev/ath/if_ath_led.h>
|
|
#include <dev/ath/if_ath_keycache.h>
|
|
#include <dev/ath/if_ath_rx.h>
|
|
#include <dev/ath/if_ath_beacon.h>
|
|
#include <dev/ath/if_athdfs.h>
|
|
#include <dev/ath/if_ath_descdma.h>
|
|
|
|
#ifdef ATH_TX99_DIAG
|
|
#include <dev/ath/ath_tx99/ath_tx99.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_ath_rx_edma.h>
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
#include <dev/ath/if_ath_alq.h>
|
|
#endif
|
|
|
|
/*
|
|
* some general macros
|
|
*/
|
|
#define INCR(_l, _sz) (_l) ++; (_l) &= ((_sz) - 1)
|
|
#define DECR(_l, _sz) (_l) --; (_l) &= ((_sz) - 1)
|
|
|
|
MALLOC_DECLARE(M_ATHDEV);
|
|
|
|
/*
|
|
* XXX TODO:
|
|
*
|
|
* + Make sure the FIFO is correctly flushed and reinitialised
|
|
* through a reset;
|
|
* + Verify multi-descriptor frames work!
|
|
* + There's a "memory use after free" which needs to be tracked down
|
|
* and fixed ASAP. I've seen this in the legacy path too, so it
|
|
* may be a generic RX path issue.
|
|
*/
|
|
|
|
/*
|
|
* XXX shuffle the function orders so these pre-declarations aren't
|
|
* required!
|
|
*/
|
|
static int ath_edma_rxfifo_alloc(struct ath_softc *sc, HAL_RX_QUEUE qtype,
|
|
int nbufs);
|
|
static int ath_edma_rxfifo_flush(struct ath_softc *sc, HAL_RX_QUEUE qtype);
|
|
static void ath_edma_rxbuf_free(struct ath_softc *sc, struct ath_buf *bf);
|
|
static void ath_edma_recv_proc_queue(struct ath_softc *sc,
|
|
HAL_RX_QUEUE qtype, int dosched);
|
|
static int ath_edma_recv_proc_deferred_queue(struct ath_softc *sc,
|
|
HAL_RX_QUEUE qtype, int dosched);
|
|
|
|
static void
|
|
ath_edma_stoprecv(struct ath_softc *sc, int dodelay)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ATH_RX_LOCK(sc);
|
|
|
|
ath_hal_stoppcurecv(ah);
|
|
ath_hal_setrxfilter(ah, 0);
|
|
|
|
/*
|
|
*
|
|
*/
|
|
if (ath_hal_stopdmarecv(ah) == AH_TRUE)
|
|
sc->sc_rx_stopped = 1;
|
|
|
|
/*
|
|
* Give the various bus FIFOs (not EDMA descriptor FIFO)
|
|
* time to finish flushing out data.
|
|
*/
|
|
DELAY(3000);
|
|
|
|
/* Flush RX pending for each queue */
|
|
/* XXX should generic-ify this */
|
|
if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending) {
|
|
m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
|
|
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
|
|
}
|
|
|
|
if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending) {
|
|
m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
|
|
sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
|
|
}
|
|
ATH_RX_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Re-initialise the FIFO given the current buffer contents.
|
|
* Specifically, walk from head -> tail, pushing the FIFO contents
|
|
* back into the FIFO.
|
|
*/
|
|
static void
|
|
ath_edma_reinit_fifo(struct ath_softc *sc, HAL_RX_QUEUE qtype)
|
|
{
|
|
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
|
|
struct ath_buf *bf;
|
|
int i, j;
|
|
|
|
ATH_RX_LOCK_ASSERT(sc);
|
|
|
|
i = re->m_fifo_head;
|
|
for (j = 0; j < re->m_fifo_depth; j++) {
|
|
bf = re->m_fifo[i];
|
|
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
|
|
"%s: Q%d: pos=%i, addr=0x%jx\n",
|
|
__func__,
|
|
qtype,
|
|
i,
|
|
(uintmax_t)bf->bf_daddr);
|
|
ath_hal_putrxbuf(sc->sc_ah, bf->bf_daddr, qtype);
|
|
INCR(i, re->m_fifolen);
|
|
}
|
|
|
|
/* Ensure this worked out right */
|
|
if (i != re->m_fifo_tail) {
|
|
device_printf(sc->sc_dev, "%s: i (%d) != tail! (%d)\n",
|
|
__func__,
|
|
i,
|
|
re->m_fifo_tail);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start receive.
