9f3a915030
This enables LDPC receive support for the AR9300 chips that support it. It'll announce LDPC support via net80211. Tested: * AR9380, STA mode * AR9331, (to verify the HAL didn't attach it to a chip which doesn't support LDPC.) TODO: * Add in net80211 machinery to make this configurable at runtime.
6645 lines
175 KiB
C
6645 lines
175 KiB
C
/*-
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ath.h"
|
|
/*
|
|
* This is needed for register operations which are performed
|
|
* by the driver - eg, calls to ath_hal_gettsf32().
|
|
*
|
|
* It's also required for any AH_DEBUG checks in here, eg the
|
|
* module dependencies.
|
|
*/
|
|
#include "opt_ah.h"
|
|
#include "opt_wlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/module.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/smp.h> /* for mp_ncpus */
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_regdomain.h>
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
#include <net80211/ieee80211_superg.h>
|
|
#endif
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
#include <net80211/ieee80211_tdma.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_athvar.h>
|
|
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
|
|
#include <dev/ath/ath_hal/ah_diagcodes.h>
|
|
|
|
#include <dev/ath/if_ath_debug.h>
|
|
#include <dev/ath/if_ath_misc.h>
|
|
#include <dev/ath/if_ath_tsf.h>
|
|
#include <dev/ath/if_ath_tx.h>
|
|
#include <dev/ath/if_ath_sysctl.h>
|
|
#include <dev/ath/if_ath_led.h>
|
|
#include <dev/ath/if_ath_keycache.h>
|
|
#include <dev/ath/if_ath_rx.h>
|
|
#include <dev/ath/if_ath_rx_edma.h>
|
|
#include <dev/ath/if_ath_tx_edma.h>
|
|
#include <dev/ath/if_ath_beacon.h>
|
|
#include <dev/ath/if_ath_btcoex.h>
|
|
#include <dev/ath/if_ath_spectral.h>
|
|
#include <dev/ath/if_ath_lna_div.h>
|
|
#include <dev/ath/if_athdfs.h>
|
|
#include <dev/ath/if_ath_ioctl.h>
|
|
#include <dev/ath/if_ath_descdma.h>
|
|
|
|
#ifdef ATH_TX99_DIAG
|
|
#include <dev/ath/ath_tx99/ath_tx99.h>
|
|
#endif
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
#include <dev/ath/if_ath_alq.h>
|
|
#endif
|
|
|
|
/*
|
|
* Only enable this if you're working on PS-POLL support.
|
|
*/
|
|
#define ATH_SW_PSQ
|
|
|
|
/*
|
|
* ATH_BCBUF determines the number of vap's that can transmit
|
|
* beacons and also (currently) the number of vap's that can
|
|
* have unique mac addresses/bssid. When staggering beacons
|
|
* 4 is probably a good max as otherwise the beacons become
|
|
* very closely spaced and there is limited time for cab q traffic
|
|
* to go out. You can burst beacons instead but that is not good
|
|
* for stations in power save and at some point you really want
|
|
* another radio (and channel).
|
|
*
|
|
* The limit on the number of mac addresses is tied to our use of
|
|
* the U/L bit and tracking addresses in a byte; it would be
|
|
* worthwhile to allow more for applications like proxy sta.
|
|
*/
|
|
CTASSERT(ATH_BCBUF <= 8);
|
|
|
|
static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
|
|
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
|
|
const uint8_t [IEEE80211_ADDR_LEN],
|
|
const uint8_t [IEEE80211_ADDR_LEN]);
|
|
static void ath_vap_delete(struct ieee80211vap *);
|
|
static int ath_init(struct ath_softc *);
|
|
static void ath_stop(struct ath_softc *);
|
|
static int ath_reset_vap(struct ieee80211vap *, u_long);
|
|
static int ath_transmit(struct ieee80211com *, struct mbuf *);
|
|
static int ath_media_change(struct ifnet *);
|
|
static void ath_watchdog(void *);
|
|
static void ath_parent(struct ieee80211com *);
|
|
static void ath_fatal_proc(void *, int);
|
|
static void ath_bmiss_vap(struct ieee80211vap *);
|
|
static void ath_bmiss_proc(void *, int);
|
|
static void ath_key_update_begin(struct ieee80211vap *);
|
|
static void ath_key_update_end(struct ieee80211vap *);
|
|
static void ath_update_mcast_hw(struct ath_softc *);
|
|
static void ath_update_mcast(struct ieee80211com *);
|
|
static void ath_update_promisc(struct ieee80211com *);
|
|
static void ath_updateslot(struct ieee80211com *);
|
|
static void ath_bstuck_proc(void *, int);
|
|
static void ath_reset_proc(void *, int);
|
|
static int ath_desc_alloc(struct ath_softc *);
|
|
static void ath_desc_free(struct ath_softc *);
|
|
static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
|
|
const uint8_t [IEEE80211_ADDR_LEN]);
|
|
static void ath_node_cleanup(struct ieee80211_node *);
|
|
static void ath_node_free(struct ieee80211_node *);
|
|
static void ath_node_getsignal(const struct ieee80211_node *,
|
|
int8_t *, int8_t *);
|
|
static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
|
|
static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
|
|
static int ath_tx_setup(struct ath_softc *, int, int);
|
|
static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
|
|
static void ath_tx_cleanup(struct ath_softc *);
|
|
static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
|
|
int dosched);
|
|
static void ath_tx_proc_q0(void *, int);
|
|
static void ath_tx_proc_q0123(void *, int);
|
|
static void ath_tx_proc(void *, int);
|
|
static void ath_txq_sched_tasklet(void *, int);
|
|
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
|
|
static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
|
|
static void ath_scan_start(struct ieee80211com *);
|
|
static void ath_scan_end(struct ieee80211com *);
|
|
static void ath_set_channel(struct ieee80211com *);
|
|
#ifdef ATH_ENABLE_11N
|
|
static void ath_update_chw(struct ieee80211com *);
|
|
#endif /* ATH_ENABLE_11N */
|
|
static void ath_calibrate(void *);
|
|
static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
|
|
static void ath_setup_stationkey(struct ieee80211_node *);
|
|
static void ath_newassoc(struct ieee80211_node *, int);
|
|
static int ath_setregdomain(struct ieee80211com *,
|
|
struct ieee80211_regdomain *, int,
|
|
struct ieee80211_channel []);
|
|
static void ath_getradiocaps(struct ieee80211com *, int, int *,
|
|
struct ieee80211_channel []);
|
|
static int ath_getchannels(struct ath_softc *);
|
|
|
|
static int ath_rate_setup(struct ath_softc *, u_int mode);
|
|
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
|
|
|
|
static void ath_announce(struct ath_softc *);
|
|
|
|
static void ath_dfs_tasklet(void *, int);
|
|
static void ath_node_powersave(struct ieee80211_node *, int);
|
|
static int ath_node_set_tim(struct ieee80211_node *, int);
|
|
static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
|
|
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
#include <dev/ath/if_ath_tdma.h>
|
|
#endif
|
|
|
|
SYSCTL_DECL(_hw_ath);
|
|
|
|
/* XXX validate sysctl values */
|
|
static int ath_longcalinterval = 30; /* long cals every 30 secs */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
|
|
0, "long chip calibration interval (secs)");
|
|
static int ath_shortcalinterval = 100; /* short cals every 100 ms */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
|
|
0, "short chip calibration interval (msecs)");
|
|
static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
|
|
0, "reset chip calibration results (secs)");
|
|
static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
|
|
0, "ANI calibration (msecs)");
|
|
|
|
int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
|
|
0, "rx buffers allocated");
|
|
int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
|
|
0, "tx buffers allocated");
|
|
int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
|
|
0, "tx (mgmt) buffers allocated");
|
|
|
|
int ath_bstuck_threshold = 4; /* max missed beacons */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
|
|
0, "max missed beacon xmits before chip reset");
|
|
|
|
MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
|
|
|
|
void
|
|
ath_legacy_attach_comp_func(struct ath_softc *sc)
|
|
{
|
|
|
|
/*
|
|
* Special case certain configurations. Note the
|
|
* CAB queue is handled by these specially so don't
|
|
* include them when checking the txq setup mask.
|
|
*/
|
|
switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
|
|
case 0x01:
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
|
|
break;
|
|
case 0x0f:
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
|
|
break;
|
|
default:
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the target power mode.
|
|
*
|
|
* If this is called during a point in time where
|
|
* the hardware is being programmed elsewhere, it will
|
|
* simply store it away and update it when all current
|
|
* uses of the hardware are completed.
|
|
*/
|
|
void
|
|
_ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
|
|
{
|
|
ATH_LOCK_ASSERT(sc);
|
|
|
|
sc->sc_target_powerstate = power_state;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
|
|
__func__,
|
|
file,
|
|
line,
|
|
power_state,
|
|
sc->sc_powersave_refcnt);
|
|
|
|
if (sc->sc_powersave_refcnt == 0 &&
|
|
power_state != sc->sc_cur_powerstate) {
|
|
sc->sc_cur_powerstate = power_state;
|
|
ath_hal_setpower(sc->sc_ah, power_state);
|
|
|
|
/*
|
|
* If the NIC is force-awake, then set the
|
|
* self-gen frame state appropriately.
|
|
*
|
|
* If the nic is in network sleep or full-sleep,
|
|
* we let the above call leave the self-gen
|
|
* state as "sleep".
|
|
*/
|
|
if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
|
|
sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
|
|
ath_hal_setselfgenpower(sc->sc_ah,
|
|
sc->sc_target_selfgen_state);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the current self-generated frames state.
|
|
*
|
|
* This is separate from the target power mode. The chip may be
|
|
* awake but the desired state is "sleep", so frames sent to the
|
|
* destination has PWRMGT=1 in the 802.11 header. The NIC also
|
|
* needs to know to set PWRMGT=1 in self-generated frames.
|
|
*/
|
|
void
|
|
_ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
|
|
{
|
|
|
|
ATH_LOCK_ASSERT(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
|
|
__func__,
|
|
file,
|
|
line,
|
|
power_state,
|
|
sc->sc_target_selfgen_state);
|
|
|
|
sc->sc_target_selfgen_state = power_state;
|
|
|
|
/*
|
|
* If the NIC is force-awake, then set the power state.
|
|
* Network-state and full-sleep will already transition it to
|
|
* mark self-gen frames as sleeping - and we can't
|
|
* guarantee the NIC is awake to program the self-gen frame
|
|
* setting anyway.
|
|
*/
|
|
if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
|
|
ath_hal_setselfgenpower(sc->sc_ah, power_state);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the hardware power mode and take a reference.
|
|
*
|
|
* This doesn't update the target power mode in the driver;
|
|
* it just updates the hardware power state.
|
|
*
|
|
* XXX it should only ever force the hardware awake; it should
|
|
* never be called to set it asleep.
|
|
*/
|
|
void
|
|
_ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
|
|
{
|
|
ATH_LOCK_ASSERT(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
|
|
__func__,
|
|
file,
|
|
line,
|
|
power_state,
|
|
sc->sc_powersave_refcnt);
|
|
|
|
sc->sc_powersave_refcnt++;
|
|
|
|
if (power_state != sc->sc_cur_powerstate) {
|
|
ath_hal_setpower(sc->sc_ah, power_state);
|
|
sc->sc_cur_powerstate = power_state;
|
|
|
|
/*
|
|
* Adjust the self-gen powerstate if appropriate.
|
|
*/
|
|
if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
|
|
sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
|
|
ath_hal_setselfgenpower(sc->sc_ah,
|
|
sc->sc_target_selfgen_state);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore the power save mode to what it once was.
|
|
*
|
|
* This will decrement the reference counter and once it hits
|
|
* zero, it'll restore the powersave state.
|
|
*/
|
|
void
|
|
_ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
|
|
{
|
|
|
|
ATH_LOCK_ASSERT(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
|
|
__func__,
|
|
file,
|
|
line,
|
|
sc->sc_powersave_refcnt,
|
|
sc->sc_target_powerstate);
|
|
|
|
if (sc->sc_powersave_refcnt == 0)
|
|
device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
|
|
else
|
|
sc->sc_powersave_refcnt--;
|
|
|
|
if (sc->sc_powersave_refcnt == 0 &&
|
|
sc->sc_target_powerstate != sc->sc_cur_powerstate) {
|
|
sc->sc_cur_powerstate = sc->sc_target_powerstate;
|
|
ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
|
|
}
|
|
|
|
/*
|
|
* Adjust the self-gen powerstate if appropriate.
|
|
*/
|
|
if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
|
|
sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
|
|
ath_hal_setselfgenpower(sc->sc_ah,
|
|
sc->sc_target_selfgen_state);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Configure the initial HAL configuration values based on bus
|
|
* specific parameters.
|
|
*
|
|
* Some PCI IDs and other information may need tweaking.
|
|
*
|
|
* XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
|
|
* if BT antenna diversity isn't enabled.
|
|
*
|
|
* So, let's also figure out how to enable BT diversity for AR9485.
|
|
*/
|
|
static void
|
|
ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
|
|
{
|
|
/* XXX TODO: only for PCI devices? */
|
|
|
|
if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
|
|
ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
|
|
ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
|
|
ah_config->ath_hal_min_gainidx = AH_TRUE;
|
|
ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
|
|
/* XXX low_rssi_thresh */
|
|
/* XXX fast_div_bias */
|
|
device_printf(sc->sc_dev, "configuring for %s\n",
|
|
(sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
|
|
"CUS198" : "CUS230");
|
|
}
|
|
|
|
if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
|
|
device_printf(sc->sc_dev, "CUS217 card detected\n");
|
|
|
|
if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
|
|
device_printf(sc->sc_dev, "CUS252 card detected\n");
|
|
|
|
if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
|
|
device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
|
|
|
|
if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
|
|
device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
|
|
|
|
if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
|
|
device_printf(sc->sc_dev, "Killer Wireless card detected\n");
|
|
|
|
#if 0
|
|
/*
|
|
* Some WB335 cards do not support antenna diversity. Since
|
|
* we use a hardcoded value for AR9565 instead of using the
|
|
* EEPROM/OTP data, remove the combining feature from
|
|
* the HW capabilities bitmap.
|
|
*/
|
|
if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
|
|
if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
|
|
pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
|
|
}
|
|
|
|
if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
|
|
pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
|
|
device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
|
|
}
|
|
#endif
|
|
|
|
if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
|
|
ah_config->ath_hal_pcie_waen = 0x0040473b;
|
|
device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
|
|
}
|
|
|
|
#if 0
|
|
if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
|
|
ah->config.no_pll_pwrsave = true;
|
|
device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
/*
|
|
* Attempt to fetch the MAC address from the kernel environment.
|
|
*
|
|
* Returns 0, macaddr in macaddr if successful; -1 otherwise.
|
|
*/
|
|
static int
|
|
ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr)
|
|
{
|
|
char devid_str[32];
|
|
int local_mac = 0;
|
|
char *local_macstr;
|
|
|
|
/*
|
|
* Fetch from the kenv rather than using hints.
|
|
*
|
|
* Hints would be nice but the transition to dynamic
|
|
* hints/kenv doesn't happen early enough for this
|
|
* to work reliably (eg on anything embedded.)
|
|
*/
|
|
snprintf(devid_str, 32, "hint.%s.%d.macaddr",
|
|
device_get_name(sc->sc_dev),
|
|
device_get_unit(sc->sc_dev));
|
|
|
|
if ((local_macstr = kern_getenv(devid_str)) != NULL) {
|
|
uint32_t tmpmac[ETHER_ADDR_LEN];
|
|
int count;
|
|
int i;
|
|
|
|
/* Have a MAC address; should use it */
|
|
device_printf(sc->sc_dev,
|
|
"Overriding MAC address from environment: '%s'\n",
|
|
local_macstr);
|
|
|
|
/* Extract out the MAC address */
|
|
count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
|
|
&tmpmac[0], &tmpmac[1],
|
|
&tmpmac[2], &tmpmac[3],
|
|
&tmpmac[4], &tmpmac[5]);
|
|
if (count == 6) {
|
|
/* Valid! */
|
|
local_mac = 1;
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
macaddr[i] = tmpmac[i];
|
|
}
|
|
/* Done! */
|
|
freeenv(local_macstr);
|
|
local_macstr = NULL;
|
|
}
|
|
|
|
if (local_mac)
|
|
return (0);
|
|
return (-1);
|
|
}
|
|
|
|
#define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
|
|
#define HAL_MODE_HT40 \
|
|
(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
|
|
HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
|
|
int
|
|
ath_attach(u_int16_t devid, struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = NULL;
|
|
HAL_STATUS status;
|
|
int error = 0, i;
|
|
u_int wmodes;
|
|
int rx_chainmask, tx_chainmask;
|
|
HAL_OPS_CONFIG ah_config;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
|
|
|
|
ic->ic_softc = sc;
|
|
ic->ic_name = device_get_nameunit(sc->sc_dev);
|
|
|
|
/*
|
|
* Configure the initial configuration data.
|
|
*
|
|
* This is stuff that may be needed early during attach
|
|
* rather than done via configuration calls later.
|
|
*/
|
|
bzero(&ah_config, sizeof(ah_config));
|
|
ath_setup_hal_config(sc, &ah_config);
|
|
|
|
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
|
|
sc->sc_eepromdata, &ah_config, &status);
|
|
if (ah == NULL) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to attach hardware; HAL status %u\n", status);
|
|
error = ENXIO;
|
|
goto bad;
|
|
}
|
|
sc->sc_ah = ah;
|
|
sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
|
|
#ifdef ATH_DEBUG
|
|
sc->sc_debug = ath_debug;
|
|
#endif
|
|
|
|
/*
|
|
* Setup the DMA/EDMA functions based on the current
|
|
* hardware support.
|
|
*
|
|
* This is required before the descriptors are allocated.
|
|
*/
|
|
if (ath_hal_hasedma(sc->sc_ah)) {
|
|
sc->sc_isedma = 1;
|
|
ath_recv_setup_edma(sc);
|
|
ath_xmit_setup_edma(sc);
|
|
} else {
|
|
ath_recv_setup_legacy(sc);
|
|
ath_xmit_setup_legacy(sc);
|
|
}
|
|
|
|
if (ath_hal_hasmybeacon(sc->sc_ah)) {
|
|
sc->sc_do_mybeacon = 1;
|
|
}
|
|
|
|
/*
|
|
* Check if the MAC has multi-rate retry support.
|
|
* We do this by trying to setup a fake extended
|
|
* descriptor. MAC's that don't have support will
|
|
* return false w/o doing anything. MAC's that do
|
|
* support it will return true w/o doing anything.
|
|
*/
|
|
sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
|
|
|
|
/*
|
|
* Check if the device has hardware counters for PHY
|
|
* errors. If so we need to enable the MIB interrupt
|
|
* so we can act on stat triggers.
|
|
*/
|
|
if (ath_hal_hwphycounters(ah))
|
|
sc->sc_needmib = 1;
|
|
|
|
/*
|
|
* Get the hardware key cache size.
|
|
*/
|
|
sc->sc_keymax = ath_hal_keycachesize(ah);
|
|
if (sc->sc_keymax > ATH_KEYMAX) {
|
|
device_printf(sc->sc_dev,
|
|
"Warning, using only %u of %u key cache slots\n",
|
|
ATH_KEYMAX, sc->sc_keymax);
|
|
sc->sc_keymax = ATH_KEYMAX;
|
|
}
|
|
/*
|
|
* Reset the key cache since some parts do not
|
|
* reset the contents on initial power up.
|
|
*/
|
|
for (i = 0; i < sc->sc_keymax; i++)
|
|
ath_hal_keyreset(ah, i);
|
|
|
|
/*
|
|
* Collect the default channel list.
|
|
*/
|
|
error = ath_getchannels(sc);
|
|
if (error != 0)
|
|
goto bad;
|
|
|
|
/*
|
|
* Setup rate tables for all potential media types.
|
|
*/
|
|
ath_rate_setup(sc, IEEE80211_MODE_11A);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11B);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11G);
|
|
ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
|
|
ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
|
|
ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11NA);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11NG);
|
|
ath_rate_setup(sc, IEEE80211_MODE_HALF);
|
|
ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
|
|
|
|
/* NB: setup here so ath_rate_update is happy */
|
|
ath_setcurmode(sc, IEEE80211_MODE_11A);
|
|
|
|
/*
|
|
* Allocate TX descriptors and populate the lists.
|
|
*/
|
|
error = ath_desc_alloc(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"failed to allocate TX descriptors: %d\n", error);
|
|
goto bad;
|
|
}
|
|
error = ath_txdma_setup(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"failed to allocate TX descriptors: %d\n", error);
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Allocate RX descriptors and populate the lists.
|
|
*/
|
|
error = ath_rxdma_setup(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"failed to allocate RX descriptors: %d\n", error);
|
|
goto bad;
|
|
}
|
|
|
|
callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
|
|
callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
|
|
|
|
ATH_TXBUF_LOCK_INIT(sc);
|
|
|
|
sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &sc->sc_tq);
|
|
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
|
|
device_get_nameunit(sc->sc_dev));
|
|
|
|
TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
|
|
TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
|
|
TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
|
|
TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
|
|
TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
|
|
TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
|
|
|
|
/*
|
|
* Allocate hardware transmit queues: one queue for
|
|
* beacon frames and one data queue for each QoS
|
|
* priority. Note that the hal handles resetting
|
|
* these queues at the needed time.
|
|
*
|
|
* XXX PS-Poll
|
|
*/
|
|
sc->sc_bhalq = ath_beaconq_setup(sc);
|
|
if (sc->sc_bhalq == (u_int) -1) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to setup a beacon xmit queue!\n");
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
|
|
if (sc->sc_cabq == NULL) {
|
|
device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n");
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
/* NB: insure BK queue is the lowest priority h/w queue */
|
|
if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to setup xmit queue for %s traffic!\n",
|
|
ieee80211_wme_acnames[WME_AC_BK]);
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
|
|
!ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
|
|
!ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
|
|
/*
|
|
* Not enough hardware tx queues to properly do WME;
|
|
* just punt and assign them all to the same h/w queue.
|
|
* We could do a better job of this if, for example,
|
|
* we allocate queues when we switch from station to
|
|
* AP mode.
|
|
*/
|
|
if (sc->sc_ac2q[WME_AC_VI] != NULL)
|
|
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
|
|
if (sc->sc_ac2q[WME_AC_BE] != NULL)
|
|
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
|
|
sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
|
|
sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
|
|
sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
|
|
}
|
|
|
|
/*
|
|
* Attach the TX completion function.
|
|
*
|
|
* The non-EDMA chips may have some special case optimisations;
|
|
* this method gives everyone a chance to attach cleanly.
|
|
*/
|
|
sc->sc_tx.xmit_attach_comp_func(sc);
|
|
|
|
/*
|
|
* Setup rate control. Some rate control modules
|
|
* call back to change the anntena state so expose
|
|
* the necessary entry points.
|
|
* XXX maybe belongs in struct ath_ratectrl?
|
|
*/
|
|
sc->sc_setdefantenna = ath_setdefantenna;
|
|
sc->sc_rc = ath_rate_attach(sc);
|
|
if (sc->sc_rc == NULL) {
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
/* Attach DFS module */
|
|
if (! ath_dfs_attach(sc)) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: unable to attach DFS\n", __func__);
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
/* Attach spectral module */
|
|
if (ath_spectral_attach(sc) < 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: unable to attach spectral\n", __func__);
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
/* Attach bluetooth coexistence module */
|
|
if (ath_btcoex_attach(sc) < 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: unable to attach bluetooth coexistence\n", __func__);
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
/* Attach LNA diversity module */
|
|
if (ath_lna_div_attach(sc) < 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: unable to attach LNA diversity\n", __func__);
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
/* Start DFS processing tasklet */
|
|
TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
|
|
|
|
/* Configure LED state */
|
|
sc->sc_blinking = 0;
|
|
sc->sc_ledstate = 1;
|
|
sc->sc_ledon = 0; /* low true */
|
|
sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
|
|
callout_init(&sc->sc_ledtimer, 1);
|
|
|
|
/*
|
|
* Don't setup hardware-based blinking.
|
|
*
|
|
* Although some NICs may have this configured in the
|
|
* default reset register values, the user may wish
|
|
* to alter which pins have which function.
|
|
*
|
|
* The reference driver attaches the MAC network LED to GPIO1 and
|
|
* the MAC power LED to GPIO2. However, the DWA-552 cardbus
|
|
* NIC has these reversed.
|
|
*/
|
|
sc->sc_hardled = (1 == 0);
|
|
sc->sc_led_net_pin = -1;
|
|
sc->sc_led_pwr_pin = -1;
|
|
/*
|
|
* Auto-enable soft led processing for IBM cards and for
|
|
* 5211 minipci cards. Users can also manually enable/disable
|
|
* support with a sysctl.
|
|
*/
|
|
sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
|
|
ath_led_config(sc);
|
|
ath_hal_setledstate(ah, HAL_LED_INIT);
|
|
|
|
/* XXX not right but it's not used anywhere important */
|
|
ic->ic_phytype = IEEE80211_T_OFDM;
|
|
ic->ic_opmode = IEEE80211_M_STA;
|
|
ic->ic_caps =
|
|
IEEE80211_C_STA /* station mode */
|
|
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
|
|
| IEEE80211_C_HOSTAP /* hostap mode */
|
|
| IEEE80211_C_MONITOR /* monitor mode */
|
|
| IEEE80211_C_AHDEMO /* adhoc demo mode */
|
|
| IEEE80211_C_WDS /* 4-address traffic works */
|
|
| IEEE80211_C_MBSS /* mesh point link mode */
|
|
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
|
|
| IEEE80211_C_SHSLOT /* short slot time supported */
|
|
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
|
|
#ifndef ATH_ENABLE_11N
|
|
| IEEE80211_C_BGSCAN /* capable of bg scanning */
|
|
#endif
|
|
| IEEE80211_C_TXFRAG /* handle tx frags */
|
|
#ifdef ATH_ENABLE_DFS
|
|
| IEEE80211_C_DFS /* Enable radar detection */
|
|
#endif
|
|
| IEEE80211_C_PMGT /* Station side power mgmt */
|
|
| IEEE80211_C_SWSLEEP
|
|
;
|
|
/*
|
|
* Query the hal to figure out h/w crypto support.
|
|
*/
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
|
|
/*
|
|
* Check if h/w does the MIC and/or whether the
|
|
* separate key cache entries are required to
|
|
* handle both tx+rx MIC keys.
|
|
*/
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
|
|
/*
|
|
* If the h/w supports storing tx+rx MIC keys
|
|
* in one cache slot automatically enable use.
|
|
*/
|
|
if (ath_hal_hastkipsplit(ah) ||
|
|
!ath_hal_settkipsplit(ah, AH_FALSE))
|
|
sc->sc_splitmic = 1;
|
|
/*
|
|
* If the h/w can do TKIP MIC together with WME then
|
|
* we use it; otherwise we force the MIC to be done
|
|
* in software by the net80211 layer.
|
|
*/
|
|
if (ath_hal_haswmetkipmic(ah))
|
|
sc->sc_wmetkipmic = 1;
|
|
}
|
|
sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
|
|
/*
|
|
* Check for multicast key search support.
|
|
*/
|
|
if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
|
|
!ath_hal_getmcastkeysearch(sc->sc_ah)) {
|
|
ath_hal_setmcastkeysearch(sc->sc_ah, 1);
|
|
}
|
|
sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
|
|
/*
|
|
* Mark key cache slots associated with global keys
|
|
* as in use. If we knew TKIP was not to be used we
|
|
* could leave the +32, +64, and +32+64 slots free.
|
|
*/
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
|
|
setbit(sc->sc_keymap, i);
|
|
setbit(sc->sc_keymap, i+64);
|
|
if (sc->sc_splitmic) {
|
|
setbit(sc->sc_keymap, i+32);
|
|
setbit(sc->sc_keymap, i+32+64);
|
|
}
|
|
}
|
|
/*
|
|
* TPC support can be done either with a global cap or
|
|
* per-packet support. The latter is not available on
|
|
* all parts. We're a bit pedantic here as all parts
|
|
* support a global cap.
|
|
*/
|
|
if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
|
|
ic->ic_caps |= IEEE80211_C_TXPMGT;
|
|
|
|
/*
|
|
* Mark WME capability only if we have sufficient
|
|
* hardware queues to do proper priority scheduling.
|
|
*/
|
|
if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
|
|
ic->ic_caps |= IEEE80211_C_WME;
|
|
/*
|
|
* Check for misc other capabilities.
|
|
*/
|
|
if (ath_hal_hasbursting(ah))
|
|
ic->ic_caps |= IEEE80211_C_BURST;
|
|
sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
|
|
sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
|
|
sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
|
|
sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
|
|
sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
|
|
sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
|
|
sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
|
|
sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
|
|
|
|
if (ath_hal_hasfastframes(ah))
|
|
ic->ic_caps |= IEEE80211_C_FF;
|
|
wmodes = ath_hal_getwirelessmodes(ah);
|
|
if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
|
|
ic->ic_caps |= IEEE80211_C_TURBOP;
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (ath_hal_macversion(ah) > 0x78) {
|
|
ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
|
|
ic->ic_tdma_update = ath_tdma_update;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* TODO: enforce that at least this many frames are available
|
|
* in the txbuf list before allowing data frames (raw or
|
|
* otherwise) to be transmitted.
|
|
*/
|
|
sc->sc_txq_data_minfree = 10;
|
|
/*
|
|
* Leave this as default to maintain legacy behaviour.
|
|
* Shortening the cabq/mcastq may end up causing some
|
|
* undesirable behaviour.
|
|
*/
|
|
sc->sc_txq_mcastq_maxdepth = ath_txbuf;
|
|
|
|
/*
|
|
* How deep can the node software TX queue get whilst it's asleep.
|
|
*/
|
|
sc->sc_txq_node_psq_maxdepth = 16;
|
|
|
|
/*
|
|
* Default the maximum queue depth for a given node
|
|
* to 1/4'th the TX buffers, or 64, whichever
|
|
* is larger.
|
|
*/
|
|
sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
|
|
|
|
/* Enable CABQ by default */
|
|
sc->sc_cabq_enable = 1;
|
|
|
|
/*
|
|
* Allow the TX and RX chainmasks to be overridden by
|
|
* environment variables and/or device.hints.
|
|
*
|
|
* This must be done early - before the hardware is
|
|
* calibrated or before the 802.11n stream calculation
|
|
* is done.
|
|
*/
|
|
if (resource_int_value(device_get_name(sc->sc_dev),
|
|
device_get_unit(sc->sc_dev), "rx_chainmask",
|
|
&rx_chainmask) == 0) {
|
|
device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
|
|
rx_chainmask);
|
|
(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
|
|
}
|
|
if (resource_int_value(device_get_name(sc->sc_dev),
|
|
device_get_unit(sc->sc_dev), "tx_chainmask",
|
|
&tx_chainmask) == 0) {
|
|
device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
|
|
tx_chainmask);
|
|
(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
|
|
}
|
|
|
|
/*
|
|
* Query the TX/RX chainmask configuration.
|
|
*
|
|
* This is only relevant for 11n devices.
|
|
*/
|
|
ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
|
|
ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
|
|
|
|
/*
|
|
* Disable MRR with protected frames by default.
|
|
* Only 802.11n series NICs can handle this.
|
|
*/
|
|
sc->sc_mrrprot = 0; /* XXX should be a capability */
|
|
|
|
/*
|
|
* Query the enterprise mode information the HAL.
|
|
*/
|
|
if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
|
|
&sc->sc_ent_cfg) == HAL_OK)
|
|
sc->sc_use_ent = 1;
|
|
|
|
#ifdef ATH_ENABLE_11N
|
|
/*
|
|
* Query HT capabilities
|
|
*/
|
|
if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
|
|
(wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
|
|
uint32_t rxs, txs;
|
|
uint32_t ldpc;
|
|
|
|
device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
|
|
|
|
sc->sc_mrrprot = 1; /* XXX should be a capability */
|
|
|
|
ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */
|
|
| IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */
|
|
| IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */
|
|
| IEEE80211_HTCAP_MAXAMSDU_3839
|
|
/* max A-MSDU length */
|
|
| IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */
|
|
|
|
/*
|
|
* Enable short-GI for HT20 only if the hardware
|
|
* advertises support.
|
|
* Notably, anything earlier than the AR9287 doesn't.
|
|
*/
|
|
if ((ath_hal_getcapability(ah,
|
|
HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
|
|
(wmodes & HAL_MODE_HT20)) {
|
|
device_printf(sc->sc_dev,
|
|
"[HT] enabling short-GI in 20MHz mode\n");
|
|
ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
|
|
}
|
|
|
|
if (wmodes & HAL_MODE_HT40)
|
|
ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
|
|
| IEEE80211_HTCAP_SHORTGI40;
|
|
|
|
/*
|
|
* TX/RX streams need to be taken into account when
|
|
* negotiating which MCS rates it'll receive and
|
|
* what MCS rates are available for TX.
|
|
*/
|
|
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
|
|
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
|
|
ic->ic_txstream = txs;
|
|
ic->ic_rxstream = rxs;
|
|
|
|
/*
|
|
* Setup TX and RX STBC based on what the HAL allows and
|
|
* the currently configured chainmask set.
|
|
* Ie - don't enable STBC TX if only one chain is enabled.
|
|
* STBC RX is fine on a single RX chain; it just won't
|
|
* provide any real benefit.
|
|
*/
|
|
if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
|
|
NULL) == HAL_OK) {
|
|
sc->sc_rx_stbc = 1;
|
|
device_printf(sc->sc_dev,
|
|
"[HT] 1 stream STBC receive enabled\n");
|
|
ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
|
|
}
|
|
if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
|
|
NULL) == HAL_OK) {
|
|
sc->sc_tx_stbc = 1;
|
|
device_printf(sc->sc_dev,
|
|
"[HT] 1 stream STBC transmit enabled\n");
|
|
ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
|
|
}
|
|
|
|
(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
|
|
&sc->sc_rts_aggr_limit);
|
|
if (sc->sc_rts_aggr_limit != (64 * 1024))
|
|
device_printf(sc->sc_dev,
|
|
"[HT] RTS aggregates limited to %d KiB\n",
|
|
sc->sc_rts_aggr_limit / 1024);
|
|
|
|
/*
|
|
* LDPC
|
|
*/
|
|
if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc))
|
|
== HAL_OK && (ldpc == 1)) {
|
|
sc->sc_has_ldpc = 1;
|
|
device_printf(sc->sc_dev,
|
|
"[HT] LDPC transmit/receive enabled\n");
|
|
ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
|
|
}
|
|
|
|
|
|
device_printf(sc->sc_dev,
|
|
"[HT] %d RX streams; %d TX streams\n", rxs, txs);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Initial aggregation settings.
|
|
*/
|
|
sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
|
|
sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
|
|
sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
|
|
sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
|
|
sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
|
|
sc->sc_delim_min_pad = 0;
|
|
|
|
/*
|
|
* Check if the hardware requires PCI register serialisation.
|
|
* Some of the Owl based MACs require this.
|
|
*/
|
|
if (mp_ncpus > 1 &&
|
|
ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
|
|
0, NULL) == HAL_OK) {
|
|
sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
|
|
device_printf(sc->sc_dev,
|
|
"Enabling register serialisation\n");
|
|
}
|
|
|
|
/*
|
|
* Initialise the deferred completed RX buffer list.
|
|
*/
|
|
TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
|
|
TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
|
|
|
|
/*
|
|
* Indicate we need the 802.11 header padded to a
|
|
* 32-bit boundary for 4-address and QoS frames.
|
|
*/
|
|
ic->ic_flags |= IEEE80211_F_DATAPAD;
|
|
|
|
/*
|
|
* Query the hal about antenna support.
|
|
*/
|
|
sc->sc_defant = ath_hal_getdefantenna(ah);
|
|
|
|
/*
|
|
* Not all chips have the VEOL support we want to
|
|
* use with IBSS beacons; check here for it.
|
|
*/
|
|
sc->sc_hasveol = ath_hal_hasveol(ah);
|
|
|
|
/* get mac address from kenv first, then hardware */
|
|
if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) {
|
|
/* Tell the HAL now about the new MAC */
|
|
ath_hal_setmac(ah, ic->ic_macaddr);
|
|
} else {
|
|
ath_hal_getmac(ah, ic->ic_macaddr);
|
|
}
|
|
|
|
if (sc->sc_hasbmask)
|
|
ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
|
|
|
|
/* NB: used to size node table key mapping array */
|
|
ic->ic_max_keyix = sc->sc_keymax;
|
|
/* call MI attach routine. */
|
|
ieee80211_ifattach(ic);
|
|
ic->ic_setregdomain = ath_setregdomain;
|
|
ic->ic_getradiocaps = ath_getradiocaps;
|
|
sc->sc_opmode = HAL_M_STA;
|
|
|
|
/* override default methods */
|
|
ic->ic_ioctl = ath_ioctl;
|
|
ic->ic_parent = ath_parent;
|
|
ic->ic_transmit = ath_transmit;
|
|
ic->ic_newassoc = ath_newassoc;
|
|
ic->ic_updateslot = ath_updateslot;
|
|
ic->ic_wme.wme_update = ath_wme_update;
|
|
ic->ic_vap_create = ath_vap_create;
|
|
ic->ic_vap_delete = ath_vap_delete;
|
|
ic->ic_raw_xmit = ath_raw_xmit;
|
|
ic->ic_update_mcast = ath_update_mcast;
|
|
ic->ic_update_promisc = ath_update_promisc;
|
|
ic->ic_node_alloc = ath_node_alloc;
|
|
sc->sc_node_free = ic->ic_node_free;
|
|
ic->ic_node_free = ath_node_free;
|
|
sc->sc_node_cleanup = ic->ic_node_cleanup;
|
|
ic->ic_node_cleanup = ath_node_cleanup;
|
|
ic->ic_node_getsignal = ath_node_getsignal;
|
|
ic->ic_scan_start = ath_scan_start;
|
|
ic->ic_scan_end = ath_scan_end;
|
|
ic->ic_set_channel = ath_set_channel;
|
|
#ifdef ATH_ENABLE_11N
|
|
/* 802.11n specific - but just override anyway */
|
|
sc->sc_addba_request = ic->ic_addba_request;
|
|
sc->sc_addba_response = ic->ic_addba_response;
|
|
sc->sc_addba_stop = ic->ic_addba_stop;
|
|
sc->sc_bar_response = ic->ic_bar_response;
|
|
sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
|
|
|
|
ic->ic_addba_request = ath_addba_request;
|
|
ic->ic_addba_response = ath_addba_response;
|
|
ic->ic_addba_response_timeout = ath_addba_response_timeout;
|
|
ic->ic_addba_stop = ath_addba_stop;
|
|
ic->ic_bar_response = ath_bar_response;
|
|
|
|
ic->ic_update_chw = ath_update_chw;
|
|
#endif /* ATH_ENABLE_11N */
|
|
|
|
#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
|
|
/*
|
|
* There's one vendor bitmap entry in the RX radiotap
|
|
* header; make sure that's taken into account.
|
|
*/
|
|
ieee80211_radiotap_attachv(ic,
|
|
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
|
|
ATH_TX_RADIOTAP_PRESENT,
|
|
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
|
|
ATH_RX_RADIOTAP_PRESENT);
|
|
#else
|
|
/*
|
|
* No vendor bitmap/extensions are present.
|
|
*/
|
|
ieee80211_radiotap_attach(ic,
|
|
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
|
|
ATH_TX_RADIOTAP_PRESENT,
|
|
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
|
|
ATH_RX_RADIOTAP_PRESENT);
|
|
#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
|
|
|
|
/*
|
|
* Setup the ALQ logging if required
|
|
*/
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
|
|
if_ath_alq_setcfg(&sc->sc_alq,
|
|
sc->sc_ah->ah_macVersion,
|
|
sc->sc_ah->ah_macRev,
|
|
sc->sc_ah->ah_phyRev,
|
|
sc->sc_ah->ah_magic);
|
|
#endif
|
|
|
|
/*
|
|
* Setup dynamic sysctl's now that country code and
|
|
* regdomain are available from the hal.
|
|
*/
|
|
ath_sysctlattach(sc);
|
|
ath_sysctl_stats_attach(sc);
|
|
ath_sysctl_hal_attach(sc);
|
|
|
|
if (bootverbose)
|
|
ieee80211_announce(ic);
|
|
ath_announce(sc);
|
|
|
|
/*
|
|
* Put it to sleep for now.
|
|
*/
|
|
ATH_LOCK(sc);
|
|
ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
|
|
ATH_UNLOCK(sc);
|
|
|
|
return 0;
|
|
bad2:
|
|
ath_tx_cleanup(sc);
|
|
ath_desc_free(sc);
|
|
ath_txdma_teardown(sc);
|
|
ath_rxdma_teardown(sc);
|
|
bad:
|
|
if (ah)
|
|
ath_hal_detach(ah);
|
|
sc->sc_invalid = 1;
|
|
return error;
|
|
}
|
|
|
|
int
|
|
ath_detach(struct ath_softc *sc)
|
|
{
|
|
|
|
/*
|
|
* NB: the order of these is important:
|
|
* o stop the chip so no more interrupts will fire
|
|
* o call the 802.11 layer before detaching the hal to
|
|
* insure callbacks into the driver to delete global
|
|
* key cache entries can be handled
|
|
* o free the taskqueue which drains any pending tasks
|
|
* o reclaim the tx queue data structures after calling
|
|
* the 802.11 layer as we'll get called back to reclaim
|
|
* node state and potentially want to use them
|
|
* o to cleanup the tx queues the hal is called, so detach
|
|
* it last
|
|
* Other than that, it's straightforward...
|
|
*/
|
|
|
|
/*
|
|
* XXX Wake the hardware up first. ath_stop() will still
|
|
* wake it up first, but I'd rather do it here just to
|
|
* ensure it's awake.
|
|
*/
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ath_power_setpower(sc, HAL_PM_AWAKE);
|
|
|
|
/*
|
|
* Stop things cleanly.
|
|
*/
|
|
ath_stop(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ieee80211_ifdetach(&sc->sc_ic);
|
|
taskqueue_free(sc->sc_tq);
|
|
#ifdef ATH_TX99_DIAG
|
|
if (sc->sc_tx99 != NULL)
|
|
sc->sc_tx99->detach(sc->sc_tx99);
|
|
#endif
|
|
ath_rate_detach(sc->sc_rc);
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if_ath_alq_tidyup(&sc->sc_alq);
|
|
#endif
|
|
ath_lna_div_detach(sc);
|
|
ath_btcoex_detach(sc);
|
|
ath_spectral_detach(sc);
|
|
ath_dfs_detach(sc);
|
|
ath_desc_free(sc);
|
|
ath_txdma_teardown(sc);
|
|
ath_rxdma_teardown(sc);
|
|
ath_tx_cleanup(sc);
|
|
ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* MAC address handling for multiple BSS on the same radio.
|
|
* The first vap uses the MAC address from the EEPROM. For
|
|
* subsequent vap's we set the U/L bit (bit 1) in the MAC
|
|
* address and use the next six bits as an index.
|
|
*/
|
|
static void
|
|
assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
|
|
{
|
|
int i;
|
|
|
|
if (clone && sc->sc_hasbmask) {
|
|
/* NB: we only do this if h/w supports multiple bssid */
|
|
for (i = 0; i < 8; i++)
|
|
if ((sc->sc_bssidmask & (1<<i)) == 0)
|
|
break;
|
|
if (i != 0)
|
|
mac[0] |= (i << 2)|0x2;
|
|
} else
|
|
i = 0;
|
|
sc->sc_bssidmask |= 1<<i;
|
|
sc->sc_hwbssidmask[0] &= ~mac[0];
|
|
if (i == 0)
|
|
sc->sc_nbssid0++;
|
|
}
|
|
|
|
static void
|
|
reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
int i = mac[0] >> 2;
|
|
uint8_t mask;
|
|
|
|
if (i != 0 || --sc->sc_nbssid0 == 0) {
|
|
sc->sc_bssidmask &= ~(1<<i);
|
|
/* recalculate bssid mask from remaining addresses */
|
|
mask = 0xff;
|
|
for (i = 1; i < 8; i++)
|
|
if (sc->sc_bssidmask & (1<<i))
|
|
mask &= ~((i<<2)|0x2);
|
|
sc->sc_hwbssidmask[0] |= mask;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Assign a beacon xmit slot. We try to space out
|
|
* assignments so when beacons are staggered the
|
|
* traffic coming out of the cab q has maximal time
|
|
* to go out before the next beacon is scheduled.
|
|
*/
|
|
static int
|
|
assign_bslot(struct ath_softc *sc)
|
|
{
|
|
u_int slot, free;
|
|
|
|
free = 0;
|
|
for (slot = 0; slot < ATH_BCBUF; slot++)
|
|
if (sc->sc_bslot[slot] == NULL) {
|
|
if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
|
|
sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
|
|
return slot;
|
|
free = slot;
|
|
/* NB: keep looking for a double slot */
|
|
}
|
|
return free;
|
|
}
|
|
|
|
static struct ieee80211vap *
|
|
ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
|
|
enum ieee80211_opmode opmode, int flags,
|
|
const uint8_t bssid[IEEE80211_ADDR_LEN],
|
|
const uint8_t mac0[IEEE80211_ADDR_LEN])
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_vap *avp;
|
|
struct ieee80211vap *vap;
|
|
uint8_t mac[IEEE80211_ADDR_LEN];
|
|
int needbeacon, error;
|
|
enum ieee80211_opmode ic_opmode;
|
|
|
|
avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO);
|
|
needbeacon = 0;
|
|
IEEE80211_ADDR_COPY(mac, mac0);
|
|
|
|
ATH_LOCK(sc);
|
|
ic_opmode = opmode; /* default to opmode of new vap */
|
|
switch (opmode) {
|
|
case IEEE80211_M_STA:
|
|
if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */
|
|
device_printf(sc->sc_dev, "only 1 sta vap supported\n");
|
|
goto bad;
|
|
}
|
|
if (sc->sc_nvaps) {
|
|
/*
|
|
* With multiple vaps we must fall back
|
|
* to s/w beacon miss handling.
|
|
*/
|
|
flags |= IEEE80211_CLONE_NOBEACONS;
|
|
}
|
|
if (flags & IEEE80211_CLONE_NOBEACONS) {
|
|
/*
|
|
* Station mode w/o beacons are implemented w/ AP mode.
|
|
*/
|
|
ic_opmode = IEEE80211_M_HOSTAP;
|
|
}
|
|
break;
|
|
case IEEE80211_M_IBSS:
|
|
if (sc->sc_nvaps != 0) { /* XXX only 1 for now */
|
|
device_printf(sc->sc_dev,
|
|
"only 1 ibss vap supported\n");
|
|
goto bad;
|
|
}
|
|
needbeacon = 1;
|
|
break;
|
|
case IEEE80211_M_AHDEMO:
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (flags & IEEE80211_CLONE_TDMA) {
|
|
if (sc->sc_nvaps != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"only 1 tdma vap supported\n");
|
|
goto bad;
|
|
}
|
|
needbeacon = 1;
|
|
flags |= IEEE80211_CLONE_NOBEACONS;
|
|
}
|
|
/* fall thru... */
|
|
#endif
|
|
case IEEE80211_M_MONITOR:
|
|
if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
|
|
/*
|
|
* Adopt existing mode. Adding a monitor or ahdemo
|
|
* vap to an existing configuration is of dubious
|
|
* value but should be ok.
|
|
*/
|
|
/* XXX not right for monitor mode */
|
|
ic_opmode = ic->ic_opmode;
|
|
}
|
|
break;
|
|
case IEEE80211_M_HOSTAP:
|
|
case IEEE80211_M_MBSS:
|
|
needbeacon = 1;
|
|
break;
|
|
case IEEE80211_M_WDS:
|
|
if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
|
|
device_printf(sc->sc_dev,
|
|
"wds not supported in sta mode\n");
|
|
goto bad;
|
|
}
|
|
/*
|
|
* Silently remove any request for a unique
|
|
* bssid; WDS vap's always share the local
|
|
* mac address.
|
|
*/
|
|
flags &= ~IEEE80211_CLONE_BSSID;
|
|
if (sc->sc_nvaps == 0)
|
|
ic_opmode = IEEE80211_M_HOSTAP;
|
|
else
|
|
ic_opmode = ic->ic_opmode;
|
|
break;
|
|
default:
|
|
device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
|
|
goto bad;
|
|
}
|
|
/*
|
|
* Check that a beacon buffer is available; the code below assumes it.