|
|
*/
|
|
static int
|
|
ath_edma_startrecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ATH_RX_LOCK(sc);
|
|
|
|
/*
|
|
* Sanity check - are we being called whilst RX
|
|
* isn't stopped? If so, we may end up pushing
|
|
* too many entries into the RX FIFO and
|
|
* badness occurs.
|
|
*/
|
|
|
|
/* Enable RX FIFO */
|
|
ath_hal_rxena(ah);
|
|
|
|
/*
|
|
* In theory the hardware has been initialised, right?
|
|
*/
|
|
if (sc->sc_rx_resetted == 1) {
|
|
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
|
|
"%s: Re-initing HP FIFO\n", __func__);
|
|
ath_edma_reinit_fifo(sc, HAL_RX_QUEUE_HP);
|
|
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
|
|
"%s: Re-initing LP FIFO\n", __func__);
|
|
ath_edma_reinit_fifo(sc, HAL_RX_QUEUE_LP);
|
|
sc->sc_rx_resetted = 0;
|
|
} else {
|
|
device_printf(sc->sc_dev,
|
|
"%s: called without resetting chip?\n",
|
|
__func__);
|
|
}
|
|
|
|
/* Add up to m_fifolen entries in each queue */
|
|
/*
|
|
* These must occur after the above write so the FIFO buffers
|
|
* are pushed/tracked in the same order as the hardware will
|
|
* process them.
|
|
*
|
|
* XXX TODO: is this really necessary? We should've stopped
|
|
* the hardware already and reinitialised it, so it's a no-op.
|
|
*/
|
|
ath_edma_rxfifo_alloc(sc, HAL_RX_QUEUE_HP,
|
|
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_fifolen);
|
|
|
|
ath_edma_rxfifo_alloc(sc, HAL_RX_QUEUE_LP,
|
|
sc->sc_rxedma[HAL_RX_QUEUE_LP].m_fifolen);
|
|
|
|
ath_mode_init(sc);
|
|
ath_hal_startpcurecv(ah);
|
|
|
|
/*
|
|
* We're now doing RX DMA!
|
|
*/
|
|
sc->sc_rx_stopped = 0;
|
|
|
|
ATH_RX_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
ath_edma_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
|
|
int dosched)
|
|
{
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ath_edma_recv_proc_queue(sc, qtype, dosched);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
|
|
}
|
|
|
|
static void
|
|
ath_edma_recv_sched(struct ath_softc *sc, int dosched)
|
|
{
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_HP, dosched);
|
|
ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_LP, dosched);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
|
|
}
|
|
|
|
static void
|
|
ath_edma_recv_flush(struct ath_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RECV, "%s: called\n", __func__);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_rxproc_cnt++;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
/*
|
|
* Flush any active frames from FIFO -> deferred list
|
|
*/
|
|
ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_HP, 0);
|
|
ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_LP, 0);
|
|
|
|
/*
|
|
* Process what's in the deferred queue
|
|
*/
|
|
/*
|
|
* XXX: If we read the tsf/channoise here and then pass it in,
|
|
* we could restore the power state before processing
|
|
* the deferred queue.
|
|
*/
|
|
ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_HP, 0);
|
|
ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_LP, 0);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_rxproc_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Process frames from the current queue into the deferred queue.