|
|
*/
|
|
if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
|
|
device_printf(sc->sc_dev, "no beacon buffer available\n");
|
|
goto bad;
|
|
}
|
|
|
|
/* STA, AHDEMO? */
|
|
if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
|
|
assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
|
|
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
|
|
}
|
|
|
|
vap = &avp->av_vap;
|
|
/* XXX can't hold mutex across if_alloc */
|
|
ATH_UNLOCK(sc);
|
|
error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
|
|
ATH_LOCK(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "%s: error %d creating vap\n",
|
|
__func__, error);
|
|
goto bad2;
|
|
}
|
|
|
|
/* h/w crypto support */
|
|
vap->iv_key_alloc = ath_key_alloc;
|
|
vap->iv_key_delete = ath_key_delete;
|
|
vap->iv_key_set = ath_key_set;
|
|
vap->iv_key_update_begin = ath_key_update_begin;
|
|
vap->iv_key_update_end = ath_key_update_end;
|
|
|
|
/* override various methods */
|
|
avp->av_recv_mgmt = vap->iv_recv_mgmt;
|
|
vap->iv_recv_mgmt = ath_recv_mgmt;
|
|
vap->iv_reset = ath_reset_vap;
|
|
vap->iv_update_beacon = ath_beacon_update;
|
|
avp->av_newstate = vap->iv_newstate;
|
|
vap->iv_newstate = ath_newstate;
|
|
avp->av_bmiss = vap->iv_bmiss;
|
|
vap->iv_bmiss = ath_bmiss_vap;
|
|
|
|
avp->av_node_ps = vap->iv_node_ps;
|
|
vap->iv_node_ps = ath_node_powersave;
|
|
|
|
avp->av_set_tim = vap->iv_set_tim;
|
|
vap->iv_set_tim = ath_node_set_tim;
|
|
|
|
avp->av_recv_pspoll = vap->iv_recv_pspoll;
|
|
vap->iv_recv_pspoll = ath_node_recv_pspoll;
|
|
|
|
/* Set default parameters */
|
|
|
|
/*
|
|
* Anything earlier than some AR9300 series MACs don't
|
|
* support a smaller MPDU density.
|
|
*/
|
|
vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
|
|
/*
|
|
* All NICs can handle the maximum size, however
|
|
* AR5416 based MACs can only TX aggregates w/ RTS
|
|
* protection when the total aggregate size is <= 8k.
|
|
* However, for now that's enforced by the TX path.
|
|
*/
|
|
vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
|
|
|
|
avp->av_bslot = -1;
|
|
if (needbeacon) {
|
|
/*
|
|
* Allocate beacon state and setup the q for buffered
|
|
* multicast frames. We know a beacon buffer is
|
|
* available because we checked above.
|
|
*/
|
|
avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
|
|
TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
|
|
if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
|
|
/*
|
|
* Assign the vap to a beacon xmit slot. As above
|
|
* this cannot fail to find a free one.
|
|
*/
|
|
avp->av_bslot = assign_bslot(sc);
|
|
KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
|
|
("beacon slot %u not empty", avp->av_bslot));
|
|
sc->sc_bslot[avp->av_bslot] = vap;
|
|
sc->sc_nbcnvaps++;
|
|
}
|
|
if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
|
|
/*
|
|
* Multple vaps are to transmit beacons and we
|
|
* have h/w support for TSF adjusting; enable
|
|
* use of staggered beacons.
|
|
*/
|
|
sc->sc_stagbeacons = 1;
|
|
}
|
|
ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
|
|
}
|
|
|
|
ic->ic_opmode = ic_opmode;
|
|
if (opmode != IEEE80211_M_WDS) {
|
|
sc->sc_nvaps++;
|
|
if (opmode == IEEE80211_M_STA)
|
|
sc->sc_nstavaps++;
|
|
if (opmode == IEEE80211_M_MBSS)
|
|
sc->sc_nmeshvaps++;
|
|
}
|
|
switch (ic_opmode) {
|
|
case IEEE80211_M_IBSS:
|
|
sc->sc_opmode = HAL_M_IBSS;
|
|
break;
|
|
case IEEE80211_M_STA:
|
|
sc->sc_opmode = HAL_M_STA;
|
|
break;
|
|
case IEEE80211_M_AHDEMO:
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (vap->iv_caps & IEEE80211_C_TDMA) {
|
|
sc->sc_tdma = 1;
|
|
/* NB: disable tsf adjust */
|
|
sc->sc_stagbeacons = 0;
|
|
}
|
|
/*
|
|
* NB: adhoc demo mode is a pseudo mode; to the hal it's
|
|
* just ap mode.
|
|
*/
|
|
/* fall thru... */
|
|
#endif
|
|
case IEEE80211_M_HOSTAP:
|
|
case IEEE80211_M_MBSS:
|
|
sc->sc_opmode = HAL_M_HOSTAP;
|
|
break;
|
|
case IEEE80211_M_MONITOR:
|
|
sc->sc_opmode = HAL_M_MONITOR;
|
|
break;
|
|
default:
|
|
/* XXX should not happen */
|
|
break;
|
|
}
|
|
if (sc->sc_hastsfadd) {
|
|
/*
|
|
* Configure whether or not TSF adjust should be done.
|
|
*/
|
|
ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
|
|
}
|
|
if (flags & IEEE80211_CLONE_NOBEACONS) {
|
|
/*
|
|
* Enable s/w beacon miss handling.
|
|
*/
|
|
sc->sc_swbmiss = 1;
|
|
}
|
|
ATH_UNLOCK(sc);
|
|
|
|
/* complete setup */
|
|
ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status,
|
|
mac);
|
|
return vap;
|
|
bad2:
|
|
reclaim_address(sc, mac);
|
|
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
|
|
bad:
|
|
free(avp, M_80211_VAP);
|
|
ATH_UNLOCK(sc);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
ath_vap_delete(struct ieee80211vap *vap)
|
|
{
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_vap *avp = ATH_VAP(vap);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
|
|
if (sc->sc_running) {
|
|
/*
|
|
* Quiesce the hardware while we remove the vap. In
|
|
* particular we need to reclaim all references to
|
|
* the vap state by any frames pending on the tx queues.
|
|
*/
|
|
ath_hal_intrset(ah, 0); /* disable interrupts */
|
|
/* XXX Do all frames from all vaps/nodes need draining here? */
|
|
ath_stoprecv(sc, 1); /* stop recv side */
|
|
ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */
|
|
}
|
|
|
|
/* .. leave the hardware awake for now. */
|
|
|
|
ieee80211_vap_detach(vap);
|
|
|
|
/*
|
|
* XXX Danger Will Robinson! Danger!
|
|
*
|
|
* Because ieee80211_vap_detach() can queue a frame (the station
|
|
* diassociate message?) after we've drained the TXQ and
|
|
* flushed the software TXQ, we will end up with a frame queued
|
|
* to a node whose vap is about to be freed.
|
|
*
|
|
* To work around this, flush the hardware/software again.
|
|
* This may be racy - the ath task may be running and the packet
|
|
* may be being scheduled between sw->hw txq. Tsk.
|
|
*
|
|
* TODO: figure out why a new node gets allocated somewhere around
|
|
* here (after the ath_tx_swq() call; and after an ath_stop()
|
|
* call!)
|
|
*/
|
|
|
|
ath_draintxq(sc, ATH_RESET_DEFAULT);
|
|
|
|
ATH_LOCK(sc);
|
|
/*
|
|
* Reclaim beacon state. Note this must be done before
|
|
* the vap instance is reclaimed as we may have a reference
|
|
* to it in the buffer for the beacon frame.
|
|
*/
|
|
if (avp->av_bcbuf != NULL) {
|
|
if (avp->av_bslot != -1) {
|
|
sc->sc_bslot[avp->av_bslot] = NULL;
|
|
sc->sc_nbcnvaps--;
|
|
}
|
|
ath_beacon_return(sc, avp->av_bcbuf);
|
|
avp->av_bcbuf = NULL;
|
|
if (sc->sc_nbcnvaps == 0) {
|
|
sc->sc_stagbeacons = 0;
|
|
if (sc->sc_hastsfadd)
|
|
ath_hal_settsfadjust(sc->sc_ah, 0);
|
|
}
|
|
/*
|
|
* Reclaim any pending mcast frames for the vap.
|
|
*/
|
|
ath_tx_draintxq(sc, &avp->av_mcastq);
|
|
}
|
|
/*
|
|
* Update bookkeeping.
|
|
*/
|
|
if (vap->iv_opmode == IEEE80211_M_STA) {
|
|
sc->sc_nstavaps--;
|
|
if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
|
|
sc->sc_swbmiss = 0;
|
|
} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
|
|
vap->iv_opmode == IEEE80211_M_MBSS) {
|
|
reclaim_address(sc, vap->iv_myaddr);
|
|
ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
|
|
if (vap->iv_opmode == IEEE80211_M_MBSS)
|
|
sc->sc_nmeshvaps--;
|
|
}
|
|
if (vap->iv_opmode != IEEE80211_M_WDS)
|
|
sc->sc_nvaps--;
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
/* TDMA operation ceases when the last vap is destroyed */
|
|
if (sc->sc_tdma && sc->sc_nvaps == 0) {
|
|
sc->sc_tdma = 0;
|
|
sc->sc_swbmiss = 0;
|
|
}
|
|
#endif
|
|
free(avp, M_80211_VAP);
|
|
|
|
if (sc->sc_running) {
|
|
/*
|
|
* Restart rx+tx machines if still running (RUNNING will
|
|
* be reset if we just destroyed the last vap).
|
|
*/
|
|
if (ath_startrecv(sc) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: unable to restart recv logic\n", __func__);
|
|
if (sc->sc_beacons) { /* restart beacons */
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma)
|
|
ath_tdma_config(sc, NULL);
|
|
else
|
|
#endif
|
|
ath_beacon_config(sc, NULL);
|
|
}
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
}
|
|
|
|
/* Ok, let the hardware asleep. */
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
|
|
void
|
|
ath_suspend(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
sc->sc_resume_up = ic->ic_nrunning != 0;
|
|
|
|
ieee80211_suspend_all(ic);
|
|
/*
|
|
* NB: don't worry about putting the chip in low power
|
|
* mode; pci will power off our socket on suspend and
|
|
* CardBus detaches the device.
|
|
*
|
|
* XXX TODO: well, that's great, except for non-cardbus
|
|
* devices!
|
|
*/
|
|
|
|
/*
|
|
* XXX This doesn't wait until all pending taskqueue
|
|
* items and parallel transmit/receive/other threads
|
|
* are running!
|
|
*/
|
|
ath_hal_intrset(sc->sc_ah, 0);
|
|
taskqueue_block(sc->sc_tq);
|
|
|
|
ATH_LOCK(sc);
|
|
callout_stop(&sc->sc_cal_ch);
|
|
ATH_UNLOCK(sc);
|
|
|
|
/*
|
|
* XXX ensure sc_invalid is 1
|
|
*/
|
|
|
|
/* Disable the PCIe PHY, complete with workarounds */
|
|
ath_hal_enablepcie(sc->sc_ah, 1, 1);
|
|
}
|
|
|
|
/*
|
|
* Reset the key cache since some parts do not reset the
|
|
* contents on resume. First we clear all entries, then
|
|
* re-load keys that the 802.11 layer assumes are setup
|
|
* in h/w.
|
|
*/
|
|
static void
|
|
ath_reset_keycache(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int i;
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
for (i = 0; i < sc->sc_keymax; i++)
|
|
ath_hal_keyreset(ah, i);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
ieee80211_crypto_reload_keys(ic);
|
|
}
|
|
|
|
/*
|
|
* Fetch the current chainmask configuration based on the current
|
|
* operating channel and options.
|
|
*/
|
|
static void
|
|
ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
|
|
{
|
|
|
|
/*
|
|
* Set TX chainmask to the currently configured chainmask;
|
|
* the TX chainmask depends upon the current operating mode.
|
|
*/
|
|
sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
|
|
if (IEEE80211_IS_CHAN_HT(chan)) {
|
|
sc->sc_cur_txchainmask = sc->sc_txchainmask;
|
|
} else {
|
|
sc->sc_cur_txchainmask = 1;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET,
|
|
"%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
|
|
__func__,
|
|
sc->sc_cur_txchainmask,
|
|
sc->sc_cur_rxchainmask);
|
|
}
|
|
|
|
void
|
|
ath_resume(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
|
|
ath_hal_enablepcie(ah, 0, 0);
|
|
|
|
/*
|
|
* Must reset the chip before we reload the
|
|
* keycache as we were powered down on suspend.
|
|
*/
|
|
ath_update_chainmasks(sc,
|
|
sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
|
|
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
|
|
sc->sc_cur_rxchainmask);
|
|
|
|
/* Ensure we set the current power state to on */
|
|
ATH_LOCK(sc);
|
|
ath_power_setselfgen(sc, HAL_PM_AWAKE);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ath_power_setpower(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ath_hal_reset(ah, sc->sc_opmode,
|
|
sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
|
|
AH_FALSE, HAL_RESET_NORMAL, &status);
|
|
ath_reset_keycache(sc);
|
|
|
|
ATH_RX_LOCK(sc);
|
|
sc->sc_rx_stopped = 1;
|
|
sc->sc_rx_resetted = 1;
|
|
ATH_RX_UNLOCK(sc);
|
|
|
|
/* Let DFS at it in case it's a DFS channel */
|
|
ath_dfs_radar_enable(sc, ic->ic_curchan);
|
|
|
|
/* Let spectral at in case spectral is enabled */
|
|
ath_spectral_enable(sc, ic->ic_curchan);
|
|
|
|
/*
|
|
* Let bluetooth coexistence at in case it's needed for this channel
|
|
*/
|
|
ath_btcoex_enable(sc, ic->ic_curchan);
|
|
|
|
/*
|
|
* If we're doing TDMA, enforce the TXOP limitation for chips that
|
|
* support it.
|
|
*/
|
|
if (sc->sc_hasenforcetxop && sc->sc_tdma)
|
|
ath_hal_setenforcetxop(sc->sc_ah, 1);
|
|
else
|
|
ath_hal_setenforcetxop(sc->sc_ah, 0);
|
|
|
|
/* Restore the LED configuration */
|
|
ath_led_config(sc);
|
|
ath_hal_setledstate(ah, HAL_LED_INIT);
|
|
|
|
if (sc->sc_resume_up)
|
|
ieee80211_resume_all(ic);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
/* XXX beacons ? */
|
|
}
|
|
|
|
void
|
|
ath_shutdown(struct ath_softc *sc)
|
|
{
|
|
|
|
ATH_LOCK(sc);
|
|
ath_stop(sc);
|
|
ATH_UNLOCK(sc);
|
|
/* NB: no point powering down chip as we're about to reboot */
|
|
}
|
|
|
|
/*
|
|
* Interrupt handler. Most of the actual processing is deferred.
|
|
*/
|
|
void
|
|
ath_intr(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_INT status = 0;
|
|
uint32_t txqs;
|
|
|
|
/*
|
|
* If we're inside a reset path, just print a warning and
|
|
* clear the ISR. The reset routine will finish it for us.
|
|
*/
|
|
ATH_PCU_LOCK(sc);
|
|
if (sc->sc_inreset_cnt) {
|
|
HAL_INT status;
|
|
ath_hal_getisr(ah, &status); /* clear ISR */
|
|
ath_hal_intrset(ah, 0); /* disable further intr's */
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: in reset, ignoring: status=0x%x\n",
|
|
__func__, status);
|
|
ATH_PCU_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
if (sc->sc_invalid) {
|
|
/*
|
|
* The hardware is not ready/present, don't touch anything.
|
|
* Note this can happen early on if the IRQ is shared.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
|
|
ATH_PCU_UNLOCK(sc);
|
|
return;
|
|
}
|
|
if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */
|
|
ATH_PCU_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) {
|
|
HAL_INT status;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n",
|
|
__func__, sc->sc_ic.ic_nrunning, sc->sc_running);
|
|
ath_hal_getisr(ah, &status); /* clear ISR */
|
|
ath_hal_intrset(ah, 0); /* disable further intr's */
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Figure out the reason(s) for the interrupt. Note
|
|
* that the hal returns a pseudo-ISR that may include
|
|
* bits we haven't explicitly enabled so we mask the
|
|
* value to insure we only process bits we requested.
|
|
*/
|
|
ath_hal_getisr(ah, &status); /* NB: clears ISR too */
|
|
DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
|
|
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
|
|
ah->ah_syncstate);
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
#ifdef ATH_KTR_INTR_DEBUG
|
|
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
|
|
"ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
|
|
ah->ah_intrstate[0],
|
|
ah->ah_intrstate[1],
|
|
ah->ah_intrstate[2],
|
|
ah->ah_intrstate[3],
|
|
ah->ah_intrstate[6]);
|
|
#endif
|
|
|
|
/* Squirrel away SYNC interrupt debugging */
|
|
if (ah->ah_syncstate != 0) {
|
|
int i;
|
|
for (i = 0; i < 32; i++)
|
|
if (ah->ah_syncstate & (i << i))
|
|
sc->sc_intr_stats.sync_intr[i]++;
|
|
}
|
|
|
|
status &= sc->sc_imask; /* discard unasked for bits */
|
|
|
|
/* Short-circuit un-handled interrupts */
|
|
if (status == 0x0) {
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Take a note that we're inside the interrupt handler, so
|
|
* the reset routines know to wait.
|
|
*/
|
|
sc->sc_intr_cnt++;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
/*
|
|
* Handle the interrupt. We won't run concurrent with the reset
|
|
* or channel change routines as they'll wait for sc_intr_cnt
|
|
* to be 0 before continuing.
|
|
*/
|
|
if (status & HAL_INT_FATAL) {
|
|
sc->sc_stats.ast_hardware++;
|
|
ath_hal_intrset(ah, 0); /* disable intr's until reset */
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
|
|
} else {
|
|
if (status & HAL_INT_SWBA) {
|
|
/*
|
|
* Software beacon alert--time to send a beacon.
|
|
* Handle beacon transmission directly; deferring
|
|
* this is too slow to meet timing constraints
|
|
* under load.
|
|
*/
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma) {
|
|
if (sc->sc_tdmaswba == 0) {
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211vap *vap =
|
|
TAILQ_FIRST(&ic->ic_vaps);
|
|
ath_tdma_beacon_send(sc, vap);
|
|
sc->sc_tdmaswba =
|
|
vap->iv_tdma->tdma_bintval;
|
|
} else
|
|
sc->sc_tdmaswba--;
|
|
} else
|
|
#endif
|
|
{
|
|
ath_beacon_proc(sc, 0);
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
/*
|
|
* Schedule the rx taskq in case there's no
|
|
* traffic so any frames held on the staging
|
|
* queue are aged and potentially flushed.
|
|
*/
|
|
sc->sc_rx.recv_sched(sc, 1);
|
|
#endif
|
|
}
|
|
}
|
|
if (status & HAL_INT_RXEOL) {
|
|
int imask;
|
|
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
|
|
if (! sc->sc_isedma) {
|
|
ATH_PCU_LOCK(sc);
|
|
/*
|
|
* NB: the hardware should re-read the link when
|
|
* RXE bit is written, but it doesn't work at
|
|
* least on older hardware revs.
|
|
*/
|
|
sc->sc_stats.ast_rxeol++;
|
|
/*
|
|
* Disable RXEOL/RXORN - prevent an interrupt
|
|
* storm until the PCU logic can be reset.
|
|
* In case the interface is reset some other
|
|
* way before "sc_kickpcu" is called, don't
|
|
* modify sc_imask - that way if it is reset
|
|
* by a call to ath_reset() somehow, the
|
|
* interrupt mask will be correctly reprogrammed.
|
|
*/
|
|
imask = sc->sc_imask;
|
|
imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
|
|
ath_hal_intrset(ah, imask);
|
|
/*
|
|
* Only blank sc_rxlink if we've not yet kicked
|
|
* the PCU.
|
|
*
|
|
* This isn't entirely correct - the correct solution
|
|
* would be to have a PCU lock and engage that for
|
|
* the duration of the PCU fiddling; which would include
|
|
* running the RX process. Otherwise we could end up
|
|
* messing up the RX descriptor chain and making the
|
|
* RX desc list much shorter.
|
|
*/
|
|
if (! sc->sc_kickpcu)
|
|
sc->sc_rxlink = NULL;
|
|
sc->sc_kickpcu = 1;
|
|
ATH_PCU_UNLOCK(sc);
|
|
}
|
|
/*
|
|
* Enqueue an RX proc to handle whatever
|
|
* is in the RX queue.
|
|
* This will then kick the PCU if required.
|
|
*/
|
|
sc->sc_rx.recv_sched(sc, 1);
|
|
}
|
|
if (status & HAL_INT_TXURN) {
|
|
sc->sc_stats.ast_txurn++;
|
|
/* bump tx trigger level */
|
|
ath_hal_updatetxtriglevel(ah, AH_TRUE);
|
|
}
|
|
/*
|
|
* Handle both the legacy and RX EDMA interrupt bits.
|
|
* Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
|
|
*/
|
|
if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
|
|
sc->sc_stats.ast_rx_intr++;
|
|
sc->sc_rx.recv_sched(sc, 1);
|
|
}
|
|
if (status & HAL_INT_TX) {
|
|
sc->sc_stats.ast_tx_intr++;
|
|
/*
|
|
* Grab all the currently set bits in the HAL txq bitmap
|
|
* and blank them. This is the only place we should be
|
|
* doing this.
|
|
*/
|
|
if (! sc->sc_isedma) {
|
|
ATH_PCU_LOCK(sc);
|
|
txqs = 0xffffffff;
|
|
ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
|
|
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
|
|
"ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
|
|
txqs,
|
|
sc->sc_txq_active,
|
|
sc->sc_txq_active | txqs);
|
|
sc->sc_txq_active |= txqs;
|
|
ATH_PCU_UNLOCK(sc);
|
|
}
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
|
|
}
|
|
if (status & HAL_INT_BMISS) {
|
|
sc->sc_stats.ast_bmiss++;
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
|
|
}
|
|
if (status & HAL_INT_GTT)
|
|
sc->sc_stats.ast_tx_timeout++;
|
|
if (status & HAL_INT_CST)
|
|
sc->sc_stats.ast_tx_cst++;
|
|
if (status & HAL_INT_MIB) {
|
|
sc->sc_stats.ast_mib++;
|
|
ATH_PCU_LOCK(sc);
|
|
/*
|
|
* Disable interrupts until we service the MIB
|
|
* interrupt; otherwise it will continue to fire.
|
|
*/
|
|
ath_hal_intrset(ah, 0);
|
|
/*
|
|
* Let the hal handle the event. We assume it will
|
|
* clear whatever condition caused the interrupt.
|
|
*/
|
|
ath_hal_mibevent(ah, &sc->sc_halstats);
|
|
/*
|
|
* Don't reset the interrupt if we've just
|
|
* kicked the PCU, or we may get a nested
|
|
* RXEOL before the rxproc has had a chance
|
|
* to run.
|
|
*/
|
|
if (sc->sc_kickpcu == 0)
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
ATH_PCU_UNLOCK(sc);
|
|
}
|
|
if (status & HAL_INT_RXORN) {
|
|
/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
|
|
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
|
|
sc->sc_stats.ast_rxorn++;
|
|
}
|
|
if (status & HAL_INT_TSFOOR) {
|
|
device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
|
|
sc->sc_syncbeacon = 1;
|
|
}
|
|
}
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_intr_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
ath_fatal_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
u_int32_t *state;
|
|
u_int32_t len;
|
|
void *sp;
|
|
|
|
if (sc->sc_invalid)
|
|
return;
|
|
|
|
device_printf(sc->sc_dev, "hardware error; resetting\n");
|
|
/*
|
|
* Fatal errors are unrecoverable. Typically these
|
|
* are caused by DMA errors. Collect h/w state from
|
|
* the hal so we can diagnose what's going on.
|
|
*/
|
|
if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
|
|
KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
|
|
state = sp;
|
|
device_printf(sc->sc_dev,
|
|
"0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0],
|
|
state[1] , state[2], state[3], state[4], state[5]);
|
|
}
|
|
ath_reset(sc, ATH_RESET_NOLOSS);
|
|
}
|
|
|
|
static void
|
|
ath_bmiss_vap(struct ieee80211vap *vap)
|
|
{
|
|
struct ath_softc *sc = vap->iv_ic->ic_softc;
|
|
|
|
/*
|
|
* Workaround phantom bmiss interrupts by sanity-checking
|
|
* the time of our last rx'd frame. If it is within the
|
|
* beacon miss interval then ignore the interrupt. If it's
|
|
* truly a bmiss we'll get another interrupt soon and that'll
|
|
* be dispatched up for processing. Note this applies only
|
|
* for h/w beacon miss events.
|
|
*/
|
|
|
|
/*
|
|
* XXX TODO: Just read the TSF during the interrupt path;
|
|
* that way we don't have to wake up again just to read it
|
|
* again.
|
|
*/
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
|
|
u_int64_t lastrx = sc->sc_lastrx;
|
|
u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
|
|
/* XXX should take a locked ref to iv_bss */
|
|
u_int bmisstimeout =
|
|
vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
|
|
__func__, (unsigned long long) tsf,
|
|
(unsigned long long)(tsf - lastrx),
|
|
(unsigned long long) lastrx, bmisstimeout);
|
|
|
|
if (tsf - lastrx <= bmisstimeout) {
|
|
sc->sc_stats.ast_bmiss_phantom++;
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There's no need to keep the hardware awake during the call
|
|
* to av_bmiss().
|
|
*/
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
/*
|
|
* Attempt to force a beacon resync.