|
|
*/
|
|
static void
|
|
ath_edma_recv_proc_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
|
|
int dosched)
|
|
{
|
|
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
|
|
struct ath_rx_status *rs;
|
|
struct ath_desc *ds;
|
|
struct ath_buf *bf;
|
|
struct mbuf *m;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
uint64_t tsf;
|
|
uint16_t nf;
|
|
int npkts = 0;
|
|
|
|
tsf = ath_hal_gettsf64(ah);
|
|
nf = ath_hal_getchannoise(ah, sc->sc_curchan);
|
|
sc->sc_stats.ast_rx_noise = nf;
|
|
|
|
ATH_RX_LOCK(sc);
|
|
|
|
#if 1
|
|
if (sc->sc_rx_resetted == 1) {
|
|
/*
|
|
* XXX We shouldn't ever be scheduled if
|
|
* receive has been stopped - so complain
|
|
* loudly!
|
|
*/
|
|
device_printf(sc->sc_dev,
|
|
"%s: sc_rx_resetted=1! Bad!\n",
|
|
__func__);
|
|
ATH_RX_UNLOCK(sc);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
do {
|
|
bf = re->m_fifo[re->m_fifo_head];
|
|
/* This shouldn't occur! */
|
|
if (bf == NULL) {
|
|
device_printf(sc->sc_dev, "%s: Q%d: NULL bf?\n",
|
|
__func__,
|
|
qtype);
|
|
break;
|
|
}
|
|
m = bf->bf_m;
|
|
ds = bf->bf_desc;
|
|
|
|
/*
|
|
* Sync descriptor memory - this also syncs the buffer for us.
|
|
* EDMA descriptors are in cached memory.
|
|
*/
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
rs = &bf->bf_status.ds_rxstat;
|
|
bf->bf_rxstatus = ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
|
|
NULL, rs);
|
|
if (bf->bf_rxstatus == HAL_EINPROGRESS)
|
|
break;
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
|
|
ath_printrxbuf(sc, bf, 0, bf->bf_rxstatus == HAL_OK);
|
|
#endif /* ATH_DEBUG */
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
|
|
sc->sc_rx_statuslen, (char *) ds);
|
|
#endif /* ATH_DEBUG */
|
|
|
|
/*
|
|
* Completed descriptor.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
|
|
"%s: Q%d: completed!\n", __func__, qtype);
|
|
npkts++;
|
|
|
|
/*
|
|
* We've been synced already, so unmap.
|
|
*/
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
|
|
/*
|
|
* Remove the FIFO entry and place it on the completion
|
|
* queue.
|
|
*/
|
|
re->m_fifo[re->m_fifo_head] = NULL;
|
|
TAILQ_INSERT_TAIL(&sc->sc_rx_rxlist[qtype], bf, bf_list);
|
|
|
|
/* Bump the descriptor FIFO stats */
|
|
INCR(re->m_fifo_head, re->m_fifolen);
|
|
re->m_fifo_depth--;
|
|
/* XXX check it doesn't fall below 0 */
|
|
} while (re->m_fifo_depth > 0);
|
|
|
|
/* Append some more fresh frames to the FIFO */
|
|
if (dosched)
|
|
ath_edma_rxfifo_alloc(sc, qtype, re->m_fifolen);
|
|
|
|
ATH_RX_UNLOCK(sc);
|
|
|
|
/* rx signal state monitoring */
|
|
ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
|
|
|
|
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1,
|
|
"ath edma rx proc: npkts=%d\n",
|
|
npkts);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Flush the deferred queue.
|
|
*
|
|
* This destructively flushes the deferred queue - it doesn't
|
|
* call the wireless stack on each mbuf.