|
|
*/
|
|
sc->sc_syncbeacon = 1;
|
|
|
|
ATH_VAP(vap)->av_bmiss(vap);
|
|
}
|
|
|
|
/* XXX this needs a force wakeup! */
|
|
int
|
|
ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
|
|
{
|
|
uint32_t rsize;
|
|
void *sp;
|
|
|
|
if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
|
|
return 0;
|
|
KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
|
|
*hangs = *(uint32_t *)sp;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
ath_bmiss_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
uint32_t hangs;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ath_beacon_miss(sc);
|
|
|
|
/*
|
|
* Do a reset upon any becaon miss event.
|
|
*
|
|
* It may be a non-recognised RX clear hang which needs a reset
|
|
* to clear.
|
|
*/
|
|
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
|
|
ath_reset(sc, ATH_RESET_NOLOSS);
|
|
device_printf(sc->sc_dev,
|
|
"bb hang detected (0x%x), resetting\n", hangs);
|
|
} else {
|
|
ath_reset(sc, ATH_RESET_NOLOSS);
|
|
ieee80211_beacon_miss(&sc->sc_ic);
|
|
}
|
|
|
|
/* Force a beacon resync, in case they've drifted */
|
|
sc->sc_syncbeacon = 1;
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Handle TKIP MIC setup to deal hardware that doesn't do MIC
|
|
* calcs together with WME. If necessary disable the crypto
|
|
* hardware and mark the 802.11 state so keys will be setup
|
|
* with the MIC work done in software.
|
|
*/
|
|
static void
|
|
ath_settkipmic(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
|
|
if (ic->ic_flags & IEEE80211_F_WME) {
|
|
ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
|
|
ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
|
|
} else {
|
|
ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
ath_init(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
|
|
ATH_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Force the sleep state awake.
|
|
*/
|
|
ath_power_setselfgen(sc, HAL_PM_AWAKE);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ath_power_setpower(sc, HAL_PM_AWAKE);
|
|
|
|
/*
|
|
* Stop anything previously setup. This is safe
|
|
* whether this is the first time through or not.
|
|
*/
|
|
ath_stop(sc);
|
|
|
|
/*
|
|
* The basic interface to setting the hardware in a good
|
|
* state is ``reset''. On return the hardware is known to
|
|
* be powered up and with interrupts disabled. This must
|
|
* be followed by initialization of the appropriate bits
|
|
* and then setup of the interrupt mask.
|
|
*/
|
|
ath_settkipmic(sc);
|
|
ath_update_chainmasks(sc, ic->ic_curchan);
|
|
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
|
|
sc->sc_cur_rxchainmask);
|
|
|
|
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE,
|
|
HAL_RESET_NORMAL, &status)) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to reset hardware; hal status %u\n", status);
|
|
return (ENODEV);
|
|
}
|
|
|
|
ATH_RX_LOCK(sc);
|
|
sc->sc_rx_stopped = 1;
|
|
sc->sc_rx_resetted = 1;
|
|
ATH_RX_UNLOCK(sc);
|
|
|
|
ath_chan_change(sc, ic->ic_curchan);
|
|
|
|
/* Let DFS at it in case it's a DFS channel */
|
|
ath_dfs_radar_enable(sc, ic->ic_curchan);
|
|
|
|
/* Let spectral at in case spectral is enabled */
|
|
ath_spectral_enable(sc, ic->ic_curchan);
|
|
|
|
/*
|
|
* Let bluetooth coexistence at in case it's needed for this channel
|
|
*/
|
|
ath_btcoex_enable(sc, ic->ic_curchan);
|
|
|
|
/*
|
|
* If we're doing TDMA, enforce the TXOP limitation for chips that
|
|
* support it.
|
|
*/
|
|
if (sc->sc_hasenforcetxop && sc->sc_tdma)
|
|
ath_hal_setenforcetxop(sc->sc_ah, 1);
|
|
else
|
|
ath_hal_setenforcetxop(sc->sc_ah, 0);
|
|
|
|
/*
|
|
* Likewise this is set during reset so update
|
|
* state cached in the driver.
|
|
*/
|
|
sc->sc_diversity = ath_hal_getdiversity(ah);
|
|
sc->sc_lastlongcal = ticks;
|
|
sc->sc_resetcal = 1;
|
|
sc->sc_lastcalreset = 0;
|
|
sc->sc_lastani = ticks;
|
|
sc->sc_lastshortcal = ticks;
|
|
sc->sc_doresetcal = AH_FALSE;
|
|
/*
|
|
* Beacon timers were cleared here; give ath_newstate()
|
|
* a hint that the beacon timers should be poked when
|
|
* things transition to the RUN state.
|
|
*/
|
|
sc->sc_beacons = 0;
|
|
|
|
/*
|
|
* Setup the hardware after reset: the key cache
|
|
* is filled as needed and the receive engine is
|
|
* set going. Frame transmit is handled entirely
|
|
* in the frame output path; there's nothing to do
|
|
* here except setup the interrupt mask.
|
|
*/
|
|
if (ath_startrecv(sc) != 0) {
|
|
device_printf(sc->sc_dev, "unable to start recv logic\n");
|
|
ath_power_restore_power_state(sc);
|
|
return (ENODEV);
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
|
|
| HAL_INT_RXORN | HAL_INT_TXURN
|
|
| HAL_INT_FATAL | HAL_INT_GLOBAL;
|
|
|
|
/*
|
|
* Enable RX EDMA bits. Note these overlap with
|
|
* HAL_INT_RX and HAL_INT_RXDESC respectively.
|
|
*/
|
|
if (sc->sc_isedma)
|
|
sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
|
|
|
|
/*
|
|
* If we're an EDMA NIC, we don't care about RXEOL.
|
|
* Writing a new descriptor in will simply restart
|
|
* RX DMA.
|
|
*/
|
|
if (! sc->sc_isedma)
|
|
sc->sc_imask |= HAL_INT_RXEOL;
|
|
|
|
/*
|
|
* Enable MIB interrupts when there are hardware phy counters.
|
|
* Note we only do this (at the moment) for station mode.
|
|
*/
|
|
if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
|
|
sc->sc_imask |= HAL_INT_MIB;
|
|
|
|
/*
|
|
* XXX add capability for this.
|
|
*
|
|
* If we're in STA mode (and maybe IBSS?) then register for
|
|
* TSFOOR interrupts.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_STA)
|
|
sc->sc_imask |= HAL_INT_TSFOOR;
|
|
|
|
/* Enable global TX timeout and carrier sense timeout if available */
|
|
if (ath_hal_gtxto_supported(ah))
|
|
sc->sc_imask |= HAL_INT_GTT;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
|
|
__func__, sc->sc_imask);
|
|
|
|
sc->sc_running = 1;
|
|
callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
|
|
ath_power_restore_power_state(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
ath_stop(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ATH_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Wake the hardware up before fiddling with it.
|
|
*/
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
|
|
if (sc->sc_running) {
|
|
/*
|
|
* Shutdown the hardware and driver:
|
|
* reset 802.11 state machine
|
|
* turn off timers
|
|
* disable interrupts
|
|
* turn off the radio
|
|
* clear transmit machinery
|
|
* clear receive machinery
|
|
* drain and release tx queues
|
|
* reclaim beacon resources
|
|
* power down hardware
|
|
*
|
|
* Note that some of this work is not possible if the
|
|
* hardware is gone (invalid).
|
|
*/
|
|
#ifdef ATH_TX99_DIAG
|
|
if (sc->sc_tx99 != NULL)
|
|
sc->sc_tx99->stop(sc->sc_tx99);
|
|
#endif
|
|
callout_stop(&sc->sc_wd_ch);
|
|
sc->sc_wd_timer = 0;
|
|
sc->sc_running = 0;
|
|
if (!sc->sc_invalid) {
|
|
if (sc->sc_softled) {
|
|
callout_stop(&sc->sc_ledtimer);
|
|
ath_hal_gpioset(ah, sc->sc_ledpin,
|
|
!sc->sc_ledon);
|
|
sc->sc_blinking = 0;
|
|
}
|
|
ath_hal_intrset(ah, 0);
|
|
}
|
|
/* XXX we should stop RX regardless of whether it's valid */
|
|
if (!sc->sc_invalid) {
|
|
ath_stoprecv(sc, 1);
|
|
ath_hal_phydisable(ah);
|
|
} else
|
|
sc->sc_rxlink = NULL;
|
|
ath_draintxq(sc, ATH_RESET_DEFAULT);
|
|
ath_beacon_free(sc); /* XXX not needed */
|
|
}
|
|
|
|
/* And now, restore the current power state */
|
|
ath_power_restore_power_state(sc);
|
|
}
|
|
|
|
/*
|
|
* Wait until all pending TX/RX has completed.
|
|
*
|
|
* This waits until all existing transmit, receive and interrupts
|
|
* have completed. It's assumed that the caller has first
|
|
* grabbed the reset lock so it doesn't try to do overlapping
|
|
* chip resets.
|
|
*/
|
|
#define MAX_TXRX_ITERATIONS 100
|
|
static void
|
|
ath_txrx_stop_locked(struct ath_softc *sc)
|
|
{
|
|
int i = MAX_TXRX_ITERATIONS;
|
|
|
|
ATH_UNLOCK_ASSERT(sc);
|
|
ATH_PCU_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Sleep until all the pending operations have completed.
|
|
*
|
|
* The caller must ensure that reset has been incremented
|
|
* or the pending operations may continue being queued.
|
|
*/
|
|
while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
|
|
sc->sc_txstart_cnt || sc->sc_intr_cnt) {
|
|
if (i <= 0)
|
|
break;
|
|
msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
|
|
msecs_to_ticks(10));
|
|
i--;
|
|
}
|
|
|
|
if (i <= 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: didn't finish after %d iterations\n",
|
|
__func__, MAX_TXRX_ITERATIONS);
|
|
}
|
|
#undef MAX_TXRX_ITERATIONS
|
|
|
|
#if 0
|
|
static void
|
|
ath_txrx_stop(struct ath_softc *sc)
|
|
{
|
|
ATH_UNLOCK_ASSERT(sc);
|
|
ATH_PCU_UNLOCK_ASSERT(sc);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
ath_txrx_stop_locked(sc);
|
|
ATH_PCU_UNLOCK(sc);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ath_txrx_start(struct ath_softc *sc)
|
|
{
|
|
|
|
taskqueue_unblock(sc->sc_tq);
|
|
}
|
|
|
|
/*
|
|
* Grab the reset lock, and wait around until noone else
|
|
* is trying to do anything with it.
|
|
*
|
|
* This is totally horrible but we can't hold this lock for
|
|
* long enough to do TX/RX or we end up with net80211/ip stack
|
|
* LORs and eventual deadlock.
|
|
*
|
|
* "dowait" signals whether to spin, waiting for the reset
|
|
* lock count to reach 0. This should (for now) only be used
|
|
* during the reset path, as the rest of the code may not
|
|
* be locking-reentrant enough to behave correctly.
|
|
*
|
|
* Another, cleaner way should be found to serialise all of
|
|
* these operations.
|
|
*/
|
|
#define MAX_RESET_ITERATIONS 25
|
|
static int
|
|
ath_reset_grablock(struct ath_softc *sc, int dowait)
|
|
{
|
|
int w = 0;
|
|
int i = MAX_RESET_ITERATIONS;
|
|
|
|
ATH_PCU_LOCK_ASSERT(sc);
|
|
do {
|
|
if (sc->sc_inreset_cnt == 0) {
|
|
w = 1;
|
|
break;
|
|
}
|
|
if (dowait == 0) {
|
|
w = 0;
|
|
break;
|
|
}
|
|
ATH_PCU_UNLOCK(sc);
|
|
/*
|
|
* 1 tick is likely not enough time for long calibrations
|
|
* to complete. So we should wait quite a while.
|
|
*/
|
|
pause("ath_reset_grablock", msecs_to_ticks(100));
|
|
i--;
|
|
ATH_PCU_LOCK(sc);
|
|
} while (i > 0);
|
|
|
|
/*
|
|
* We always increment the refcounter, regardless
|
|
* of whether we succeeded to get it in an exclusive
|
|
* way.
|
|
*/
|
|
sc->sc_inreset_cnt++;
|
|
|
|
if (i <= 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: didn't finish after %d iterations\n",
|
|
__func__, MAX_RESET_ITERATIONS);
|
|
|
|
if (w == 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: warning, recursive reset path!\n",
|
|
__func__);
|
|
|
|
return w;
|
|
}
|
|
#undef MAX_RESET_ITERATIONS
|
|
|
|
/*
|
|
* Reset the hardware w/o losing operational state. This is
|
|
* basically a more efficient way of doing ath_stop, ath_init,
|
|
* followed by state transitions to the current 802.11
|
|
* operational state. Used to recover from various errors and
|
|
* to reset or reload hardware state.
|
|
*/
|
|
int
|
|
ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
int i;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
|
|
|
|
/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
|
|
ATH_PCU_UNLOCK_ASSERT(sc);
|
|
ATH_UNLOCK_ASSERT(sc);
|
|
|
|
/* Try to (stop any further TX/RX from occuring */
|
|
taskqueue_block(sc->sc_tq);
|
|
|
|
/*
|
|
* Wake the hardware up.
|
|
*/
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
|
|
/*
|
|
* Grab the reset lock before TX/RX is stopped.
|
|
*
|
|
* This is needed to ensure that when the TX/RX actually does finish,
|
|
* no further TX/RX/reset runs in parallel with this.
|
|
*/
|
|
if (ath_reset_grablock(sc, 1) == 0) {
|
|
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
|
|
__func__);
|
|
}
|
|
|
|
/* disable interrupts */
|
|
ath_hal_intrset(ah, 0);
|
|
|
|
/*
|
|
* Now, ensure that any in progress TX/RX completes before we
|
|
* continue.
|
|
*/
|
|
ath_txrx_stop_locked(sc);
|
|
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
/*
|
|
* Regardless of whether we're doing a no-loss flush or
|
|
* not, stop the PCU and handle what's in the RX queue.
|
|
* That way frames aren't dropped which shouldn't be.
|
|
*/
|
|
ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
|
|
ath_rx_flush(sc);
|
|
|
|
/*
|
|
* Should now wait for pending TX/RX to complete
|
|
* and block future ones from occuring. This needs to be
|
|
* done before the TX queue is drained.
|
|
*/
|
|
ath_draintxq(sc, reset_type); /* stop xmit side */
|
|
|
|
ath_settkipmic(sc); /* configure TKIP MIC handling */
|
|
/* NB: indicate channel change so we do a full reset */
|
|
ath_update_chainmasks(sc, ic->ic_curchan);
|
|
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
|
|
sc->sc_cur_rxchainmask);
|
|
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE,
|
|
HAL_RESET_NORMAL, &status))
|
|
device_printf(sc->sc_dev,
|
|
"%s: unable to reset hardware; hal status %u\n",
|
|
__func__, status);
|
|
sc->sc_diversity = ath_hal_getdiversity(ah);
|
|
|
|
ATH_RX_LOCK(sc);
|
|
sc->sc_rx_stopped = 1;
|
|
sc->sc_rx_resetted = 1;
|
|
ATH_RX_UNLOCK(sc);
|
|
|
|
/* Let DFS at it in case it's a DFS channel */
|
|
ath_dfs_radar_enable(sc, ic->ic_curchan);
|
|
|
|
/* Let spectral at in case spectral is enabled */
|
|
ath_spectral_enable(sc, ic->ic_curchan);
|
|
|
|
/*
|
|
* Let bluetooth coexistence at in case it's needed for this channel
|
|
*/
|
|
ath_btcoex_enable(sc, ic->ic_curchan);
|
|
|
|
/*
|
|
* If we're doing TDMA, enforce the TXOP limitation for chips that
|
|
* support it.
|
|
*/
|
|
if (sc->sc_hasenforcetxop && sc->sc_tdma)
|
|
ath_hal_setenforcetxop(sc->sc_ah, 1);
|
|
else
|
|
ath_hal_setenforcetxop(sc->sc_ah, 0);
|
|
|
|
if (ath_startrecv(sc) != 0) /* restart recv */
|
|
device_printf(sc->sc_dev,
|
|
"%s: unable to start recv logic\n", __func__);
|
|
/*
|
|
* We may be doing a reset in response to an ioctl
|
|
* that changes the channel so update any state that
|
|
* might change as a result.
|
|
*/
|
|
ath_chan_change(sc, ic->ic_curchan);
|
|
if (sc->sc_beacons) { /* restart beacons */
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma)
|
|
ath_tdma_config(sc, NULL);
|
|
else
|
|
#endif
|
|
ath_beacon_config(sc, NULL);
|
|
}
|
|
|
|
/*
|
|
* Release the reset lock and re-enable interrupts here.
|
|
* If an interrupt was being processed in ath_intr(),
|
|
* it would disable interrupts at this point. So we have
|
|
* to atomically enable interrupts and decrement the
|
|
* reset counter - this way ath_intr() doesn't end up
|
|
* disabling interrupts without a corresponding enable
|
|
* in the rest or channel change path.
|
|
*
|
|
* Grab the TX reference in case we need to transmit.
|
|
* That way a parallel transmit doesn't.
|
|
*/
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_inreset_cnt--;
|
|
sc->sc_txstart_cnt++;
|
|
/* XXX only do this if sc_inreset_cnt == 0? */
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
/*
|
|
* TX and RX can be started here. If it were started with
|
|
* sc_inreset_cnt > 0, the TX and RX path would abort.
|
|
* Thus if this is a nested call through the reset or
|
|
* channel change code, TX completion will occur but
|
|
* RX completion and ath_start / ath_tx_start will not
|
|
* run.
|
|
*/
|
|
|
|
/* Restart TX/RX as needed */
|
|
ath_txrx_start(sc);
|
|
|
|
/* XXX TODO: we need to hold the tx refcount here! */
|
|
|
|
/* Restart TX completion and pending TX */
|
|
if (reset_type == ATH_RESET_NOLOSS) {
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
ATH_TXQ_LOCK(&sc->sc_txq[i]);
|
|
ath_txq_restart_dma(sc, &sc->sc_txq[i]);
|
|
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
|
|
|
|
ATH_TX_LOCK(sc);
|
|
ath_txq_sched(sc, &sc->sc_txq[i]);
|
|
ATH_TX_UNLOCK(sc);
|
|
}
|
|
}
|
|
}
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txstart_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
/* Handle any frames in the TX queue */
|
|
/*
|
|
* XXX should this be done by the caller, rather than
|
|
* ath_reset() ?
|
|
*/
|
|
ath_tx_kick(sc); /* restart xmit */
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
|
|
{
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
switch (cmd) {
|
|
case IEEE80211_IOC_TXPOWER:
|
|
/*
|
|
* If per-packet TPC is enabled, then we have nothing
|
|
* to do; otherwise we need to force the global limit.
|
|
* All this can happen directly; no need to reset.
|
|
*/
|
|
if (!ath_hal_gettpc(ah))
|
|
ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
|
|
return 0;
|
|
}
|
|
/* XXX? Full or NOLOSS? */
|
|
return ath_reset(sc, ATH_RESET_FULL);
|
|
}
|
|
|
|
struct ath_buf *
|
|
_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
ATH_TXBUF_LOCK_ASSERT(sc);
|
|
|
|
if (btype == ATH_BUFTYPE_MGMT)
|
|
bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
|
|
else
|
|
bf = TAILQ_FIRST(&sc->sc_txbuf);
|
|
|
|
if (bf == NULL) {
|
|
sc->sc_stats.ast_tx_getnobuf++;
|
|
} else {
|
|
if (bf->bf_flags & ATH_BUF_BUSY) {
|
|
sc->sc_stats.ast_tx_getbusybuf++;
|
|
bf = NULL;
|
|
}
|
|
}
|
|
|
|
if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
|
|
if (btype == ATH_BUFTYPE_MGMT)
|
|
TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
|
|
else {
|
|
TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
|
|
sc->sc_txbuf_cnt--;
|
|
|
|
/*
|
|
* This shuldn't happen; however just to be
|
|
* safe print a warning and fudge the txbuf
|
|
* count.
|
|
*/
|
|
if (sc->sc_txbuf_cnt < 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: sc_txbuf_cnt < 0?\n",
|
|
__func__);
|
|
sc->sc_txbuf_cnt = 0;
|
|
}
|
|
}
|
|
} else
|
|
bf = NULL;
|
|
|
|
if (bf == NULL) {
|
|
/* XXX should check which list, mgmt or otherwise */
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
|
|
TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
|
|
"out of xmit buffers" : "xmit buffer busy");
|
|
return NULL;
|
|
}
|
|
|
|
/* XXX TODO: should do this at buffer list initialisation */
|
|
/* XXX (then, ensure the buffer has the right flag set) */
|
|
bf->bf_flags = 0;
|
|
if (btype == ATH_BUFTYPE_MGMT)
|
|
bf->bf_flags |= ATH_BUF_MGMT;
|
|
else
|
|
bf->bf_flags &= (~ATH_BUF_MGMT);
|
|
|
|
/* Valid bf here; clear some basic fields */
|
|
bf->bf_next = NULL; /* XXX just to be sure */
|
|
bf->bf_last = NULL; /* XXX again, just to be sure */
|
|
bf->bf_comp = NULL; /* XXX again, just to be sure */
|
|
bzero(&bf->bf_state, sizeof(bf->bf_state));
|
|
|
|
/*
|
|
* Track the descriptor ID only if doing EDMA
|
|
*/
|
|
if (sc->sc_isedma) {
|
|
bf->bf_descid = sc->sc_txbuf_descid;
|
|
sc->sc_txbuf_descid++;
|
|
}
|
|
|
|
return bf;
|
|
}
|
|
|
|
/*
|
|
* When retrying a software frame, buffers marked ATH_BUF_BUSY
|
|
* can't be thrown back on the queue as they could still be
|
|
* in use by the hardware.
|
|
*
|
|
* This duplicates the buffer, or returns NULL.
|
|
*
|
|
* The descriptor is also copied but the link pointers and
|
|
* the DMA segments aren't copied; this frame should thus
|
|
* be again passed through the descriptor setup/chain routines
|
|
* so the link is correct.
|
|
*
|
|
* The caller must free the buffer using ath_freebuf().
|
|
*/
|
|
struct ath_buf *
|
|
ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_buf *tbf;
|
|
|
|
tbf = ath_getbuf(sc,
|
|
(bf->bf_flags & ATH_BUF_MGMT) ?
|
|
ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
|
|
if (tbf == NULL)
|
|
return NULL; /* XXX failure? Why? */
|
|
|
|
/* Copy basics */
|
|
tbf->bf_next = NULL;
|
|
tbf->bf_nseg = bf->bf_nseg;
|
|
tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
|
|
tbf->bf_status = bf->bf_status;
|
|
tbf->bf_m = bf->bf_m;
|
|
tbf->bf_node = bf->bf_node;
|
|
KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
|
|
/* will be setup by the chain/setup function */
|
|
tbf->bf_lastds = NULL;
|
|
/* for now, last == self */
|
|
tbf->bf_last = tbf;
|
|
tbf->bf_comp = bf->bf_comp;
|
|
|
|
/* NOTE: DMA segments will be setup by the setup/chain functions */
|
|
|
|
/* The caller has to re-init the descriptor + links */
|
|
|
|
/*
|
|
* Free the DMA mapping here, before we NULL the mbuf.
|
|
* We must only call bus_dmamap_unload() once per mbuf chain
|
|
* or behaviour is undefined.
|
|
*/
|
|
if (bf->bf_m != NULL) {
|
|
/*
|
|
* XXX is this POSTWRITE call required?
|
|
*/
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
}
|
|
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
|
|
/* Copy state */
|
|
memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
|
|
|
|
return tbf;
|
|
}
|
|
|
|
struct ath_buf *
|
|
ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
ATH_TXBUF_LOCK(sc);
|
|
bf = _ath_getbuf_locked(sc, btype);
|
|
/*
|
|
* If a mgmt buffer was requested but we're out of those,
|
|
* try requesting a normal one.
|
|
*/
|
|
if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
|
|
bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
if (bf == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
|
|
sc->sc_stats.ast_tx_qstop++;
|
|
}
|
|
return bf;
|
|
}
|
|
|
|
/*
|
|
* Transmit a single frame.
|
|
*
|
|
* net80211 will free the node reference if the transmit
|
|
* fails, so don't free the node reference here.
|
|
*/
|
|
static int
|
|
ath_transmit(struct ieee80211com *ic, struct mbuf *m)
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ieee80211_node *ni;
|
|
struct mbuf *next;
|
|
struct ath_buf *bf;
|
|
ath_bufhead frags;
|
|
int retval = 0;
|
|
|
|
/*
|
|
* Tell the reset path that we're currently transmitting.
|
|
*/
|
|
ATH_PCU_LOCK(sc);
|
|
if (sc->sc_inreset_cnt > 0) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: sc_inreset_cnt > 0; bailing\n", __func__);
|
|
ATH_PCU_UNLOCK(sc);
|
|
sc->sc_stats.ast_tx_qstop++;
|
|
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
|
|
return (ENOBUFS); /* XXX should be EINVAL or? */
|
|
}
|
|
sc->sc_txstart_cnt++;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
/* Wake the hardware up already */
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
|
|
/*
|
|
* Grab the TX lock - it's ok to do this here; we haven't
|
|
* yet started transmitting.
|
|
*/
|
|
ATH_TX_LOCK(sc);
|
|
|
|
/*
|
|
* Node reference, if there's one.
|
|
*/
|
|
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
|
|
|
|
/*
|
|
* Enforce how deep a node queue can get.
|
|
*
|
|
* XXX it would be nicer if we kept an mbuf queue per
|
|
* node and only whacked them into ath_bufs when we
|
|
* are ready to schedule some traffic from them.
|
|
* .. that may come later.
|
|
*
|
|
* XXX we should also track the per-node hardware queue
|
|
* depth so it is easy to limit the _SUM_ of the swq and
|
|
* hwq frames. Since we only schedule two HWQ frames
|
|
* at a time, this should be OK for now.
|
|
*/
|
|
if ((!(m->m_flags & M_EAPOL)) &&
|
|
(ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
|
|
sc->sc_stats.ast_tx_nodeq_overflow++;
|
|
retval = ENOBUFS;
|
|
goto finish;
|
|
}
|
|
|
|
/*
|
|
* Check how many TX buffers are available.
|
|
*
|
|
* If this is for non-EAPOL traffic, just leave some
|
|
* space free in order for buffer cloning and raw
|
|
* frame transmission to occur.
|
|
*
|
|
* If it's for EAPOL traffic, ignore this for now.
|
|
* Management traffic will be sent via the raw transmit
|
|
* method which bypasses this check.
|
|
*
|
|
* This is needed to ensure that EAPOL frames during
|
|
* (re) keying have a chance to go out.
|
|
*
|
|
* See kern/138379 for more information.
|
|
*/
|
|
if ((!(m->m_flags & M_EAPOL)) &&
|
|
(sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
|
|
sc->sc_stats.ast_tx_nobuf++;
|
|
retval = ENOBUFS;
|
|
goto finish;
|
|
}
|
|
|
|
/*
|
|
* Grab a TX buffer and associated resources.
|
|
*
|
|
* If it's an EAPOL frame, allocate a MGMT ath_buf.
|
|
* That way even with temporary buffer exhaustion due to
|
|
* the data path doesn't leave us without the ability
|
|
* to transmit management frames.
|
|
*
|
|
* Otherwise allocate a normal buffer.
|
|
*/
|
|
if (m->m_flags & M_EAPOL)
|
|
bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
|
|
else
|
|
bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
|
|
|
|
if (bf == NULL) {
|
|
/*
|
|
* If we failed to allocate a buffer, fail.
|
|
*
|
|
* We shouldn't fail normally, due to the check
|
|
* above.
|
|
*/
|
|
sc->sc_stats.ast_tx_nobuf++;
|
|
retval = ENOBUFS;
|
|
goto finish;
|
|
}
|
|
|
|
/*
|
|
* At this point we have a buffer; so we need to free it
|
|
* if we hit any error conditions.
|
|
*/
|
|
|
|
/*
|
|
* Check for fragmentation. If this frame
|
|
* has been broken up verify we have enough
|
|
* buffers to send all the fragments so all
|
|
* go out or none...
|
|
*/
|
|
TAILQ_INIT(&frags);
|
|
if ((m->m_flags & M_FRAG) &&
|
|
!ath_txfrag_setup(sc, &frags, m, ni)) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: out of txfrag buffers\n", __func__);
|
|
sc->sc_stats.ast_tx_nofrag++;
|
|
if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
|
|
/*
|
|
* XXXGL: is mbuf valid after ath_txfrag_setup? If yes,
|
|
* we shouldn't free it but return back.
|
|
*/
|
|
ieee80211_free_mbuf(m);
|
|
m = NULL;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* At this point if we have any TX fragments, then we will
|
|
* have bumped the node reference once for each of those.
|
|
*/
|
|
|
|
/*
|
|
* XXX Is there anything actually _enforcing_ that the
|
|
* fragments are being transmitted in one hit, rather than
|
|
* being interleaved with other transmissions on that
|
|
* hardware queue?
|
|
*
|
|
* The ATH TX output lock is the only thing serialising this
|
|
* right now.
|
|
*/
|
|
|
|
/*
|
|
* Calculate the "next fragment" length field in ath_buf
|
|
* in order to let the transmit path know enough about
|
|
* what to next write to the hardware.
|
|
*/
|
|
if (m->m_flags & M_FRAG) {
|
|
struct ath_buf *fbf = bf;
|
|
struct ath_buf *n_fbf = NULL;
|
|
struct mbuf *fm = m->m_nextpkt;
|
|
|
|
/*
|
|
* We need to walk the list of fragments and set
|
|
* the next size to the following buffer.
|
|
* However, the first buffer isn't in the frag
|
|
* list, so we have to do some gymnastics here.
|
|
*/
|
|
TAILQ_FOREACH(n_fbf, &frags, bf_list) {
|
|
fbf->bf_nextfraglen = fm->m_pkthdr.len;
|
|
fbf = n_fbf;
|
|
fm = fm->m_nextpkt;
|
|
}
|
|
}
|
|
|
|
nextfrag:
|
|
/*
|
|
* Pass the frame to the h/w for transmission.
|
|
* Fragmented frames have each frag chained together
|
|
* with m_nextpkt. We know there are sufficient ath_buf's
|
|
* to send all the frags because of work done by
|
|
* ath_txfrag_setup. We leave m_nextpkt set while
|
|
* calling ath_tx_start so it can use it to extend the
|
|
* the tx duration to cover the subsequent frag and
|
|
* so it can reclaim all the mbufs in case of an error;
|
|
* ath_tx_start clears m_nextpkt once it commits to
|
|
* handing the frame to the hardware.
|
|
*
|
|
* Note: if this fails, then the mbufs are freed but
|
|
* not the node reference.
|
|
*
|
|
* So, we now have to free the node reference ourselves here
|
|
* and return OK up to the stack.
|
|
*/
|
|
next = m->m_nextpkt;
|
|
if (ath_tx_start(sc, ni, bf, m)) {
|
|
bad:
|
|
if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
|
|
reclaim:
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
ATH_TXBUF_LOCK(sc);
|
|
ath_returnbuf_head(sc, bf);
|
|
/*
|
|
* Free the rest of the node references and
|
|
* buffers for the fragment list.
|
|
*/
|
|
ath_txfrag_cleanup(sc, &frags, ni);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
|
|
/*
|
|
* XXX: And free the node/return OK; ath_tx_start() may have
|
|
* modified the buffer. We currently have no way to
|
|
* signify that the mbuf was freed but there was an error.
|
|
*/
|
|
ieee80211_free_node(ni);
|
|
retval = 0;
|
|
goto finish;
|
|
}
|
|
|
|
/*
|
|
* Check here if the node is in power save state.
|
|
*/
|
|
ath_tx_update_tim(sc, ni, 1);
|
|
|
|
if (next != NULL) {
|
|
/*
|
|
* Beware of state changing between frags.
|
|
* XXX check sta power-save state?
|
|
*/
|
|
if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: flush fragmented packet, state %s\n",
|
|
__func__,
|
|
ieee80211_state_name[ni->ni_vap->iv_state]);
|
|
/* XXX dmamap */
|
|
ieee80211_free_mbuf(next);
|
|
goto reclaim;
|
|
}
|
|
m = next;
|
|
bf = TAILQ_FIRST(&frags);
|
|
KASSERT(bf != NULL, ("no buf for txfrag"));
|
|
TAILQ_REMOVE(&frags, bf, bf_list);
|
|
goto nextfrag;
|
|
}
|
|
|
|
/*
|
|
* Bump watchdog timer.
|
|
*/
|
|
sc->sc_wd_timer = 5;
|
|
|
|
finish:
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/*
|
|
* Finished transmitting!
|
|
*/
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txstart_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
/* Sleep the hardware if required */
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static int
|
|
ath_media_change(struct ifnet *ifp)
|
|
{
|
|
int error = ieee80211_media_change(ifp);
|
|
/* NB: only the fixed rate can change and that doesn't need a reset */
|
|
return (error == ENETRESET ? 0 : error);
|
|
}
|
|
|
|
/*
|
|
* Block/unblock tx+rx processing while a key change is done.
|
|
* We assume the caller serializes key management operations
|
|
* so we only need to worry about synchronization with other
|
|
* uses that originate in the driver.
|
|
*/
|
|
static void
|
|
ath_key_update_begin(struct ieee80211vap *vap)
|
|
{
|
|
struct ath_softc *sc = vap->iv_ic->ic_softc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
|
|
taskqueue_block(sc->sc_tq);
|
|
}
|
|
|
|
static void
|
|
ath_key_update_end(struct ieee80211vap *vap)
|
|
{
|
|
struct ath_softc *sc = vap->iv_ic->ic_softc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
|
|
taskqueue_unblock(sc->sc_tq);
|
|
}
|
|
|
|
static void
|
|
ath_update_promisc(struct ieee80211com *ic)
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
u_int32_t rfilt;
|
|
|
|
/* configure rx filter */
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath_hal_setrxfilter(sc->sc_ah, rfilt);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
|
|
}
|
|
|
|
/*
|
|
* Driver-internal mcast update call.
|
|
*
|
|
* Assumes the hardware is already awake.
|
|
*/
|
|
static void
|
|
ath_update_mcast_hw(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
u_int32_t mfilt[2];
|
|
|
|
/* calculate and install multicast filter */
|
|
if (ic->ic_allmulti == 0) {
|
|
struct ieee80211vap *vap;
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
|
|
/*
|
|
* Merge multicast addresses to form the hardware filter.
|
|
*/
|
|
mfilt[0] = mfilt[1] = 0;
|
|
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
|
|
ifp = vap->iv_ifp;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
caddr_t dl;
|
|
uint32_t val;
|
|
uint8_t pos;
|
|
|
|
/* calculate XOR of eight 6bit values */
|
|
dl = LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr);
|
|
val = le32dec(dl + 0);
|
|
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^
|
|
val;
|
|
val = le32dec(dl + 3);
|
|
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^
|
|
val;
|
|
pos &= 0x3f;
|
|
mfilt[pos / 32] |= (1 << (pos % 32));
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
}
|
|
} else
|
|
mfilt[0] = mfilt[1] = ~0;
|
|
|
|
ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
|
|
__func__, mfilt[0], mfilt[1]);
|
|
}
|
|
|
|
/*
|
|
* Called from the net80211 layer - force the hardware
|
|
* awake before operating.
|
|
*/
|
|
static void
|
|
ath_update_mcast(struct ieee80211com *ic)
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ath_update_mcast_hw(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
|
|
void
|
|
ath_mode_init(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int32_t rfilt;
|
|
|
|
/* configure rx filter */
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
|
|
/* configure operational mode */
|
|
ath_hal_setopmode(ah);
|
|
|
|
/* handle any link-level address change */
|
|
ath_hal_setmac(ah, ic->ic_macaddr);
|
|
|
|
/* calculate and install multicast filter */
|
|
ath_update_mcast_hw(sc);
|
|
}
|
|
|
|
/*
|
|
* Set the slot time based on the current setting.
|
|
*/
|
|
void
|
|
ath_setslottime(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int usec;
|
|
|
|
if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
|
|
usec = 13;
|
|
else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
|
|
usec = 21;
|
|
else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
|
|
/* honor short/long slot time only in 11g */
|
|
/* XXX shouldn't honor on pure g or turbo g channel */
|
|
if (ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
usec = HAL_SLOT_TIME_9;
|
|
else
|
|
usec = HAL_SLOT_TIME_20;
|
|
} else
|
|
usec = HAL_SLOT_TIME_9;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET,
|
|
"%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
|
|
__func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
|
|
ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
|
|
|
|
/* Wake up the hardware first before updating the slot time */
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ath_hal_setslottime(ah, usec);
|
|
ath_power_restore_power_state(sc);
|
|
sc->sc_updateslot = OK;
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Callback from the 802.11 layer to update the
|
|
* slot time based on the current setting.
|
|
*/
|
|
static void
|
|
ath_updateslot(struct ieee80211com *ic)
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
|
|
/*
|
|
* When not coordinating the BSS, change the hardware
|
|
* immediately. For other operation we defer the change
|
|
* until beacon updates have propagated to the stations.
|
|
*
|
|
* XXX sc_updateslot isn't changed behind a lock?
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
|
|
ic->ic_opmode == IEEE80211_M_MBSS)
|
|
sc->sc_updateslot = UPDATE;
|
|
else
|
|
ath_setslottime(sc);
|
|
}
|
|
|
|
/*
|
|
* Append the contents of src to dst; both queues
|
|
* are assumed to be locked.
|
|
*/
|
|
void
|
|
ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
|
|
{
|
|
|
|
ATH_TXQ_LOCK_ASSERT(src);
|
|
ATH_TXQ_LOCK_ASSERT(dst);
|
|
|
|
TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
|
|
dst->axq_link = src->axq_link;
|
|
src->axq_link = NULL;
|
|
dst->axq_depth += src->axq_depth;
|
|
dst->axq_aggr_depth += src->axq_aggr_depth;
|
|
src->axq_depth = 0;
|
|
src->axq_aggr_depth = 0;
|
|
}
|
|
|
|
/*
|
|
* Reset the hardware, with no loss.
|
|
*
|
|
* This can't be used for a general case reset.
|
|
*/
|
|
static void
|
|
ath_reset_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
|
|
#if 0
|
|
device_printf(sc->sc_dev, "%s: resetting\n", __func__);
|
|
#endif
|
|
ath_reset(sc, ATH_RESET_NOLOSS);
|
|
}
|
|
|
|
/*
|
|
* Reset the hardware after detecting beacons have stopped.
|
|
*/
|
|
static void
|
|
ath_bstuck_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
uint32_t hangs = 0;
|
|
|
|
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
|
|
device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs);
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
|
|
#endif
|
|
|
|
device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n",
|
|
sc->sc_bmisscount);
|
|
sc->sc_stats.ast_bstuck++;
|
|
/*
|
|
* This assumes that there's no simultaneous channel mode change
|
|
* occuring.
|
|
*/
|
|
ath_reset(sc, ATH_RESET_NOLOSS);
|
|
}
|
|
|
|
static int
|
|
ath_desc_alloc(struct ath_softc *sc)
|
|
{
|
|
int error;
|
|
|
|
error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
|
|
"tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
|
|
if (error != 0) {
|
|
return error;
|
|
}
|
|
sc->sc_txbuf_cnt = ath_txbuf;
|
|
|
|
error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
|
|
"tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
|
|
ATH_TXDESC);
|
|
if (error != 0) {
|
|
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
|
|
* flag doesn't have to be set in ath_getbuf_locked().
|
|
*/
|
|
|
|
error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
|
|
"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
|
|
if (error != 0) {
|
|
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
|
|
ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
|
|
&sc->sc_txbuf_mgmt);
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_desc_free(struct ath_softc *sc)
|
|
{
|
|
|
|
if (sc->sc_bdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
|
|
if (sc->sc_txdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
|
|
if (sc->sc_txdma_mgmt.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
|
|
&sc->sc_txbuf_mgmt);
|
|
}
|
|
|
|
static struct ieee80211_node *
|
|
ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
|
|
struct ath_node *an;
|
|
|
|
an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
|
|
if (an == NULL) {
|
|
/* XXX stat+msg */
|
|
return NULL;
|
|
}
|
|
ath_rate_node_init(sc, an);
|
|
|
|
/* Setup the mutex - there's no associd yet so set the name to NULL */
|
|
snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
|
|
device_get_nameunit(sc->sc_dev), an);
|
|
mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
|
|
|
|
/* XXX setup ath_tid */
|
|
ath_tx_tid_init(sc, an);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
|
|
return &an->an_node;
|
|
}
|
|
|
|
static void
|
|
ath_node_cleanup(struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
|
|
ni->ni_macaddr, ":", ATH_NODE(ni));
|
|
|
|
/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
|
|
ath_tx_node_flush(sc, ATH_NODE(ni));
|
|
ath_rate_node_cleanup(sc, ATH_NODE(ni));
|
|
sc->sc_node_cleanup(ni);
|
|
}
|
|
|
|
static void
|
|
ath_node_free(struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
|
|
ni->ni_macaddr, ":", ATH_NODE(ni));
|
|
mtx_destroy(&ATH_NODE(ni)->an_mtx);
|
|
sc->sc_node_free(ni);
|
|
}
|
|
|
|
static void
|
|
ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
*rssi = ic->ic_node_getrssi(ni);
|
|
if (ni->ni_chan != IEEE80211_CHAN_ANYC)
|
|
*noise = ath_hal_getchannoise(ah, ni->ni_chan);
|
|
else
|
|
*noise = -95; /* nominally correct */
|
|
}
|
|
|
|
/*
|
|
* Set the default antenna.
|
|
*/
|
|
void
|
|
ath_setdefantenna(struct ath_softc *sc, u_int antenna)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
/* XXX block beacon interrupts */
|
|
ath_hal_setdefantenna(ah, antenna);
|
|
if (sc->sc_defant != antenna)
|
|
sc->sc_stats.ast_ant_defswitch++;
|
|
sc->sc_defant = antenna;
|
|
sc->sc_rxotherant = 0;
|
|
}
|
|
|
|
static void
|
|
ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
|
|
{
|
|
txq->axq_qnum = qnum;
|
|
txq->axq_ac = 0;
|
|
txq->axq_depth = 0;
|
|
txq->axq_aggr_depth = 0;
|
|
txq->axq_intrcnt = 0;
|
|
txq->axq_link = NULL;
|
|
txq->axq_softc = sc;
|
|
TAILQ_INIT(&txq->axq_q);
|
|
TAILQ_INIT(&txq->axq_tidq);
|
|
TAILQ_INIT(&txq->fifo.axq_q);
|
|
ATH_TXQ_LOCK_INIT(sc, txq);
|
|
}
|
|
|
|
/*
|
|
* Setup a h/w transmit queue.
|
|
*/
|
|
static struct ath_txq *
|
|
ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_TXQ_INFO qi;
|
|
int qnum;
|
|
|
|
memset(&qi, 0, sizeof(qi));
|
|
qi.tqi_subtype = subtype;
|
|
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
|
|
/*
|
|
* Enable interrupts only for EOL and DESC conditions.
|
|
* We mark tx descriptors to receive a DESC interrupt
|
|
* when a tx queue gets deep; otherwise waiting for the
|
|
* EOL to reap descriptors. Note that this is done to
|
|
* reduce interrupt load and this only defers reaping
|
|
* descriptors, never transmitting frames. Aside from
|
|
* reducing interrupts this also permits more concurrency.
|
|
* The only potential downside is if the tx queue backs
|
|
* up in which case the top half of the kernel may backup
|
|
* due to a lack of tx descriptors.
|
|
*/
|
|
if (sc->sc_isedma)
|
|
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
|
|
HAL_TXQ_TXOKINT_ENABLE;
|
|
else
|
|
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
|
|
HAL_TXQ_TXDESCINT_ENABLE;
|
|
|
|
qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
|
|
if (qnum == -1) {
|
|
/*
|
|
* NB: don't print a message, this happens
|
|
* normally on parts with too few tx queues
|
|
*/
|
|
return NULL;
|
|
}
|
|
if (qnum >= nitems(sc->sc_txq)) {
|
|
device_printf(sc->sc_dev,
|
|
"hal qnum %u out of range, max %zu!\n",
|
|
qnum, nitems(sc->sc_txq));
|
|
ath_hal_releasetxqueue(ah, qnum);
|
|
return NULL;
|
|
}
|
|
if (!ATH_TXQ_SETUP(sc, qnum)) {
|
|
ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
|
|
sc->sc_txqsetup |= 1<<qnum;
|
|
}
|
|
return &sc->sc_txq[qnum];
|
|
}
|
|
|
|
/*
|
|
* Setup a hardware data transmit queue for the specified
|
|
* access control. The hal may not support all requested
|
|
* queues in which case it will return a reference to a
|
|
* previously setup queue. We record the mapping from ac's
|
|
* to h/w queues for use by ath_tx_start and also track
|
|
* the set of h/w queues being used to optimize work in the
|
|
* transmit interrupt handler and related routines.
|
|
*/
|
|
static int
|
|
ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
|
|
{
|
|
struct ath_txq *txq;
|
|
|
|
if (ac >= nitems(sc->sc_ac2q)) {
|
|
device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
|
|
ac, nitems(sc->sc_ac2q));
|
|
return 0;
|
|
}
|
|
txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
|
|
if (txq != NULL) {
|
|
txq->axq_ac = ac;
|
|
sc->sc_ac2q[ac] = txq;
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update WME parameters for a transmit queue.
|
|
*/
|
|
static int
|
|
ath_txq_update(struct ath_softc *sc, int ac)
|
|
{
|
|
#define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_txq *txq = sc->sc_ac2q[ac];
|
|
struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_TXQ_INFO qi;
|
|
|
|
ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma) {
|
|
/*
|
|
* AIFS is zero so there's no pre-transmit wait. The
|
|
* burst time defines the slot duration and is configured
|
|
* through net80211. The QCU is setup to not do post-xmit
|
|
* back off, lockout all lower-priority QCU's, and fire
|
|
* off the DMA beacon alert timer which is setup based
|
|
* on the slot configuration.
|
|
*/
|
|
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
|
|
| HAL_TXQ_TXERRINT_ENABLE
|
|
| HAL_TXQ_TXURNINT_ENABLE
|
|
| HAL_TXQ_TXEOLINT_ENABLE
|
|
| HAL_TXQ_DBA_GATED
|
|
| HAL_TXQ_BACKOFF_DISABLE
|
|
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
|
|
;
|
|
qi.tqi_aifs = 0;
|
|
/* XXX +dbaprep? */
|
|
qi.tqi_readyTime = sc->sc_tdmaslotlen;
|
|
qi.tqi_burstTime = qi.tqi_readyTime;
|
|
} else {
|
|
#endif
|
|
/*
|
|
* XXX shouldn't this just use the default flags
|
|
* used in the previous queue setup?
|
|
*/
|
|
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
|
|
| HAL_TXQ_TXERRINT_ENABLE
|
|
| HAL_TXQ_TXDESCINT_ENABLE
|
|
| HAL_TXQ_TXURNINT_ENABLE
|
|
| HAL_TXQ_TXEOLINT_ENABLE
|
|
;
|
|
qi.tqi_aifs = wmep->wmep_aifsn;
|
|
qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
|
|
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
|
|
qi.tqi_readyTime = 0;
|
|
qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit);
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
}
|
|
#endif
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET,
|
|
"%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
|
|
__func__, txq->axq_qnum, qi.tqi_qflags,
|
|
qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
|
|
|
|
if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
|
|
device_printf(sc->sc_dev, "unable to update hardware queue "
|
|
"parameters for %s traffic!\n", ieee80211_wme_acnames[ac]);
|
|
return 0;
|
|
} else {
|
|
ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
|
|
return 1;
|
|
}
|
|
#undef ATH_EXPONENT_TO_VALUE
|
|
}
|
|
|
|
/*
|
|
* Callback from the 802.11 layer to update WME parameters.
|
|
*/
|
|
int
|
|
ath_wme_update(struct ieee80211com *ic)
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
|
|
return !ath_txq_update(sc, WME_AC_BE) ||
|
|
!ath_txq_update(sc, WME_AC_BK) ||
|
|
!ath_txq_update(sc, WME_AC_VI) ||
|
|
!ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
|
|
}
|
|
|
|
/*
|
|
* Reclaim resources for a setup queue.
|
|
*/
|
|
static void
|
|
ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
|
|
ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
|
|
sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
|
|
ATH_TXQ_LOCK_DESTROY(txq);
|
|
}
|
|
|
|
/*
|
|
* Reclaim all tx queue resources.
|
|
*/
|
|
static void
|
|
ath_tx_cleanup(struct ath_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
ATH_TXBUF_LOCK_DESTROY(sc);
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
|
|
}
|
|
|
|
/*
|
|
* Return h/w rate index for an IEEE rate (w/o basic rate bit)
|
|
* using the current rates in sc_rixmap.