|
|
*/
|
|
static void
|
|
ath_edma_flush_deferred_queue(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
ATH_RX_LOCK_ASSERT(sc);
|
|
|
|
/* Free in one set, inside the lock */
|
|
while (! TAILQ_EMPTY(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP])) {
|
|
bf = TAILQ_FIRST(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
|
|
TAILQ_REMOVE(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP], bf, bf_list);
|
|
/* Free the buffer/mbuf */
|
|
ath_edma_rxbuf_free(sc, bf);
|
|
}
|
|
while (! TAILQ_EMPTY(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP])) {
|
|
bf = TAILQ_FIRST(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
|
|
TAILQ_REMOVE(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP], bf, bf_list);
|
|
/* Free the buffer/mbuf */
|
|
ath_edma_rxbuf_free(sc, bf);
|
|
}
|
|
}
|
|
|
|
static int
|
|
ath_edma_recv_proc_deferred_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
|
|
int dosched)
|
|
{
|
|
int ngood = 0;
|
|
uint64_t tsf;
|
|
struct ath_buf *bf, *next;
|
|
struct ath_rx_status *rs;
|
|
int16_t nf;
|
|
ath_bufhead rxlist;
|
|
struct mbuf *m;
|
|
|
|
TAILQ_INIT(&rxlist);
|
|
|
|
nf = ath_hal_getchannoise(sc->sc_ah, sc->sc_curchan);
|
|
/*
|
|
* XXX TODO: the NF/TSF should be stamped on the bufs themselves,
|
|
* otherwise we may end up adding in the wrong values if this
|
|
* is delayed too far..
|
|
*/
|
|
tsf = ath_hal_gettsf64(sc->sc_ah);
|
|
|
|
/* Copy the list over */
|
|
ATH_RX_LOCK(sc);
|
|
TAILQ_CONCAT(&rxlist, &sc->sc_rx_rxlist[qtype], bf_list);
|
|
ATH_RX_UNLOCK(sc);
|
|
|
|
/* Handle the completed descriptors */
|
|
/*
|
|
* XXX is this SAFE call needed? The ath_buf entries
|
|
* aren't modified by ath_rx_pkt, right?
|
|
*/
|
|
TAILQ_FOREACH_SAFE(bf, &rxlist, bf_list, next) {
|
|
/*
|
|
* Skip the RX descriptor status - start at the data offset
|
|
*/
|
|
m_adj(bf->bf_m, sc->sc_rx_statuslen);
|
|
|
|
/* Handle the frame */
|
|
|
|
rs = &bf->bf_status.ds_rxstat;
|
|
m = bf->bf_m;
|
|
bf->bf_m = NULL;
|
|
if (ath_rx_pkt(sc, rs, bf->bf_rxstatus, tsf, nf, qtype, bf, m))
|
|
ngood++;
|
|
}
|
|
|
|
if (ngood) {
|
|
sc->sc_lastrx = tsf;
|
|
}
|
|
|
|
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1,
|
|
"ath edma rx deferred proc: ngood=%d\n",
|
|
ngood);
|
|
|
|
/* Free in one set, inside the lock */
|
|
ATH_RX_LOCK(sc);
|
|
while (! TAILQ_EMPTY(&rxlist)) {
|
|
bf = TAILQ_FIRST(&rxlist);
|
|
TAILQ_REMOVE(&rxlist, bf, bf_list);
|
|
/* Free the buffer/mbuf */
|
|
ath_edma_rxbuf_free(sc, bf);
|
|
}
|
|
ATH_RX_UNLOCK(sc);
|
|
|
|
return (ngood);
|
|
}
|
|
|
|
static void
|
|
ath_edma_recv_tasklet(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *) arg;
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
#endif
|
|
|
|
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: called; npending=%d\n",
|
|
__func__,
|
|
npending);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
if (sc->sc_inreset_cnt > 0) {
|
|
device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; skipping\n",
|
|
__func__);
|
|
ATH_PCU_UNLOCK(sc);
|
|
return;
|
|
}
|
|
sc->sc_rxproc_cnt++;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_HP, 1);
|
|
ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_LP, 1);
|
|
|
|
ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_HP, 1);
|
|
ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_LP, 1);
|
|
|
|
/*
|
|
* XXX: If we read the tsf/channoise here and then pass it in,
|
|
* we could restore the power state before processing
|
|
* the deferred queue.
|
|
*/
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
ieee80211_ff_age_all(ic, 100);
|
|
#endif
|
|
if (ath_dfs_tasklet_needed(sc, sc->sc_curchan))
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_rxproc_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Allocate an RX mbuf for the given ath_buf and initialise
|
|
* it for EDMA.
|
|
*
|
|
* + Allocate a 4KB mbuf;
|
|
* + Setup the DMA map for the given buffer;
|
|
* + Return that.