|
|
*/
|
|
int
|
|
ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
|
|
{
|
|
int rix = sc->sc_rixmap[rate];
|
|
/* NB: return lowest rix for invalid rate */
|
|
return (rix == 0xff ? 0 : rix);
|
|
}
|
|
|
|
static void
|
|
ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
|
|
struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int sr, lr, pri;
|
|
|
|
if (ts->ts_status == 0) {
|
|
u_int8_t txant = ts->ts_antenna;
|
|
sc->sc_stats.ast_ant_tx[txant]++;
|
|
sc->sc_ant_tx[txant]++;
|
|
if (ts->ts_finaltsi != 0)
|
|
sc->sc_stats.ast_tx_altrate++;
|
|
pri = M_WME_GETAC(bf->bf_m);
|
|
if (pri >= WME_AC_VO)
|
|
ic->ic_wme.wme_hipri_traffic++;
|
|
if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
|
|
ni->ni_inact = ni->ni_inact_reload;
|
|
} else {
|
|
if (ts->ts_status & HAL_TXERR_XRETRY)
|
|
sc->sc_stats.ast_tx_xretries++;
|
|
if (ts->ts_status & HAL_TXERR_FIFO)
|
|
sc->sc_stats.ast_tx_fifoerr++;
|
|
if (ts->ts_status & HAL_TXERR_FILT)
|
|
sc->sc_stats.ast_tx_filtered++;
|
|
if (ts->ts_status & HAL_TXERR_XTXOP)
|
|
sc->sc_stats.ast_tx_xtxop++;
|
|
if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
|
|
sc->sc_stats.ast_tx_timerexpired++;
|
|
|
|
if (bf->bf_m->m_flags & M_FF)
|
|
sc->sc_stats.ast_ff_txerr++;
|
|
}
|
|
/* XXX when is this valid? */
|
|
if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
|
|
sc->sc_stats.ast_tx_desccfgerr++;
|
|
/*
|
|
* This can be valid for successful frame transmission!
|
|
* If there's a TX FIFO underrun during aggregate transmission,
|
|
* the MAC will pad the rest of the aggregate with delimiters.
|
|
* If a BA is returned, the frame is marked as "OK" and it's up
|
|
* to the TX completion code to notice which frames weren't
|
|
* successfully transmitted.
|
|
*/
|
|
if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
|
|
sc->sc_stats.ast_tx_data_underrun++;
|
|
if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
|
|
sc->sc_stats.ast_tx_delim_underrun++;
|
|
|
|
sr = ts->ts_shortretry;
|
|
lr = ts->ts_longretry;
|
|
sc->sc_stats.ast_tx_shortretry += sr;
|
|
sc->sc_stats.ast_tx_longretry += lr;
|
|
|
|
}
|
|
|
|
/*
|
|
* The default completion. If fail is 1, this means
|
|
* "please don't retry the frame, and just return -1 status
|
|
* to the net80211 stack.
|
|
*/
|
|
void
|
|
ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
|
|
{
|
|
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
|
|
int st;
|
|
|
|
if (fail == 1)
|
|
st = -1;
|
|
else
|
|
st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
|
|
ts->ts_status : HAL_TXERR_XRETRY;
|
|
|
|
#if 0
|
|
if (bf->bf_state.bfs_dobaw)
|
|
device_printf(sc->sc_dev,
|
|
"%s: bf %p: seqno %d: dobaw should've been cleared!\n",
|
|
__func__,
|
|
bf,
|
|
SEQNO(bf->bf_state.bfs_seqno));
|
|
#endif
|
|
if (bf->bf_next != NULL)
|
|
device_printf(sc->sc_dev,
|
|
"%s: bf %p: seqno %d: bf_next not NULL!\n",
|
|
__func__,
|
|
bf,
|
|
SEQNO(bf->bf_state.bfs_seqno));
|
|
|
|
/*
|
|
* Check if the node software queue is empty; if so
|
|
* then clear the TIM.
|
|
*
|
|
* This needs to be done before the buffer is freed as
|
|
* otherwise the node reference will have been released
|
|
* and the node may not actually exist any longer.
|
|
*
|
|
* XXX I don't like this belonging here, but it's cleaner
|
|
* to do it here right now then all the other places
|
|
* where ath_tx_default_comp() is called.
|
|
*
|
|
* XXX TODO: during drain, ensure that the callback is
|
|
* being called so we get a chance to update the TIM.
|
|
*/
|
|
if (bf->bf_node) {
|
|
ATH_TX_LOCK(sc);
|
|
ath_tx_update_tim(sc, bf->bf_node, 0);
|
|
ATH_TX_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Do any tx complete callback. Note this must
|
|
* be done before releasing the node reference.
|
|
* This will free the mbuf, release the net80211
|
|
* node and recycle the ath_buf.
|
|
*/
|
|
ath_tx_freebuf(sc, bf, st);
|
|
}
|
|
|
|
/*
|
|
* Update rate control with the given completion status.
|
|
*/
|
|
void
|
|
ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
|
|
int nframes, int nbad)
|
|
{
|
|
struct ath_node *an;
|
|
|
|
/* Only for unicast frames */
|
|
if (ni == NULL)
|
|
return;
|
|
|
|
an = ATH_NODE(ni);
|
|
ATH_NODE_UNLOCK_ASSERT(an);
|
|
|
|
if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
|
|
ATH_NODE_LOCK(an);
|
|
ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
|
|
ATH_NODE_UNLOCK(an);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process the completion of the given buffer.
|
|
*
|
|
* This calls the rate control update and then the buffer completion.
|
|
* This will either free the buffer or requeue it. In any case, the
|
|
* bf pointer should be treated as invalid after this function is called.
|
|
*/
|
|
void
|
|
ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_tx_status *ts, struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
|
|
ATH_TX_UNLOCK_ASSERT(sc);
|
|
ATH_TXQ_UNLOCK_ASSERT(txq);
|
|
|
|
/* If unicast frame, update general statistics */
|
|
if (ni != NULL) {
|
|
/* update statistics */
|
|
ath_tx_update_stats(sc, ts, bf);
|
|
}
|
|
|
|
/*
|
|
* Call the completion handler.
|
|
* The completion handler is responsible for
|
|
* calling the rate control code.
|
|
*
|
|
* Frames with no completion handler get the
|
|
* rate control code called here.
|
|
*/
|
|
if (bf->bf_comp == NULL) {
|
|
if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
|
|
(bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
|
|
/*
|
|
* XXX assume this isn't an aggregate
|
|
* frame.
|
|
*/
|
|
ath_tx_update_ratectrl(sc, ni,
|
|
bf->bf_state.bfs_rc, ts,
|
|
bf->bf_state.bfs_pktlen, 1,
|
|
(ts->ts_status == 0 ? 0 : 1));
|
|
}
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
} else
|
|
bf->bf_comp(sc, bf, 0);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Process completed xmit descriptors from the specified queue.
|
|
* Kick the packet scheduler if needed. This can occur from this
|
|
* particular task.
|
|
*/
|
|
static int
|
|
ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
struct ath_desc *ds;
|
|
struct ath_tx_status *ts;
|
|
struct ieee80211_node *ni;
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
#endif /* IEEE80211_SUPPORT_SUPERG */
|
|
int nacked;
|
|
HAL_STATUS status;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
|
|
__func__, txq->axq_qnum,
|
|
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
|
|
txq->axq_link);
|
|
|
|
ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
|
|
"ath_tx_processq: txq=%u head %p link %p depth %p",
|
|
txq->axq_qnum,
|
|
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
|
|
txq->axq_link,
|
|
txq->axq_depth);
|
|
|
|
nacked = 0;
|
|
for (;;) {
|
|
ATH_TXQ_LOCK(txq);
|
|
txq->axq_intrcnt = 0; /* reset periodic desc intr count */
|
|
bf = TAILQ_FIRST(&txq->axq_q);
|
|
if (bf == NULL) {
|
|
ATH_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
ds = bf->bf_lastds; /* XXX must be setup correctly! */
|
|
ts = &bf->bf_status.ds_txstat;
|
|
|
|
status = ath_hal_txprocdesc(ah, ds, ts);
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
|
|
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
|
|
status == HAL_OK);
|
|
else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
|
|
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
|
|
status == HAL_OK);
|
|
#endif
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq,
|
|
ATH_ALQ_EDMA_TXSTATUS)) {
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
|
|
sc->sc_tx_statuslen,
|
|
(char *) ds);
|
|
}
|
|
#endif
|
|
|
|
if (status == HAL_EINPROGRESS) {
|
|
ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
|
|
"ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
|
|
txq->axq_qnum, bf, ds);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
ATH_TXQ_REMOVE(txq, bf, bf_list);
|
|
|
|
/*
|
|
* Sanity check.
|
|
*/
|
|
if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
bf,
|
|
bf->bf_state.bfs_tx_queue);
|
|
}
|
|
if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
bf->bf_last,
|
|
bf->bf_last->bf_state.bfs_tx_queue);
|
|
}
|
|
|
|
#if 0
|
|
if (txq->axq_depth > 0) {
|
|
/*
|
|
* More frames follow. Mark the buffer busy
|
|
* so it's not re-used while the hardware may
|
|
* still re-read the link field in the descriptor.
|
|
*
|
|
* Use the last buffer in an aggregate as that
|
|
* is where the hardware may be - intermediate
|
|
* descriptors won't be "busy".
|
|
*/
|
|
bf->bf_last->bf_flags |= ATH_BUF_BUSY;
|
|
} else
|
|
txq->axq_link = NULL;
|
|
#else
|
|
bf->bf_last->bf_flags |= ATH_BUF_BUSY;
|
|
#endif
|
|
if (bf->bf_state.bfs_aggr)
|
|
txq->axq_aggr_depth--;
|
|
|
|
ni = bf->bf_node;
|
|
|
|
ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
|
|
"ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
|
|
txq->axq_qnum, bf, ds, ni, ts->ts_status);
|
|
/*
|
|
* If unicast frame was ack'd update RSSI,
|
|
* including the last rx time used to
|
|
* workaround phantom bmiss interrupts.
|
|
*/
|
|
if (ni != NULL && ts->ts_status == 0 &&
|
|
((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
|
|
nacked++;
|
|
sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
|
|
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
|
|
ts->ts_rssi);
|
|
}
|
|
ATH_TXQ_UNLOCK(txq);
|
|
|
|
/*
|
|
* Update statistics and call completion
|
|
*/
|
|
ath_tx_process_buf_completion(sc, txq, ts, bf);
|
|
|
|
/* XXX at this point, bf and ni may be totally invalid */
|
|
}
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
/*
|
|
* Flush fast-frame staging queue when traffic slows.
|
|
*/
|
|
if (txq->axq_depth <= 1)
|
|
ieee80211_ff_flush(ic, txq->axq_ac);
|
|
#endif
|
|
|
|
/* Kick the software TXQ scheduler */
|
|
if (dosched) {
|
|
ATH_TX_LOCK(sc);
|
|
ath_txq_sched(sc, txq);
|
|
ATH_TX_UNLOCK(sc);
|
|
}
|
|
|
|
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
|
|
"ath_tx_processq: txq=%u: done",
|
|
txq->axq_qnum);
|
|
|
|
return nacked;
|
|
}
|
|
|
|
#define TXQACTIVE(t, q) ( (t) & (1 << (q)))
|
|
|
|
/*
|
|
* Deferred processing of transmit interrupt; special-cased
|
|
* for a single hardware transmit queue (e.g. 5210 and 5211).
|
|
*/
|
|
static void
|
|
ath_tx_proc_q0(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
uint32_t txqs;
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txproc_cnt++;
|
|
txqs = sc->sc_txq_active;
|
|
sc->sc_txq_active &= ~txqs;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
|
|
"ath_tx_proc_q0: txqs=0x%08x", txqs);
|
|
|
|
if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
|
|
/* XXX why is lastrx updated in tx code? */
|
|
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
|
|
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
|
|
ath_tx_processq(sc, sc->sc_cabq, 1);
|
|
sc->sc_wd_timer = 0;
|
|
|
|
if (sc->sc_softled)
|
|
ath_led_event(sc, sc->sc_txrix);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txproc_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ath_tx_kick(sc);
|
|
}
|
|
|
|
/*
|
|
* Deferred processing of transmit interrupt; special-cased
|
|
* for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
|
|
*/
|
|
static void
|
|
ath_tx_proc_q0123(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
int nacked;
|
|
uint32_t txqs;
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txproc_cnt++;
|
|
txqs = sc->sc_txq_active;
|
|
sc->sc_txq_active &= ~txqs;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
|
|
"ath_tx_proc_q0123: txqs=0x%08x", txqs);
|
|
|
|
/*
|
|
* Process each active queue.
|
|
*/
|
|
nacked = 0;
|
|
if (TXQACTIVE(txqs, 0))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
|
|
if (TXQACTIVE(txqs, 1))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
|
|
if (TXQACTIVE(txqs, 2))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
|
|
if (TXQACTIVE(txqs, 3))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
|
|
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
|
|
ath_tx_processq(sc, sc->sc_cabq, 1);
|
|
if (nacked)
|
|
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
|
|
|
|
sc->sc_wd_timer = 0;
|
|
|
|
if (sc->sc_softled)
|
|
ath_led_event(sc, sc->sc_txrix);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txproc_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ath_tx_kick(sc);
|
|
}
|
|
|
|
/*
|
|
* Deferred processing of transmit interrupt.
|
|
*/
|
|
static void
|
|
ath_tx_proc(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
int i, nacked;
|
|
uint32_t txqs;
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txproc_cnt++;
|
|
txqs = sc->sc_txq_active;
|
|
sc->sc_txq_active &= ~txqs;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
|
|
|
|
/*
|
|
* Process each active queue.
|
|
*/
|
|
nacked = 0;
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
|
|
if (nacked)
|
|
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
|
|
|
|
sc->sc_wd_timer = 0;
|
|
|
|
if (sc->sc_softled)
|
|
ath_led_event(sc, sc->sc_txrix);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txproc_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ath_tx_kick(sc);
|
|
}
|
|
#undef TXQACTIVE
|
|
|
|
/*
|
|
* Deferred processing of TXQ rescheduling.
|
|
*/
|
|
static void
|
|
ath_txq_sched_tasklet(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
int i;
|
|
|
|
/* XXX is skipping ok? */
|
|
ATH_PCU_LOCK(sc);
|
|
#if 0
|
|
if (sc->sc_inreset_cnt > 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: sc_inreset_cnt > 0; skipping\n", __func__);
|
|
ATH_PCU_UNLOCK(sc);
|
|
return;
|
|
}
|
|
#endif
|
|
sc->sc_txproc_cnt++;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_TX_LOCK(sc);
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
ath_txq_sched(sc, &sc->sc_txq[i]);
|
|
}
|
|
}
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txproc_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
}
|
|
|
|
void
|
|
ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
|
|
ATH_TXBUF_LOCK_ASSERT(sc);
|
|
|
|
if (bf->bf_flags & ATH_BUF_MGMT)
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
|
|
else {
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
sc->sc_txbuf_cnt++;
|
|
if (sc->sc_txbuf_cnt > ath_txbuf) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: sc_txbuf_cnt > %d?\n",
|
|
__func__,
|
|
ath_txbuf);
|
|
sc->sc_txbuf_cnt = ath_txbuf;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
|
|
ATH_TXBUF_LOCK_ASSERT(sc);
|
|
|
|
if (bf->bf_flags & ATH_BUF_MGMT)
|
|
TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
|
|
else {
|
|
TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
|
|
sc->sc_txbuf_cnt++;
|
|
if (sc->sc_txbuf_cnt > ATH_TXBUF) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: sc_txbuf_cnt > %d?\n",
|
|
__func__,
|
|
ATH_TXBUF);
|
|
sc->sc_txbuf_cnt = ATH_TXBUF;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free the holding buffer if it exists
|
|
*/
|
|
void
|
|
ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
ATH_TXBUF_UNLOCK_ASSERT(sc);
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
if (txq->axq_holdingbf == NULL)
|
|
return;
|
|
|
|
txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
|
|
|
|
ATH_TXBUF_LOCK(sc);
|
|
ath_returnbuf_tail(sc, txq->axq_holdingbf);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
|
|
txq->axq_holdingbf = NULL;
|
|
}
|
|
|
|
/*
|
|
* Add this buffer to the holding queue, freeing the previous
|
|
* one if it exists.
|
|
*/
|
|
static void
|
|
ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_txq *txq;
|
|
|
|
txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
|
|
|
|
ATH_TXBUF_UNLOCK_ASSERT(sc);
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
/* XXX assert ATH_BUF_BUSY is set */
|
|
|
|
/* XXX assert the tx queue is under the max number */
|
|
if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
|
|
device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
|
|
__func__,
|
|
bf,
|
|
bf->bf_state.bfs_tx_queue);
|
|
bf->bf_flags &= ~ATH_BUF_BUSY;
|
|
ath_returnbuf_tail(sc, bf);
|
|
return;
|
|
}
|
|
ath_txq_freeholdingbuf(sc, txq);
|
|
txq->axq_holdingbf = bf;
|
|
}
|
|
|
|
/*
|
|
* Return a buffer to the pool and update the 'busy' flag on the
|
|
* previous 'tail' entry.
|
|
*
|
|
* This _must_ only be called when the buffer is involved in a completed
|
|
* TX. The logic is that if it was part of an active TX, the previous
|
|
* buffer on the list is now not involved in a halted TX DMA queue, waiting
|
|
* for restart (eg for TDMA.)
|
|
*
|
|
* The caller must free the mbuf and recycle the node reference.
|
|
*
|
|
* XXX This method of handling busy / holding buffers is insanely stupid.
|
|
* It requires bf_state.bfs_tx_queue to be correctly assigned. It would
|
|
* be much nicer if buffers in the processq() methods would instead be
|
|
* always completed there (pushed onto a txq or ath_bufhead) so we knew
|
|
* exactly what hardware queue they came from in the first place.
|
|
*/
|
|
void
|
|
ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_txq *txq;
|
|
|
|
txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
|
|
|
|
KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
|
|
KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
|
|
|
|
/*
|
|
* If this buffer is busy, push it onto the holding queue.
|
|
*/
|
|
if (bf->bf_flags & ATH_BUF_BUSY) {
|
|
ATH_TXQ_LOCK(txq);
|
|
ath_txq_addholdingbuf(sc, bf);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Not a busy buffer, so free normally
|
|
*/
|
|
ATH_TXBUF_LOCK(sc);
|
|
ath_returnbuf_tail(sc, bf);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* This is currently used by ath_tx_draintxq() and
|
|
* ath_tx_tid_free_pkts().
|
|
*
|
|
* It recycles a single ath_buf.
|
|
*/
|
|
void
|
|
ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct mbuf *m0 = bf->bf_m;
|
|
|
|
/*
|
|
* Make sure that we only sync/unload if there's an mbuf.
|
|
* If not (eg we cloned a buffer), the unload will have already
|
|
* occured.
|
|
*/
|
|
if (bf->bf_m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
}
|
|
|
|
bf->bf_node = NULL;
|
|
bf->bf_m = NULL;
|
|
|
|
/* Free the buffer, it's not needed any longer */
|
|
ath_freebuf(sc, bf);
|
|
|
|
/* Pass the buffer back to net80211 - completing it */
|
|
ieee80211_tx_complete(ni, m0, status);
|
|
}
|
|
|
|
static struct ath_buf *
|
|
ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
/*
|
|
* Drain the FIFO queue first, then if it's
|
|
* empty, move to the normal frame queue.
|
|
*/
|
|
bf = TAILQ_FIRST(&txq->fifo.axq_q);
|
|
if (bf != NULL) {
|
|
/*
|
|
* Is it the last buffer in this set?
|
|
* Decrement the FIFO counter.
|
|
*/
|
|
if (bf->bf_flags & ATH_BUF_FIFOEND) {
|
|
if (txq->axq_fifo_depth == 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
txq->fifo.axq_depth);
|
|
} else
|
|
txq->axq_fifo_depth--;
|
|
}
|
|
ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
|
|
return (bf);
|
|
}
|
|
|
|
/*
|
|
* Debugging!
|
|
*/
|
|
if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
txq->axq_fifo_depth,
|
|
txq->fifo.axq_depth);
|
|
}
|
|
|
|
/*
|
|
* Now drain the pending queue.
|
|
*/
|
|
bf = TAILQ_FIRST(&txq->axq_q);
|
|
if (bf == NULL) {
|
|
txq->axq_link = NULL;
|
|
return (NULL);
|
|
}
|
|
ATH_TXQ_REMOVE(txq, bf, bf_list);
|
|
return (bf);
|
|
}
|
|
|
|
void
|
|
ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
#ifdef ATH_DEBUG
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
#endif
|
|
struct ath_buf *bf;
|
|
u_int ix;
|
|
|
|
/*
|
|
* NB: this assumes output has been stopped and
|
|
* we do not need to block ath_tx_proc
|
|
*/
|
|
for (ix = 0;; ix++) {
|
|
ATH_TXQ_LOCK(txq);
|
|
bf = ath_tx_draintxq_get_one(sc, txq);
|
|
if (bf == NULL) {
|
|
ATH_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
if (bf->bf_state.bfs_aggr)
|
|
txq->axq_aggr_depth--;
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RESET) {
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int status = 0;
|
|
|
|
/*
|
|
* EDMA operation has a TX completion FIFO
|
|
* separate from the TX descriptor, so this
|
|
* method of checking the "completion" status
|
|
* is wrong.
|
|
*/
|
|
if (! sc->sc_isedma) {
|
|
status = (ath_hal_txprocdesc(ah,
|
|
bf->bf_lastds,
|
|
&bf->bf_status.ds_txstat) == HAL_OK);
|
|
}
|
|
ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
|
|
ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
|
|
bf->bf_m->m_len, 0, -1);
|
|
}
|
|
#endif /* ATH_DEBUG */
|
|
/*
|
|
* Since we're now doing magic in the completion
|
|
* functions, we -must- call it for aggregation
|
|
* destinations or BAW tracking will get upset.
|
|
*/
|
|
/*
|
|
* Clear ATH_BUF_BUSY; the completion handler
|
|
* will free the buffer.
|
|
*/
|
|
ATH_TXQ_UNLOCK(txq);
|
|
bf->bf_flags &= ~ATH_BUF_BUSY;
|
|
if (bf->bf_comp)
|
|
bf->bf_comp(sc, bf, 1);
|
|
else
|
|
ath_tx_default_comp(sc, bf, 1);
|
|
}
|
|
|
|
/*
|
|
* Free the holding buffer if it exists
|
|
*/
|
|
ATH_TXQ_LOCK(txq);
|
|
ath_txq_freeholdingbuf(sc, txq);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
|
|
/*
|
|
* Drain software queued frames which are on
|
|
* active TIDs.
|
|
*/
|
|
ath_tx_txq_drain(sc, txq);
|
|
}
|
|
|
|
static void
|
|
ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET,
|
|
"%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
|
|
"link %p, holdingbf=%p\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
|
|
(int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
|
|
(int) ath_hal_numtxpending(ah, txq->axq_qnum),
|
|
txq->axq_flags,
|
|
txq->axq_link,
|
|
txq->axq_holdingbf);
|
|
|
|
(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
|
|
/* We've stopped TX DMA, so mark this as stopped. */
|
|
txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
|
|
|
|
#ifdef ATH_DEBUG
|
|
if ((sc->sc_debug & ATH_DEBUG_RESET)
|
|
&& (txq->axq_holdingbf != NULL)) {
|
|
ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int
|
|
ath_stoptxdma(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int i;
|
|
|
|
/* XXX return value */
|
|
if (sc->sc_invalid)
|
|
return 0;
|
|
|
|
if (!sc->sc_invalid) {
|
|
/* don't touch the hardware if marked invalid */
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
|
|
__func__, sc->sc_bhalq,
|
|
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
|
|
NULL);
|
|
|
|
/* stop the beacon queue */
|
|
(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
|
|
|
|
/* Stop the data queues */
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
ATH_TXQ_LOCK(&sc->sc_txq[i]);
|
|
ath_tx_stopdma(sc, &sc->sc_txq[i]);
|
|
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
#ifdef ATH_DEBUG
|
|
void
|
|
ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
int i = 0;
|
|
|
|
if (! (sc->sc_debug & ATH_DEBUG_RESET))
|
|
return;
|
|
|
|
device_printf(sc->sc_dev, "%s: Q%d: begin\n",
|
|
__func__, txq->axq_qnum);
|
|
TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
|
|
ath_printtxbuf(sc, bf, txq->axq_qnum, i,
|
|
ath_hal_txprocdesc(ah, bf->bf_lastds,
|
|
&bf->bf_status.ds_txstat) == HAL_OK);
|
|
i++;
|
|
}
|
|
device_printf(sc->sc_dev, "%s: Q%d: end\n",
|
|
__func__, txq->axq_qnum);
|
|
}
|
|
#endif /* ATH_DEBUG */
|
|
|
|
/*
|
|
* Drain the transmit queues and reclaim resources.
|
|
*/
|
|
void
|
|
ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf_last;
|
|
int i;
|
|
|
|
(void) ath_stoptxdma(sc);
|
|
|
|
/*
|
|
* Dump the queue contents
|
|
*/
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
|
|
/*
|
|
* XXX TODO: should we just handle the completed TX frames
|
|
* here, whether or not the reset is a full one or not?
|
|
*/
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RESET)
|
|
ath_tx_dump(sc, &sc->sc_txq[i]);
|
|
#endif /* ATH_DEBUG */
|
|
if (reset_type == ATH_RESET_NOLOSS) {
|
|
ath_tx_processq(sc, &sc->sc_txq[i], 0);
|
|
ATH_TXQ_LOCK(&sc->sc_txq[i]);
|
|
/*
|
|
* Free the holding buffer; DMA is now
|
|
* stopped.