|
|
*/
|
|
static int
|
|
ath_edma_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
|
|
struct mbuf *m;
|
|
int error;
|
|
int len;
|
|
|
|
ATH_RX_LOCK_ASSERT(sc);
|
|
|
|
m = m_getm(NULL, sc->sc_edma_bufsize, M_NOWAIT, MT_DATA);
|
|
if (! m)
|
|
return (ENOBUFS); /* XXX ?*/
|
|
|
|
/* XXX warn/enforce alignment */
|
|
|
|
len = m->m_ext.ext_size;
|
|
#if 0
|
|
device_printf(sc->sc_dev, "%s: called: m=%p, size=%d, mtod=%p\n",
|
|
__func__,
|
|
m,
|
|
len,
|
|
mtod(m, char *));
|
|
#endif
|
|
|
|
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
|
|
|
|
/*
|
|
* Populate ath_buf fields.
|
|
*/
|
|
bf->bf_desc = mtod(m, struct ath_desc *);
|
|
bf->bf_lastds = bf->bf_desc; /* XXX only really for TX? */
|
|
bf->bf_m = m;
|
|
|
|
/*
|
|
* Zero the descriptor and ensure it makes it out to the
|
|
* bounce buffer if one is required.
|
|
*
|
|
* XXX PREWRITE will copy the whole buffer; we only needed it
|
|
* to sync the first 32 DWORDS. Oh well.
|
|
*/
|
|
memset(bf->bf_desc, '\0', sc->sc_rx_statuslen);
|
|
|
|
/*
|
|
* Create DMA mapping.
|
|
*/
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
|
|
bf->bf_dmamap, m, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT);
|
|
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "%s: failed; error=%d\n",
|
|
__func__,
|
|
error);
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set daddr to the physical mapping page.
|
|
*/
|
|
bf->bf_daddr = bf->bf_segs[0].ds_addr;
|
|
|
|
/*
|
|
* Prepare for the upcoming read.
|
|
*
|
|
* We need to both sync some data into the buffer (the zero'ed
|
|
* descriptor payload) and also prepare for the read that's going
|
|
* to occur.
|
|
*/
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Finish! */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate a RX buffer.
|
|
*/
|
|
static struct ath_buf *
|
|
ath_edma_rxbuf_alloc(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf;
|
|
int error;
|
|
|
|
ATH_RX_LOCK_ASSERT(sc);
|
|
|
|
/* Allocate buffer */
|
|
bf = TAILQ_FIRST(&sc->sc_rxbuf);
|
|
/* XXX shouldn't happen upon startup? */
|
|
if (bf == NULL) {
|
|
device_printf(sc->sc_dev, "%s: nothing on rxbuf?!\n",
|
|
__func__);
|
|
return (NULL);
|
|
}
|
|
|
|
/* Remove it from the free list */
|
|
TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
|
|
|
|
/* Assign RX mbuf to it */
|
|
error = ath_edma_rxbuf_init(sc, bf);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bf=%p, rxbuf alloc failed! error=%d\n",
|
|
__func__,
|
|
bf,
|
|
error);
|
|
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
|
|
return (NULL);
|
|
}
|
|
|
|
return (bf);
|
|
}
|
|
|
|
static void
|
|
ath_edma_rxbuf_free(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
|
|
ATH_RX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Only unload the frame if we haven't consumed
|
|
* the mbuf via ath_rx_pkt().
|
|
*/
|
|
if (bf->bf_m) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
|
|
/* XXX lock? */
|
|
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
|
|
}
|
|
|
|
/*
|
|
* Allocate up to 'n' entries and push them onto the hardware FIFO.
|
|
*
|
|
* Return how many entries were successfully pushed onto the
|
|
* FIFO.
|
|
*/
|
|
static int
|
|
ath_edma_rxfifo_alloc(struct ath_softc *sc, HAL_RX_QUEUE qtype, int nbufs)
|
|
{
|
|
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
|
|
struct ath_buf *bf;
|
|
int i;
|
|
|
|
ATH_RX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Allocate buffers until the FIFO is full or nbufs is reached.