|
|
*/
|
|
ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
|
|
/*
|
|
* Setup the link pointer to be the
|
|
* _last_ buffer/descriptor in the list.
|
|
* If there's nothing in the list, set it
|
|
* to NULL.
|
|
*/
|
|
bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
|
|
axq_q_s);
|
|
if (bf_last != NULL) {
|
|
ath_hal_gettxdesclinkptr(ah,
|
|
bf_last->bf_lastds,
|
|
&sc->sc_txq[i].axq_link);
|
|
} else {
|
|
sc->sc_txq[i].axq_link = NULL;
|
|
}
|
|
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
|
|
} else
|
|
ath_tx_draintxq(sc, &sc->sc_txq[i]);
|
|
}
|
|
}
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RESET) {
|
|
struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
|
|
if (bf != NULL && bf->bf_m != NULL) {
|
|
ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
|
|
ath_hal_txprocdesc(ah, bf->bf_lastds,
|
|
&bf->bf_status.ds_txstat) == HAL_OK);
|
|
ieee80211_dump_pkt(&sc->sc_ic,
|
|
mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
|
|
0, -1);
|
|
}
|
|
}
|
|
#endif /* ATH_DEBUG */
|
|
sc->sc_wd_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* Update internal state after a channel change.
|
|
*/
|
|
static void
|
|
ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
|
|
{
|
|
enum ieee80211_phymode mode;
|
|
|
|
/*
|
|
* Change channels and update the h/w rate map
|
|
* if we're switching; e.g. 11a to 11b/g.
|
|
*/
|
|
mode = ieee80211_chan2mode(chan);
|
|
if (mode != sc->sc_curmode)
|
|
ath_setcurmode(sc, mode);
|
|
sc->sc_curchan = chan;
|
|
}
|
|
|
|
/*
|
|
* Set/change channels. If the channel is really being changed,
|
|
* it's done by resetting the chip. To accomplish this we must
|
|
* first cleanup any pending DMA, then restart stuff after a la
|
|
* ath_init.
|
|
*/
|
|
static int
|
|
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int ret = 0;
|
|
|
|
/* Treat this as an interface reset */
|
|
ATH_PCU_UNLOCK_ASSERT(sc);
|
|
ATH_UNLOCK_ASSERT(sc);
|
|
|
|
/* (Try to) stop TX/RX from occuring */
|
|
taskqueue_block(sc->sc_tq);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
|
|
/* Disable interrupts */
|
|
ath_hal_intrset(ah, 0);
|
|
|
|
/* Stop new RX/TX/interrupt completion */
|
|
if (ath_reset_grablock(sc, 1) == 0) {
|
|
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
|
|
__func__);
|
|
}
|
|
|
|
/* Stop pending RX/TX completion */
|
|
ath_txrx_stop_locked(sc);
|
|
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
|
|
__func__, ieee80211_chan2ieee(ic, chan),
|
|
chan->ic_freq, chan->ic_flags);
|
|
if (chan != sc->sc_curchan) {
|
|
HAL_STATUS status;
|
|
/*
|
|
* To switch channels clear any pending DMA operations;
|
|
* wait long enough for the RX fifo to drain, reset the
|
|
* hardware at the new frequency, and then re-enable
|
|
* the relevant bits of the h/w.
|
|
*/
|
|
#if 0
|
|
ath_hal_intrset(ah, 0); /* disable interrupts */
|
|
#endif
|
|
ath_stoprecv(sc, 1); /* turn off frame recv */
|
|
/*
|
|
* First, handle completed TX/RX frames.
|
|
*/
|
|
ath_rx_flush(sc);
|
|
ath_draintxq(sc, ATH_RESET_NOLOSS);
|
|
/*
|
|
* Next, flush the non-scheduled frames.
|
|
*/
|
|
ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */
|
|
|
|
ath_update_chainmasks(sc, chan);
|
|
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
|
|
sc->sc_cur_rxchainmask);
|
|
if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE,
|
|
HAL_RESET_NORMAL, &status)) {
|
|
device_printf(sc->sc_dev, "%s: unable to reset "
|
|
"channel %u (%u MHz, flags 0x%x), hal status %u\n",
|
|
__func__, ieee80211_chan2ieee(ic, chan),
|
|
chan->ic_freq, chan->ic_flags, status);
|
|
ret = EIO;
|
|
goto finish;
|
|
}
|
|
sc->sc_diversity = ath_hal_getdiversity(ah);
|
|
|
|
ATH_RX_LOCK(sc);
|
|
sc->sc_rx_stopped = 1;
|
|
sc->sc_rx_resetted = 1;
|
|
ATH_RX_UNLOCK(sc);
|
|
|
|
/* Let DFS at it in case it's a DFS channel */
|
|
ath_dfs_radar_enable(sc, chan);
|
|
|
|
/* Let spectral at in case spectral is enabled */
|
|
ath_spectral_enable(sc, chan);
|
|
|
|
/*
|
|
* Let bluetooth coexistence at in case it's needed for this
|
|
* channel
|
|
*/
|
|
ath_btcoex_enable(sc, ic->ic_curchan);
|
|
|
|
/*
|
|
* If we're doing TDMA, enforce the TXOP limitation for chips
|
|
* that support it.
|
|
*/
|
|
if (sc->sc_hasenforcetxop && sc->sc_tdma)
|
|
ath_hal_setenforcetxop(sc->sc_ah, 1);
|
|
else
|
|
ath_hal_setenforcetxop(sc->sc_ah, 0);
|
|
|
|
/*
|
|
* Re-enable rx framework.
|
|
*/
|
|
if (ath_startrecv(sc) != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: unable to restart recv logic\n", __func__);
|
|
ret = EIO;
|
|
goto finish;
|
|
}
|
|
|
|
/*
|
|
* Change channels and update the h/w rate map
|
|
* if we're switching; e.g. 11a to 11b/g.
|
|
*/
|
|
ath_chan_change(sc, chan);
|
|
|
|
/*
|
|
* Reset clears the beacon timers; reset them
|
|
* here if needed.
|
|
*/
|
|
if (sc->sc_beacons) { /* restart beacons */
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma)
|
|
ath_tdma_config(sc, NULL);
|
|
else
|
|
#endif
|
|
ath_beacon_config(sc, NULL);
|
|
}
|
|
|
|
/*
|
|
* Re-enable interrupts.
|
|
*/
|
|
#if 0
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
#endif
|
|
}
|
|
|
|
finish:
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_inreset_cnt--;
|
|
/* XXX only do this if sc_inreset_cnt == 0? */
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ath_txrx_start(sc);
|
|
/* XXX ath_start? */
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Periodically recalibrate the PHY to account
|
|
* for temperature/environment changes.
|
|
*/
|
|
static void
|
|
ath_calibrate(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
HAL_BOOL longCal, isCalDone = AH_TRUE;
|
|
HAL_BOOL aniCal, shortCal = AH_FALSE;
|
|
int nextcal;
|
|
|
|
ATH_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Force the hardware awake for ANI work.
|
|
*/
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
|
|
/* Skip trying to do this if we're in reset */
|
|
if (sc->sc_inreset_cnt)
|
|
goto restart;
|
|
|
|
if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */
|
|
goto restart;
|
|
longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
|
|
aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
|
|
if (sc->sc_doresetcal)
|
|
shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
|
|
if (aniCal) {
|
|
sc->sc_stats.ast_ani_cal++;
|
|
sc->sc_lastani = ticks;
|
|
ath_hal_ani_poll(ah, sc->sc_curchan);
|
|
}
|
|
|
|
if (longCal) {
|
|
sc->sc_stats.ast_per_cal++;
|
|
sc->sc_lastlongcal = ticks;
|
|
if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
|
|
/*
|
|
* Rfgain is out of bounds, reset the chip
|
|
* to load new gain values.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
|
|
"%s: rfgain change\n", __func__);
|
|
sc->sc_stats.ast_per_rfgain++;
|
|
sc->sc_resetcal = 0;
|
|
sc->sc_doresetcal = AH_TRUE;
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
|
|
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
|
|
ath_power_restore_power_state(sc);
|
|
return;
|
|
}
|
|
/*
|
|
* If this long cal is after an idle period, then
|
|
* reset the data collection state so we start fresh.
|
|
*/
|
|
if (sc->sc_resetcal) {
|
|
(void) ath_hal_calreset(ah, sc->sc_curchan);
|
|
sc->sc_lastcalreset = ticks;
|
|
sc->sc_lastshortcal = ticks;
|
|
sc->sc_resetcal = 0;
|
|
sc->sc_doresetcal = AH_TRUE;
|
|
}
|
|
}
|
|
|
|
/* Only call if we're doing a short/long cal, not for ANI calibration */
|
|
if (shortCal || longCal) {
|
|
isCalDone = AH_FALSE;
|
|
if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
|
|
if (longCal) {
|
|
/*
|
|
* Calibrate noise floor data again in case of change.
|
|
*/
|
|
ath_hal_process_noisefloor(ah);
|
|
}
|
|
} else {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: calibration of channel %u failed\n",
|
|
__func__, sc->sc_curchan->ic_freq);
|
|
sc->sc_stats.ast_per_calfail++;
|
|
}
|
|
if (shortCal)
|
|
sc->sc_lastshortcal = ticks;
|
|
}
|
|
if (!isCalDone) {
|
|
restart:
|
|
/*
|
|
* Use a shorter interval to potentially collect multiple
|
|
* data samples required to complete calibration. Once
|
|
* we're told the work is done we drop back to a longer
|
|
* interval between requests. We're more aggressive doing
|
|
* work when operating as an AP to improve operation right
|
|
* after startup.
|
|
*/
|
|
sc->sc_lastshortcal = ticks;
|
|
nextcal = ath_shortcalinterval*hz/1000;
|
|
if (sc->sc_opmode != HAL_M_HOSTAP)
|
|
nextcal *= 10;
|
|
sc->sc_doresetcal = AH_TRUE;
|
|
} else {
|
|
/* nextcal should be the shortest time for next event */
|
|
nextcal = ath_longcalinterval*hz;
|
|
if (sc->sc_lastcalreset == 0)
|
|
sc->sc_lastcalreset = sc->sc_lastlongcal;
|
|
else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
|
|
sc->sc_resetcal = 1; /* setup reset next trip */
|
|
sc->sc_doresetcal = AH_FALSE;
|
|
}
|
|
/* ANI calibration may occur more often than short/long/resetcal */
|
|
if (ath_anicalinterval > 0)
|
|
nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
|
|
|
|
if (nextcal != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
|
|
__func__, nextcal, isCalDone ? "" : "!");
|
|
callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
|
|
} else {
|
|
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
|
|
__func__);
|
|
/* NB: don't rearm timer */
|
|
}
|
|
/*
|
|
* Restore power state now that we're done.
|
|
*/
|
|
ath_power_restore_power_state(sc);
|
|
}
|
|
|
|
static void
|
|
ath_scan_start(struct ieee80211com *ic)
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int32_t rfilt;
|
|
|
|
/* XXX calibration timer? */
|
|
/* XXXGL: is constant ieee80211broadcastaddr a correct choice? */
|
|
|
|
ATH_LOCK(sc);
|
|
sc->sc_scanning = 1;
|
|
sc->sc_syncbeacon = 0;
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
ath_hal_setassocid(ah, ieee80211broadcastaddr, 0);
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
|
|
__func__, rfilt, ether_sprintf(ieee80211broadcastaddr));
|
|
}
|
|
|
|
static void
|
|
ath_scan_end(struct ieee80211com *ic)
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int32_t rfilt;
|
|
|
|
ATH_LOCK(sc);
|
|
sc->sc_scanning = 0;
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
|
|
|
|
ath_hal_process_noisefloor(ah);
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
|
|
__func__, rfilt, ether_sprintf(sc->sc_curbssid),
|
|
sc->sc_curaid);
|
|
}
|
|
|
|
#ifdef ATH_ENABLE_11N
|
|
/*
|
|
* For now, just do a channel change.
|
|
*
|
|
* Later, we'll go through the hard slog of suspending tx/rx, changing rate
|
|
* control state and resetting the hardware without dropping frames out
|
|
* of the queue.
|
|
*
|
|
* The unfortunate trouble here is making absolutely sure that the
|
|
* channel width change has propagated enough so the hardware
|
|
* absolutely isn't handed bogus frames for it's current operating
|
|
* mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
|
|
* does occur in parallel, we need to make certain we've blocked
|
|
* any further ongoing TX (and RX, that can cause raw TX)
|
|
* before we do this.
|
|
*/
|
|
static void
|
|
ath_update_chw(struct ieee80211com *ic)
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
|
|
ath_set_channel(ic);
|
|
}
|
|
#endif /* ATH_ENABLE_11N */
|
|
|
|
static void
|
|
ath_set_channel(struct ieee80211com *ic)
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
(void) ath_chan_set(sc, ic->ic_curchan);
|
|
/*
|
|
* If we are returning to our bss channel then mark state
|
|
* so the next recv'd beacon's tsf will be used to sync the
|
|
* beacon timers. Note that since we only hear beacons in
|
|
* sta/ibss mode this has no effect in other operating modes.
|
|
*/
|
|
ATH_LOCK(sc);
|
|
if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
|
|
sc->sc_syncbeacon = 1;
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Walk the vap list and check if there any vap's in RUN state.
|
|
*/
|
|
static int
|
|
ath_isanyrunningvaps(struct ieee80211vap *this)
|
|
{
|
|
struct ieee80211com *ic = this->iv_ic;
|
|
struct ieee80211vap *vap;
|
|
|
|
IEEE80211_LOCK_ASSERT(ic);
|
|
|
|
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
|
|
if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_vap *avp = ATH_VAP(vap);
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211_node *ni = NULL;
|
|
int i, error, stamode;
|
|
u_int32_t rfilt;
|
|
int csa_run_transition = 0;
|
|
enum ieee80211_state ostate = vap->iv_state;
|
|
|
|
static const HAL_LED_STATE leds[] = {
|
|
HAL_LED_INIT, /* IEEE80211_S_INIT */
|
|
HAL_LED_SCAN, /* IEEE80211_S_SCAN */
|
|
HAL_LED_AUTH, /* IEEE80211_S_AUTH */
|
|
HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
|
|
HAL_LED_RUN, /* IEEE80211_S_CAC */
|
|
HAL_LED_RUN, /* IEEE80211_S_RUN */
|
|
HAL_LED_RUN, /* IEEE80211_S_CSA */
|
|
HAL_LED_RUN, /* IEEE80211_S_SLEEP */
|
|
};
|
|
|
|
DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
|
|
ieee80211_state_name[ostate],
|
|
ieee80211_state_name[nstate]);
|
|
|
|
/*
|
|
* net80211 _should_ have the comlock asserted at this point.
|
|
* There are some comments around the calls to vap->iv_newstate
|
|
* which indicate that it (newstate) may end up dropping the
|
|
* lock. This and the subsequent lock assert check after newstate
|
|
* are an attempt to catch these and figure out how/why.
|
|
*/
|
|
IEEE80211_LOCK_ASSERT(ic);
|
|
|
|
/* Before we touch the hardware - wake it up */
|
|
ATH_LOCK(sc);
|
|
/*
|
|
* If the NIC is in anything other than SLEEP state,
|
|
* we need to ensure that self-generated frames are
|
|
* set for PWRMGT=0. Otherwise we may end up with
|
|
* strange situations.
|
|
*
|
|
* XXX TODO: is this actually the case? :-)
|
|
*/
|
|
if (nstate != IEEE80211_S_SLEEP)
|
|
ath_power_setselfgen(sc, HAL_PM_AWAKE);
|
|
|
|
/*
|
|
* Now, wake the thing up.
|
|
*/
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
|
|
/*
|
|
* And stop the calibration callout whilst we have
|
|
* ATH_LOCK held.
|
|
*/
|
|
callout_stop(&sc->sc_cal_ch);
|
|
ATH_UNLOCK(sc);
|
|
|
|
if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
|
|
csa_run_transition = 1;
|
|
|
|
ath_hal_setledstate(ah, leds[nstate]); /* set LED */
|
|
|
|
if (nstate == IEEE80211_S_SCAN) {
|
|
/*
|
|
* Scanning: turn off beacon miss and don't beacon.
|
|
* Mark beacon state so when we reach RUN state we'll
|
|
* [re]setup beacons. Unblock the task q thread so
|
|
* deferred interrupt processing is done.
|
|
*/
|
|
|
|
/* Ensure we stay awake during scan */
|
|
ATH_LOCK(sc);
|
|
ath_power_setselfgen(sc, HAL_PM_AWAKE);
|
|
ath_power_setpower(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ath_hal_intrset(ah,
|
|
sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
|
|
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
|
|
sc->sc_beacons = 0;
|
|
taskqueue_unblock(sc->sc_tq);
|
|
}
|
|
|
|
ni = ieee80211_ref_node(vap->iv_bss);
|
|
rfilt = ath_calcrxfilter(sc);
|
|
stamode = (vap->iv_opmode == IEEE80211_M_STA ||
|
|
vap->iv_opmode == IEEE80211_M_AHDEMO ||
|
|
vap->iv_opmode == IEEE80211_M_IBSS);
|
|
|
|
/*
|
|
* XXX Dont need to do this (and others) if we've transitioned
|
|
* from SLEEP->RUN.
|
|
*/
|
|
if (stamode && nstate == IEEE80211_S_RUN) {
|
|
sc->sc_curaid = ni->ni_associd;
|
|
IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
|
|
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
|
|
__func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
|
|
/* XXX is this to restore keycache on resume? */
|
|
if (vap->iv_opmode != IEEE80211_M_STA &&
|
|
(vap->iv_flags & IEEE80211_F_PRIVACY)) {
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++)
|
|
if (ath_hal_keyisvalid(ah, i))
|
|
ath_hal_keysetmac(ah, i, ni->ni_bssid);
|
|
}
|
|
|
|
/*
|
|
* Invoke the parent method to do net80211 work.
|
|
*/
|
|
error = avp->av_newstate(vap, nstate, arg);
|
|
if (error != 0)
|
|
goto bad;
|
|
|
|
/*
|
|
* See above: ensure av_newstate() doesn't drop the lock
|
|
* on us.
|
|
*/
|
|
IEEE80211_LOCK_ASSERT(ic);
|
|
|
|
if (nstate == IEEE80211_S_RUN) {
|
|
/* NB: collect bss node again, it may have changed */
|
|
ieee80211_free_node(ni);
|
|
ni = ieee80211_ref_node(vap->iv_bss);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_STATE,
|
|
"%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
|
|
"capinfo 0x%04x chan %d\n", __func__,
|
|
vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
|
|
ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
|
|
|
|
switch (vap->iv_opmode) {
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
case IEEE80211_M_AHDEMO:
|
|
if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
|
|
break;
|
|
/* fall thru... */
|
|
#endif
|
|
case IEEE80211_M_HOSTAP:
|
|
case IEEE80211_M_IBSS:
|
|
case IEEE80211_M_MBSS:
|
|
/*
|
|
* Allocate and setup the beacon frame.
|
|
*
|
|
* Stop any previous beacon DMA. This may be
|
|
* necessary, for example, when an ibss merge
|
|
* causes reconfiguration; there will be a state
|
|
* transition from RUN->RUN that means we may
|
|
* be called with beacon transmission active.
|
|
*/
|
|
ath_hal_stoptxdma(ah, sc->sc_bhalq);
|
|
|
|
error = ath_beacon_alloc(sc, ni);
|
|
if (error != 0)
|
|
goto bad;
|
|
/*
|
|
* If joining an adhoc network defer beacon timer
|
|
* configuration to the next beacon frame so we
|
|
* have a current TSF to use. Otherwise we're
|
|
* starting an ibss/bss so there's no need to delay;
|
|
* if this is the first vap moving to RUN state, then
|
|
* beacon state needs to be [re]configured.
|
|
*/
|
|
if (vap->iv_opmode == IEEE80211_M_IBSS &&
|
|
ni->ni_tstamp.tsf != 0) {
|
|
sc->sc_syncbeacon = 1;
|
|
} else if (!sc->sc_beacons) {
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (vap->iv_caps & IEEE80211_C_TDMA)
|
|
ath_tdma_config(sc, vap);
|
|
else
|
|
#endif
|
|
ath_beacon_config(sc, vap);
|
|
sc->sc_beacons = 1;
|
|
}
|
|
break;
|
|
case IEEE80211_M_STA:
|
|
/*
|
|
* Defer beacon timer configuration to the next
|
|
* beacon frame so we have a current TSF to use
|
|
* (any TSF collected when scanning is likely old).
|
|
* However if it's due to a CSA -> RUN transition,
|
|
* force a beacon update so we pick up a lack of
|
|
* beacons from an AP in CAC and thus force a
|
|
* scan.
|
|
*
|
|
* And, there's also corner cases here where
|
|
* after a scan, the AP may have disappeared.
|
|
* In that case, we may not receive an actual
|
|
* beacon to update the beacon timer and thus we
|
|
* won't get notified of the missing beacons.
|
|
*/
|
|
if (ostate != IEEE80211_S_RUN &&
|
|
ostate != IEEE80211_S_SLEEP) {
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: STA; syncbeacon=1\n", __func__);
|
|
sc->sc_syncbeacon = 1;
|
|
|
|
if (csa_run_transition)
|
|
ath_beacon_config(sc, vap);
|
|
|
|
/*
|
|
* PR: kern/175227
|
|
*
|
|
* Reconfigure beacons during reset; as otherwise
|
|
* we won't get the beacon timers reprogrammed
|
|
* after a reset and thus we won't pick up a
|
|
* beacon miss interrupt.
|
|
*
|
|
* Hopefully we'll see a beacon before the BMISS
|
|
* timer fires (too often), leading to a STA
|
|
* disassociation.
|
|
*/
|
|
sc->sc_beacons = 1;
|
|
}
|
|
break;
|
|
case IEEE80211_M_MONITOR:
|
|
/*
|
|
* Monitor mode vaps have only INIT->RUN and RUN->RUN
|
|
* transitions so we must re-enable interrupts here to
|
|
* handle the case of a single monitor mode vap.
|
|
*/
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
break;
|
|
case IEEE80211_M_WDS:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
/*
|
|
* Let the hal process statistics collected during a
|
|
* scan so it can provide calibrated noise floor data.
|
|
*/
|
|
ath_hal_process_noisefloor(ah);
|
|
/*
|
|
* Reset rssi stats; maybe not the best place...
|
|
*/
|
|
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
|
|
|
|
/*
|
|
* Force awake for RUN mode.
|
|
*/
|
|
ATH_LOCK(sc);
|
|
ath_power_setselfgen(sc, HAL_PM_AWAKE);
|
|
ath_power_setpower(sc, HAL_PM_AWAKE);
|
|
|
|
/*
|
|
* Finally, start any timers and the task q thread
|
|
* (in case we didn't go through SCAN state).
|
|
*/
|
|
if (ath_longcalinterval != 0) {
|
|
/* start periodic recalibration timer */
|
|
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
|
|
} else {
|
|
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
|
|
"%s: calibration disabled\n", __func__);
|
|
}
|
|
ATH_UNLOCK(sc);
|
|
|
|
taskqueue_unblock(sc->sc_tq);
|
|
} else if (nstate == IEEE80211_S_INIT) {
|
|
/*
|
|
* If there are no vaps left in RUN state then
|
|
* shutdown host/driver operation:
|
|
* o disable interrupts
|
|
* o disable the task queue thread
|
|
* o mark beacon processing as stopped
|
|
*/
|
|
if (!ath_isanyrunningvaps(vap)) {
|
|
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
|
|
/* disable interrupts */
|
|
ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
|
|
taskqueue_block(sc->sc_tq);
|
|
sc->sc_beacons = 0;
|
|
}
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
ath_hal_setcca(ah, AH_TRUE);
|
|
#endif
|
|
} else if (nstate == IEEE80211_S_SLEEP) {
|
|
/* We're going to sleep, so transition appropriately */
|
|
/* For now, only do this if we're a single STA vap */
|
|
if (sc->sc_nvaps == 1 &&
|
|
vap->iv_opmode == IEEE80211_M_STA) {
|
|
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
|
|
ATH_LOCK(sc);
|
|
/*
|
|
* Always at least set the self-generated
|
|
* frame config to set PWRMGT=1.
|
|
*/
|
|
ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
|
|
|
|
/*
|
|
* If we're not syncing beacons, transition
|
|
* to NETWORK_SLEEP.
|
|
*
|
|
* We stay awake if syncbeacon > 0 in case
|
|
* we need to listen for some beacons otherwise
|
|
* our beacon timer config may be wrong.
|
|
*/
|
|
if (sc->sc_syncbeacon == 0) {
|
|
ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
|
|
}
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
}
|
|
bad:
|
|
ieee80211_free_node(ni);
|
|
|
|
/*
|
|
* Restore the power state - either to what it was, or
|
|
* to network_sleep if it's alright.
|
|
*/
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate a key cache slot to the station so we can
|
|
* setup a mapping from key index to node. The key cache
|
|
* slot is needed for managing antenna state and for
|
|
* compression when stations do not use crypto. We do
|
|
* it uniliaterally here; if crypto is employed this slot
|
|
* will be reassigned.
|
|
*/
|
|
static void
|
|
ath_setup_stationkey(struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ath_softc *sc = vap->iv_ic->ic_softc;
|
|
ieee80211_keyix keyix, rxkeyix;
|
|
|
|
/* XXX should take a locked ref to vap->iv_bss */
|
|
if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
|
|
/*
|
|
* Key cache is full; we'll fall back to doing
|
|
* the more expensive lookup in software. Note
|
|
* this also means no h/w compression.
|
|
*/
|
|
/* XXX msg+statistic */
|
|
} else {
|
|
/* XXX locking? */
|
|
ni->ni_ucastkey.wk_keyix = keyix;
|
|
ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
|
|
/* NB: must mark device key to get called back on delete */
|
|
ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
|
|
IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
|
|
/* NB: this will create a pass-thru key entry */
|
|
ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup driver-specific state for a newly associated node.
|
|
* Note that we're called also on a re-associate, the isnew
|
|
* param tells us if this is the first time or not.
|
|
*/
|
|
static void
|
|
ath_newassoc(struct ieee80211_node *ni, int isnew)
|
|
{
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ath_softc *sc = vap->iv_ic->ic_softc;
|
|
const struct ieee80211_txparam *tp = ni->ni_txparms;
|
|
|
|
an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
|
|
an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
isnew,
|
|
an->an_is_powersave);
|
|
|
|
ATH_NODE_LOCK(an);
|
|
ath_rate_newassoc(sc, an, isnew);
|
|
ATH_NODE_UNLOCK(an);
|
|
|
|
if (isnew &&
|
|
(vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
|
|
ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
|
|
ath_setup_stationkey(ni);
|
|
|
|
/*
|
|
* If we're reassociating, make sure that any paused queues
|
|
* get unpaused.
|
|
*
|
|
* Now, we may hvae frames in the hardware queue for this node.
|
|
* So if we are reassociating and there are frames in the queue,
|
|
* we need to go through the cleanup path to ensure that they're
|
|
* marked as non-aggregate.
|
|
*/
|
|
if (! isnew) {
|
|
DPRINTF(sc, ATH_DEBUG_NODE,
|
|
"%s: %6D: reassoc; is_powersave=%d\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
an->an_is_powersave);
|
|
|
|
/* XXX for now, we can't hold the lock across assoc */
|
|
ath_tx_node_reassoc(sc, an);
|
|
|
|
/* XXX for now, we can't hold the lock across wakeup */
|
|
if (an->an_is_powersave)
|
|
ath_tx_node_wakeup(sc, an);
|
|
}
|
|
}
|
|
|
|
static int
|
|
ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
|
|
int nchans, struct ieee80211_channel chans[])
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
|
|
"%s: rd %u cc %u location %c%s\n",
|
|
__func__, reg->regdomain, reg->country, reg->location,
|
|
reg->ecm ? " ecm" : "");
|
|
|
|
status = ath_hal_set_channels(ah, chans, nchans,
|
|
reg->country, reg->regdomain);
|
|
if (status != HAL_OK) {
|
|
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
|
|
__func__, status);
|
|
return EINVAL; /* XXX */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_getradiocaps(struct ieee80211com *ic,
|
|
int maxchans, int *nchans, struct ieee80211_channel chans[])
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
|
|
__func__, SKU_DEBUG, CTRY_DEFAULT);
|
|
|
|
/* XXX check return */
|
|
(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
|
|
HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
|
|
|
|
}
|
|
|
|
static int
|
|
ath_getchannels(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
|
|
/*
|
|
* Collect channel set based on EEPROM contents.
|
|
*/
|
|
status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
|
|
&ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
|
|
if (status != HAL_OK) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: unable to collect channel list from hal, status %d\n",
|
|
__func__, status);
|
|
return EINVAL;
|
|
}
|
|
(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
|
|
ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */
|
|
/* XXX map Atheros sku's to net80211 SKU's */
|
|
/* XXX net80211 types too small */
|
|
ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
|
|
ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
|
|
ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */
|
|
ic->ic_regdomain.isocc[1] = ' ';
|
|
|
|
ic->ic_regdomain.ecm = 1;
|
|
ic->ic_regdomain.location = 'I';
|
|
|
|
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
|
|
"%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
|
|
__func__, sc->sc_eerd, sc->sc_eecc,
|
|
ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
|
|
ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_rate_setup(struct ath_softc *sc, u_int mode)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const HAL_RATE_TABLE *rt;
|
|
|
|
switch (mode) {
|
|
case IEEE80211_MODE_11A:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11A);
|
|
break;
|
|
case IEEE80211_MODE_HALF:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
|
|
break;
|
|
case IEEE80211_MODE_QUARTER:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
|
|
break;
|
|
case IEEE80211_MODE_11B:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11B);
|
|
break;
|
|
case IEEE80211_MODE_11G:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11G);
|
|
break;
|
|
case IEEE80211_MODE_TURBO_A:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_108A);
|
|
break;
|
|
case IEEE80211_MODE_TURBO_G:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_108G);
|
|
break;
|
|
case IEEE80211_MODE_STURBO_A:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
|
|
break;
|
|
case IEEE80211_MODE_11NA:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
|
|
break;
|
|
case IEEE80211_MODE_11NG:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
|
|
break;
|
|
default:
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
|
|
__func__, mode);
|
|
return 0;
|
|
}
|
|
sc->sc_rates[mode] = rt;
|
|
return (rt != NULL);
|
|
}
|
|
|
|
static void
|
|
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
|
|
{
|
|
/* NB: on/off times from the Atheros NDIS driver, w/ permission */
|
|
static const struct {
|
|
u_int rate; /* tx/rx 802.11 rate */
|
|
u_int16_t timeOn; /* LED on time (ms) */
|
|
u_int16_t timeOff; /* LED off time (ms) */
|
|
} blinkrates[] = {
|
|
{ 108, 40, 10 },
|
|
{ 96, 44, 11 },
|
|
{ 72, 50, 13 },
|
|
{ 48, 57, 14 },
|
|
{ 36, 67, 16 },
|
|
{ 24, 80, 20 },
|
|
{ 22, 100, 25 },
|
|
{ 18, 133, 34 },
|
|
{ 12, 160, 40 },
|
|
{ 10, 200, 50 },
|
|
{ 6, 240, 58 },
|
|
{ 4, 267, 66 },
|
|
{ 2, 400, 100 },
|
|
{ 0, 500, 130 },
|
|
/* XXX half/quarter rates */
|
|
};
|
|
const HAL_RATE_TABLE *rt;
|
|
int i, j;
|
|
|
|
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
|
|
rt = sc->sc_rates[mode];
|
|
KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
|
|
for (i = 0; i < rt->rateCount; i++) {
|
|
uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
|
|
if (rt->info[i].phy != IEEE80211_T_HT)
|
|
sc->sc_rixmap[ieeerate] = i;
|
|
else
|
|
sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
|
|
}
|
|
memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
|
|
for (i = 0; i < nitems(sc->sc_hwmap); i++) {
|
|
if (i >= rt->rateCount) {
|
|
sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
|
|
sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
|
|
continue;
|
|
}
|
|
sc->sc_hwmap[i].ieeerate =
|
|
rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
|
|
if (rt->info[i].phy == IEEE80211_T_HT)
|
|
sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
|
|
sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
|
|
if (rt->info[i].shortPreamble ||
|
|
rt->info[i].phy == IEEE80211_T_OFDM)
|
|
sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
|
|
sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
|
|
for (j = 0; j < nitems(blinkrates)-1; j++)
|
|
if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
|
|
break;
|
|
/* NB: this uses the last entry if the rate isn't found */
|
|
/* XXX beware of overlow */
|
|
sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
|
|
sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
|
|
}
|
|
sc->sc_currates = rt;
|
|
sc->sc_curmode = mode;
|
|
/*
|
|
* All protection frames are transmited at 2Mb/s for
|
|
* 11g, otherwise at 1Mb/s.
|
|
*/
|
|
if (mode == IEEE80211_MODE_11G)
|
|
sc->sc_protrix = ath_tx_findrix(sc, 2*2);
|
|
else
|
|
sc->sc_protrix = ath_tx_findrix(sc, 2*1);
|
|
/* NB: caller is responsible for resetting rate control state */
|
|
}
|
|
|
|
static void
|
|
ath_watchdog(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int do_reset = 0;
|
|
|
|
ATH_LOCK_ASSERT(sc);
|
|
|
|
if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
|
|
uint32_t hangs;
|
|
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
|
|
if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
|
|
hangs != 0) {
|
|
device_printf(sc->sc_dev, "%s hang detected (0x%x)\n",
|
|
hangs & 0xff ? "bb" : "mac", hangs);
|
|
} else
|
|
device_printf(sc->sc_dev, "device timeout\n");
|
|
do_reset = 1;
|
|
counter_u64_add(ic->ic_oerrors, 1);
|
|
sc->sc_stats.ast_watchdog++;
|
|
|
|
ath_power_restore_power_state(sc);
|
|
}
|
|
|
|
/*
|
|
* We can't hold the lock across the ath_reset() call.
|
|
*
|
|
* And since this routine can't hold a lock and sleep,
|
|
* do the reset deferred.
|
|
*/
|
|
if (do_reset) {
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
|
|
}
|
|
|
|
callout_schedule(&sc->sc_wd_ch, hz);
|
|
}
|
|
|
|
static void
|
|
ath_parent(struct ieee80211com *ic)
|
|
{
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
int error = EDOOFUS;
|
|
|
|
ATH_LOCK(sc);
|
|
if (ic->ic_nrunning > 0) {
|
|
/*
|
|
* To avoid rescanning another access point,
|
|
* do not call ath_init() here. Instead,
|
|
* only reflect promisc mode settings.
|
|
*/
|
|
if (sc->sc_running) {
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ath_mode_init(sc);
|
|
ath_power_restore_power_state(sc);
|
|
} else if (!sc->sc_invalid) {
|
|
/*
|
|
* Beware of being called during attach/detach
|
|
* to reset promiscuous mode. In that case we
|
|
* will still be marked UP but not RUNNING.
|
|
* However trying to re-init the interface
|
|
* is the wrong thing to do as we've already
|
|
* torn down much of our state. There's
|
|
* probably a better way to deal with this.
|
|
*/
|
|
error = ath_init(sc);
|
|
}
|
|
} else {
|
|
ath_stop(sc);
|
|
if (!sc->sc_invalid)
|
|
ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
|
|
}
|
|
ATH_UNLOCK(sc);
|
|
|
|
if (error == 0) {
|
|
#ifdef ATH_TX99_DIAG
|
|
if (sc->sc_tx99 != NULL)
|
|
sc->sc_tx99->start(sc->sc_tx99);
|
|
else
|
|
#endif
|
|
ieee80211_start_all(ic);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Announce various information on device/driver attach.
|
|
*/
|
|
static void
|
|
ath_announce(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n",
|
|
ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
|
|
ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
|
|
device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
|
|
ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
|
|
if (bootverbose) {
|
|
int i;
|
|
for (i = 0; i <= WME_AC_VO; i++) {
|
|
struct ath_txq *txq = sc->sc_ac2q[i];
|
|
device_printf(sc->sc_dev,
|
|
"Use hw queue %u for %s traffic\n",
|
|
txq->axq_qnum, ieee80211_wme_acnames[i]);
|
|
}
|
|
device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n",
|
|
sc->sc_cabq->axq_qnum);
|
|
device_printf(sc->sc_dev, "Use hw queue %u for beacons\n",
|
|
sc->sc_bhalq);
|
|
}
|
|
if (ath_rxbuf != ATH_RXBUF)
|
|
device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf);
|
|
if (ath_txbuf != ATH_TXBUF)
|
|
device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf);
|
|
if (sc->sc_mcastkey && bootverbose)
|
|
device_printf(sc->sc_dev, "using multicast key search\n");
|
|
}
|
|
|
|
static void
|
|
ath_dfs_tasklet(void *p, int npending)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *) p;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
/*
|
|
* If previous processing has found a radar event,
|
|
* signal this to the net80211 layer to begin DFS
|
|
* processing.
|
|
*/
|
|
if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
|
|
/* DFS event found, initiate channel change */
|
|
/*
|
|
* XXX doesn't currently tell us whether the event
|
|
* XXX was found in the primary or extension
|
|
* XXX channel!
|
|
*/
|
|
IEEE80211_LOCK(ic);
|
|
ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
|
|
IEEE80211_UNLOCK(ic);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enable/disable power save. This must be called with
|
|
* no TX driver locks currently held, so it should only
|
|
* be called from the RX path (which doesn't hold any
|
|
* TX driver locks.)
|
|
*/
|
|
static void
|
|
ath_node_powersave(struct ieee80211_node *ni, int enable)
|
|
{
|
|
#ifdef ATH_SW_PSQ
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
|
|
|
|
/* XXX and no TXQ locks should be held here */
|
|
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
!! enable);
|
|
|
|
/* Suspend or resume software queue handling */
|
|
if (enable)
|
|
ath_tx_node_sleep(sc, an);
|
|
else
|
|
ath_tx_node_wakeup(sc, an);
|
|
|
|
/* Update net80211 state */
|
|
avp->av_node_ps(ni, enable);
|
|
#else
|
|
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
|
|
|
|
/* Update net80211 state */
|
|
avp->av_node_ps(ni, enable);
|
|
#endif/* ATH_SW_PSQ */
|
|
}
|
|
|
|
/*
|
|
* Notification from net80211 that the powersave queue state has
|
|
* changed.
|
|
*
|
|
* Since the software queue also may have some frames:
|
|
*
|
|
* + if the node software queue has frames and the TID state
|
|
* is 0, we set the TIM;
|
|
* + if the node and the stack are both empty, we clear the TIM bit.
|
|
* + If the stack tries to set the bit, always set it.
|
|
* + If the stack tries to clear the bit, only clear it if the
|
|
* software queue in question is also cleared.
|
|
*
|
|
* TODO: this is called during node teardown; so let's ensure this
|
|
* is all correctly handled and that the TIM bit is cleared.
|
|
* It may be that the node flush is called _AFTER_ the net80211
|
|
* stack clears the TIM.
|
|
*
|
|
* Here is the racy part. Since it's possible >1 concurrent,
|
|
* overlapping TXes will appear complete with a TX completion in
|
|
* another thread, it's possible that the concurrent TIM calls will
|
|
* clash. We can't hold the node lock here because setting the
|
|
* TIM grabs the net80211 comlock and this may cause a LOR.
|
|
* The solution is either to totally serialise _everything_ at
|
|
* this point (ie, all TX, completion and any reset/flush go into
|
|
* one taskqueue) or a new "ath TIM lock" needs to be created that
|
|
* just wraps the driver state change and this call to avp->av_set_tim().
|
|
*
|
|
* The same race exists in the net80211 power save queue handling
|
|
* as well. Since multiple transmitting threads may queue frames
|
|
* into the driver, as well as ps-poll and the driver transmitting
|
|
* frames (and thus clearing the psq), it's quite possible that
|
|
* a packet entering the PSQ and a ps-poll being handled will
|
|
* race, causing the TIM to be cleared and not re-set.
|
|
*/
|
|
static int
|
|
ath_node_set_tim(struct ieee80211_node *ni, int enable)
|
|
{
|
|
#ifdef ATH_SW_PSQ
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
|
|
int changed = 0;
|
|
|
|
ATH_TX_LOCK(sc);
|
|
an->an_stack_psq = enable;
|
|
|
|
/*
|
|
* This will get called for all operating modes,
|
|
* even if avp->av_set_tim is unset.
|
|
* It's currently set for hostap/ibss modes; but
|
|
* the same infrastructure is used for both STA
|
|
* and AP/IBSS node power save.
|
|
*/
|
|
if (avp->av_set_tim == NULL) {
|
|
ATH_TX_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If setting the bit, always set it here.
|
|
* If clearing the bit, only clear it if the
|
|
* software queue is also empty.
|
|
*
|
|
* If the node has left power save, just clear the TIM
|
|
* bit regardless of the state of the power save queue.
|
|
*
|
|
* XXX TODO: although atomics are used, it's quite possible
|
|
* that a race will occur between this and setting/clearing
|
|
* in another thread. TX completion will occur always in
|
|
* one thread, however setting/clearing the TIM bit can come
|
|
* from a variety of different process contexts!
|
|
*/
|
|
if (enable && an->an_tim_set == 1) {
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: enable=%d, tim_set=1, ignoring\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
enable);
|
|
ATH_TX_UNLOCK(sc);
|
|
} else if (enable) {
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: enable=%d, enabling TIM\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
enable);
|
|
an->an_tim_set = 1;
|
|
ATH_TX_UNLOCK(sc);
|
|
changed = avp->av_set_tim(ni, enable);
|
|
} else if (an->an_swq_depth == 0) {
|
|
/* disable */
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
enable);
|
|
an->an_tim_set = 0;
|
|
ATH_TX_UNLOCK(sc);
|
|
changed = avp->av_set_tim(ni, enable);
|
|
} else if (! an->an_is_powersave) {
|
|
/*
|
|
* disable regardless; the node isn't in powersave now
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
enable);
|
|
an->an_tim_set = 0;
|
|
ATH_TX_UNLOCK(sc);
|
|
changed = avp->av_set_tim(ni, enable);
|
|
} else {
|
|
/*
|
|
* psq disable, node is currently in powersave, node
|
|
* software queue isn't empty, so don't clear the TIM bit
|
|
* for now.
|
|
*/
|
|
ATH_TX_UNLOCK(sc);
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
enable);
|
|
changed = 0;
|
|
}
|
|
|
|
return (changed);
|
|
#else
|
|
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
|
|
|
|
/*
|
|
* Some operating modes don't set av_set_tim(), so don't
|
|
* update it here.
|
|
*/
|
|
if (avp->av_set_tim == NULL)
|
|
return (0);
|
|
|
|
return (avp->av_set_tim(ni, enable));
|
|
#endif /* ATH_SW_PSQ */
|
|
}
|
|
|
|
/*
|
|
* Set or update the TIM from the software queue.
|
|
*
|
|
* Check the software queue depth before attempting to do lock
|
|
* anything; that avoids trying to obtain the lock. Then,
|
|
* re-check afterwards to ensure nothing has changed in the
|
|
* meantime.
|
|
*
|
|
* set: This is designed to be called from the TX path, after
|
|
* a frame has been queued; to see if the swq > 0.
|
|
*
|
|
* clear: This is designed to be called from the buffer completion point
|
|
* (right now it's ath_tx_default_comp()) where the state of
|
|
* a software queue has changed.
|
|
*
|
|
* It makes sense to place it at buffer free / completion rather
|
|
* than after each software queue operation, as there's no real
|
|
* point in churning the TIM bit as the last frames in the software
|
|
* queue are transmitted. If they fail and we retry them, we'd
|
|
* just be setting the TIM bit again anyway.
|
|
*/
|
|
void
|
|
ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
int enable)
|
|
{
|
|
#ifdef ATH_SW_PSQ
|
|
struct ath_node *an;
|
|
struct ath_vap *avp;
|
|
|
|
/* Don't do this for broadcast/etc frames */
|
|
if (ni == NULL)
|
|
return;
|
|
|
|
an = ATH_NODE(ni);
|
|
avp = ATH_VAP(ni->ni_vap);
|
|
|
|
/*
|
|
* And for operating modes without the TIM handler set, let's
|
|
* just skip those.
|
|
*/
|
|
if (avp->av_set_tim == NULL)
|
|
return;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
if (enable) {
|
|
if (an->an_is_powersave &&
|
|
an->an_tim_set == 0 &&
|
|
an->an_swq_depth != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: swq_depth>0, tim_set=0, set!\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":");
|
|
an->an_tim_set = 1;
|
|
(void) avp->av_set_tim(ni, 1);
|
|
}
|
|
} else {
|
|
/*
|
|
* Don't bother grabbing the lock unless the queue is empty.
|
|
*/
|
|
if (an->an_swq_depth != 0)
|
|
return;
|
|
|
|
if (an->an_is_powersave &&
|
|
an->an_stack_psq == 0 &&
|
|
an->an_tim_set == 1 &&
|
|
an->an_swq_depth == 0) {
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
|
|
" clear!\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":");
|
|
an->an_tim_set = 0;
|
|
(void) avp->av_set_tim(ni, 0);
|
|
}
|
|
}
|
|
#else
|
|
return;
|
|
#endif /* ATH_SW_PSQ */
|
|
}
|
|
|
|
/*
|
|
* Received a ps-poll frame from net80211.
|
|
*
|
|
* Here we get a chance to serve out a software-queued frame ourselves
|
|
* before we punt it to net80211 to transmit us one itself - either
|
|
* because there's traffic in the net80211 psq, or a NULL frame to
|
|
* indicate there's nothing else.
|
|
*/
|
|
static void
|
|
ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
|
|
{
|
|
#ifdef ATH_SW_PSQ
|
|
struct ath_node *an;
|
|
struct ath_vap *avp;
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
int tid;
|
|
|
|
/* Just paranoia */
|
|
if (ni == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Unassociated (temporary node) station.
|
|
*/
|
|
if (ni->ni_associd == 0)
|
|
return;
|
|
|
|
/*
|
|
* We do have an active node, so let's begin looking into it.
|
|
*/
|
|
an = ATH_NODE(ni);
|
|
avp = ATH_VAP(ni->ni_vap);
|
|
|
|
/*
|
|
* For now, we just call the original ps-poll method.
|
|
* Once we're ready to flip this on:
|
|
*
|
|
* + Set leak to 1, as no matter what we're going to have
|
|
* to send a frame;
|
|
* + Check the software queue and if there's something in it,
|
|
* schedule the highest TID thas has traffic from this node.
|
|
* Then make sure we schedule the software scheduler to
|
|
* run so it picks up said frame.
|
|
*
|
|
* That way whatever happens, we'll at least send _a_ frame
|
|
* to the given node.
|
|
*
|
|
* Again, yes, it's crappy QoS if the node has multiple
|
|
* TIDs worth of traffic - but let's get it working first
|
|
* before we optimise it.
|
|
*
|
|
* Also yes, there's definitely latency here - we're not
|
|
* direct dispatching to the hardware in this path (and
|
|
* we're likely being called from the packet receive path,
|
|
* so going back into TX may be a little hairy!) but again
|
|
* I'd like to get this working first before optimising
|
|
* turn-around time.
|
|
*/
|
|
|
|
ATH_TX_LOCK(sc);
|
|
|
|
/*
|
|
* Legacy - we're called and the node isn't asleep.
|
|
* Immediately punt.
|
|
*/
|
|
if (! an->an_is_powersave) {
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: not in powersave?\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":");
|
|
ATH_TX_UNLOCK(sc);
|
|
avp->av_recv_pspoll(ni, m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We're in powersave.
|
|
*
|
|
* Leak a frame.
|
|
*/
|
|
an->an_leak_count = 1;
|
|
|
|
/*
|
|
* Now, if there's no frames in the node, just punt to
|
|
* recv_pspoll.
|
|
*
|
|
* Don't bother checking if the TIM bit is set, we really
|
|
* only care if there are any frames here!
|
|
*/
|
|
if (an->an_swq_depth == 0) {
|
|
ATH_TX_UNLOCK(sc);
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: SWQ empty; punting to net80211\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":");
|
|
avp->av_recv_pspoll(ni, m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Ok, let's schedule the highest TID that has traffic
|
|
* and then schedule something.
|
|
*/
|
|
for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
/*
|
|
* No frames? Skip.
|
|
*/
|
|
if (atid->axq_depth == 0)
|
|
continue;
|
|
ath_tx_tid_sched(sc, atid);
|
|
/*
|
|
* XXX we could do a direct call to the TXQ
|
|
* scheduler code here to optimise latency
|
|
* at the expense of a REALLY deep callstack.
|
|
*/
|
|
ATH_TX_UNLOCK(sc);
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: leaking frame to TID %d\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
tid);
|
|
return;
|
|
}
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/*
|
|
* XXX nothing in the TIDs at this point? Eek.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":");
|
|
avp->av_recv_pspoll(ni, m);
|
|
#else
|
|
avp->av_recv_pspoll(ni, m);
|
|
#endif /* ATH_SW_PSQ */
|
|
}
|
|
|
|
MODULE_VERSION(if_ath, 1);
|
|
MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */
|
|
#if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
|
|
MODULE_DEPEND(if_ath, alq, 1, 1, 1);
|
|
#endif
|