|
|
*/
|
|
for (i = 0; i < nbufs && re->m_fifo_depth < re->m_fifolen; i++) {
|
|
/* Ensure the FIFO is already blank, complain loudly! */
|
|
if (re->m_fifo[re->m_fifo_tail] != NULL) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: Q%d: fifo[%d] != NULL (%p)\n",
|
|
__func__,
|
|
qtype,
|
|
re->m_fifo_tail,
|
|
re->m_fifo[re->m_fifo_tail]);
|
|
|
|
/* Free the slot */
|
|
ath_edma_rxbuf_free(sc, re->m_fifo[re->m_fifo_tail]);
|
|
re->m_fifo_depth--;
|
|
/* XXX check it's not < 0 */
|
|
re->m_fifo[re->m_fifo_tail] = NULL;
|
|
}
|
|
|
|
bf = ath_edma_rxbuf_alloc(sc);
|
|
/* XXX should ensure the FIFO is not NULL? */
|
|
if (bf == NULL) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: Q%d: alloc failed: i=%d, nbufs=%d?\n",
|
|
__func__,
|
|
qtype,
|
|
i,
|
|
nbufs);
|
|
break;
|
|
}
|
|
|
|
re->m_fifo[re->m_fifo_tail] = bf;
|
|
|
|
/* Write to the RX FIFO */
|
|
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
|
|
"%s: Q%d: putrxbuf=%p (0x%jx)\n",
|
|
__func__,
|
|
qtype,
|
|
bf->bf_desc,
|
|
(uintmax_t) bf->bf_daddr);
|
|
ath_hal_putrxbuf(sc->sc_ah, bf->bf_daddr, qtype);
|
|
|
|
re->m_fifo_depth++;
|
|
INCR(re->m_fifo_tail, re->m_fifolen);
|
|
}
|
|
|
|
/*
|
|
* Return how many were allocated.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: Q%d: nbufs=%d, nalloced=%d\n",
|
|
__func__,
|
|
qtype,
|
|
nbufs,
|
|
i);
|
|
return (i);
|
|
}
|
|
|
|
static int
|
|
ath_edma_rxfifo_flush(struct ath_softc *sc, HAL_RX_QUEUE qtype)
|
|
{
|
|
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
|
|
int i;
|
|
|
|
ATH_RX_LOCK_ASSERT(sc);
|
|
|
|
for (i = 0; i < re->m_fifolen; i++) {
|
|
if (re->m_fifo[i] != NULL) {
|
|
#ifdef ATH_DEBUG
|
|
struct ath_buf *bf = re->m_fifo[i];
|
|
|
|
if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
|
|
ath_printrxbuf(sc, bf, 0, HAL_OK);
|
|
#endif
|
|
ath_edma_rxbuf_free(sc, re->m_fifo[i]);
|
|
re->m_fifo[i] = NULL;
|
|
re->m_fifo_depth--;
|
|
}
|
|
}
|
|
|
|
if (re->m_rxpending != NULL) {
|
|
m_freem(re->m_rxpending);
|
|
re->m_rxpending = NULL;
|
|
}
|
|
re->m_fifo_head = re->m_fifo_tail = re->m_fifo_depth = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Setup the initial RX FIFO structure.
|
|
*/
|
|
static int
|
|
ath_edma_setup_rxfifo(struct ath_softc *sc, HAL_RX_QUEUE qtype)
|
|
{
|
|
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
|
|
|
|
ATH_RX_LOCK_ASSERT(sc);
|
|
|
|
if (! ath_hal_getrxfifodepth(sc->sc_ah, qtype, &re->m_fifolen)) {
|
|
device_printf(sc->sc_dev, "%s: qtype=%d, failed\n",
|
|
__func__,
|
|
qtype);
|
|
return (-EINVAL);
|
|
}
|
|
|
|
if (bootverbose)
|
|
device_printf(sc->sc_dev,
|
|
"%s: type=%d, FIFO depth = %d entries\n",
|
|
__func__,
|
|
qtype,
|
|
re->m_fifolen);
|
|
|
|
/* Allocate ath_buf FIFO array, pre-zero'ed */
|
|
re->m_fifo = malloc(sizeof(struct ath_buf *) * re->m_fifolen,
|
|
M_ATHDEV,
|
|
M_NOWAIT | M_ZERO);
|
|
if (re->m_fifo == NULL) {
|
|
device_printf(sc->sc_dev, "%s: malloc failed\n",
|
|
__func__);
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Set initial "empty" state.
|
|
*/
|
|
re->m_rxpending = NULL;
|
|
re->m_fifo_head = re->m_fifo_tail = re->m_fifo_depth = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ath_edma_rxfifo_free(struct ath_softc *sc, HAL_RX_QUEUE qtype)
|
|
{
|
|
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
|
|
|
|
device_printf(sc->sc_dev, "%s: called; qtype=%d\n",
|
|
__func__,
|
|
qtype);
|
|
|
|
free(re->m_fifo, M_ATHDEV);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ath_edma_dma_rxsetup(struct ath_softc *sc)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* Create RX DMA tag and buffers.
|
|
*/
|
|
error = ath_descdma_setup_rx_edma(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
|
|
"rx", ath_rxbuf, sc->sc_rx_statuslen);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
ATH_RX_LOCK(sc);
|
|
(void) ath_edma_setup_rxfifo(sc, HAL_RX_QUEUE_HP);
|
|
(void) ath_edma_setup_rxfifo(sc, HAL_RX_QUEUE_LP);
|
|
ATH_RX_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ath_edma_dma_rxteardown(struct ath_softc *sc)
|
|
{
|
|
|
|
ATH_RX_LOCK(sc);
|
|
ath_edma_flush_deferred_queue(sc);
|
|
ath_edma_rxfifo_flush(sc, HAL_RX_QUEUE_HP);
|
|
ath_edma_rxfifo_free(sc, HAL_RX_QUEUE_HP);
|
|
|
|
ath_edma_rxfifo_flush(sc, HAL_RX_QUEUE_LP);
|
|
ath_edma_rxfifo_free(sc, HAL_RX_QUEUE_LP);
|
|
ATH_RX_UNLOCK(sc);
|
|
|
|
/* Free RX ath_buf */
|
|
/* Free RX DMA tag */
|
|
if (sc->sc_rxdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ath_recv_setup_edma(struct ath_softc *sc)
|
|
{
|
|
|
|
/* Set buffer size to 4k */
|
|
sc->sc_edma_bufsize = 4096;
|
|
|
|
/* Fetch EDMA field and buffer sizes */
|
|
(void) ath_hal_getrxstatuslen(sc->sc_ah, &sc->sc_rx_statuslen);
|
|
|
|
/* Configure the hardware with the RX buffer size */
|
|
(void) ath_hal_setrxbufsize(sc->sc_ah, sc->sc_edma_bufsize -
|
|
sc->sc_rx_statuslen);
|
|
|
|
if (bootverbose) {
|
|
device_printf(sc->sc_dev, "RX status length: %d\n",
|
|
sc->sc_rx_statuslen);
|
|
device_printf(sc->sc_dev, "RX buffer size: %d\n",
|
|
sc->sc_edma_bufsize);
|
|
}
|
|
|
|
sc->sc_rx.recv_stop = ath_edma_stoprecv;
|
|
sc->sc_rx.recv_start = ath_edma_startrecv;
|
|
sc->sc_rx.recv_flush = ath_edma_recv_flush;
|
|
sc->sc_rx.recv_tasklet = ath_edma_recv_tasklet;
|
|
sc->sc_rx.recv_rxbuf_init = ath_edma_rxbuf_init;
|
|
|
|
sc->sc_rx.recv_setup = ath_edma_dma_rxsetup;
|
|
sc->sc_rx.recv_teardown = ath_edma_dma_rxteardown;
|
|
|
|
sc->sc_rx.recv_sched = ath_edma_recv_sched;
|
|
sc->sc_rx.recv_sched_queue = ath_edma_recv_sched_queue;
|
|
}
|